Cancer metastasis has been a serious problem since decades. Seed and soil hypothesis of metastasis remains true and all the metastatic tumors follow this nature’s law [1,2]. Advance metastasis or multi-organ metastasis is difficult to treat due to multi-organ dysfunction. One of the major issues in metastasis is that diagnosis occurs at the advanced stages. Secondly, we have not understood the complete mechanisms so well so far due to intricate nature of metastasis. In metastasis, seed (tumor cell) migrates to the soil (distant organs, e.g. lung, liver, brain, and bone). Several experimental studies have been done that suggested the role of bone marrow derived progenitor cells [3] (e.g. CD11b+ [4] and VEGFR1+ [5] cells) in the initiation of metastasis. Several chemokines, such as SDF-1, TNF-α, TGF-β and VEGF-A influence the recruitment of different cell types to pre-metastatic sites resulting into increased expression of specific molecules in the niche like S100A8, S100A9, lysyl oxidase (LOX), fibronectin, MMP9 and MMP2 in the initiation of premetastatic niche [6,7], which are bonafide candidates of therapeutic targeting [8]. In addition, tumor induced hypoxia has been shown to promote the premetastatic niche formation by recruiting CD11b+/Ly6Cmed/Ly6G+ cells [9] and producing LOX [10].
Recently, much attention has been given to the tumor-derived exosomes or micro vesicles that carry almost every essential cellular macromolecule and has signals to polarize cells in the tumor microenvironment and create premetastatic niche in the distant organs, before the seed (tumor cell) arrives [11,12]. Exosomes derived from melanomas were shown to educate pro-metastatic progenitor cells in the bone marrow [13]. Renal-carcinoma-derived exosomes were found to promote angiogenesis in lung tumor metastases [14]. In addition, using murine mammary carcinoma demonstrated that, tumor-derived microvesicles use osteopontin to mobilize pro-angiogenic cells from the bone marrow [15]. Surprisingly, exosomes perform cell independent miRNA biogenesis to promote tumorigenesis and metastasis [16]. Firstly, tumor derived exosomes has pro-angiogenic functions that helps tumor in building required vasculature for tumor growth. For example, Yoon et al. [17] investigated pro-angiogenic role of tumor-secreted exosomes by showing Egr-1 activation in endothelial cells through ERK1/2 and JNK signaling pathways and endothelial cell migration, which was facilitated by the tumor cell derived extracellular vesicles. On the other hand, tumor derived exosomes involved in the destruction of vasculature integrity for metastasis. For example, miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is reported as a potent regulator of tumor cell migration through targeting the tight junction protein ZO-1 via exosomes. Tumor cell secreted exosomes deliver miR-105 to the site of endothelial monolayers that efficiently destroys tight junctions and hence the integrity of barriers against metastasis [18].
Although exosomes have attracted much attention and are considered as a bonafide targets for cancer therapy, their roles in tumor metastasis is poorly investigated. In addition, technologies and methods to study exosomes are growing day by day. It is possible that tumor cell exosomes are delivered to the distant organs that manipulates host environment before any immune cells or chemokine. However, what initiates tumor cell migration to the distant organs, remains unclear, i.e. chicken comes first or egg and warrants further investigations.
References
- 1.International symposium. Critical determinants in cancer progression and metastasis. A centennial celebration of Dr. Stephen Paget’s ‘seed and soil’ hypothesis. March 6–10, 1989, Houston, Texas. Abstracts. Cancer Metastasis Rev. 1989;8:93–197. [PubMed] [Google Scholar]
- 2.Faraji F, Eissenberg JC. Seed and soil: A conceptual framework of metastasis for clinicians. Mo Med. 2013;110:302–308. [PMC free article] [PubMed] [Google Scholar]
- 3.Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 2006;25:521–529. doi: 10.1007/s10555-006-9036-9. [DOI] [PubMed] [Google Scholar]
- 4.Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–1375. doi: 10.1038/ncb1507. [DOI] [PubMed] [Google Scholar]
- 5.Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827. doi: 10.1038/nature04186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21:139–146. doi: 10.1016/j.semcancer.2011.01.002. [DOI] [PubMed] [Google Scholar]
- 7.Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–11093. doi: 10.1158/0008-5472.CAN-06-2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Zoccoli A, Iuliani M, Pantano F, Imperatori M, Intagliata S, et al. Premetastatic niche: ready for new therapeutic interventions? Expert Opin Ther Targets. 2012;16(Suppl 2):S119–129. doi: 10.1517/14728222.2012.656092. [DOI] [PubMed] [Google Scholar]
- 9.Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012;72:3906–3911. doi: 10.1158/0008-5472.CAN-11-3873. [DOI] [PubMed] [Google Scholar]
- 10.Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44. doi: 10.1016/j.ccr.2008.11.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014;16:717–727. doi: 10.1038/ncb3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Sceneay J, Smyth MJ, Möller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013;32:449–464. doi: 10.1007/s10555-013-9420-1. [DOI] [PubMed] [Google Scholar]
- 13.Peinado H, Alea kovia M, Lavotshkin S, Matei I, Costa-Silva B, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–891. doi: 10.1038/nm.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71:5346–5356. doi: 10.1158/0008-5472.CAN-11-0241. [DOI] [PubMed] [Google Scholar]
- 15.Fremder E, Munster M, Aharon A, Miller V, Gingis-Velitski S, et al. Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin. Int J Cancer. 2014;135:270–281. doi: 10.1002/ijc.28678. [DOI] [PubMed] [Google Scholar]
- 16.Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707–721. doi: 10.1016/j.ccell.2014.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, et al. Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways. PLoS One. 2014;9:e115170. doi: 10.1371/journal.pone.0115170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Zhou W, Fong MY, Min Y, Somlo G, Liu L, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–515. doi: 10.1016/j.ccr.2014.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
