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Abstract

Objective—There is no dearth of correlated count data in any biological or clinical settings, and 

the ability to accurately analyze and interpret such data remains an exciting area of research. In 

oral health epidemiology, the Decayed, Missing, Filled (DMF) index has been continuously used 

for over 70 years as the key measure to quantify caries experience. The DMF index projects a 

subject’s caries status using either the DMF(T), the total number of DMF teeth, or the DMF(S), 

counting the total DMF teeth surfaces, for that subject. However, surfaces within a particular tooth 

or a subject constitute clustered data, and the DMFS mostly overlook this clustering effect to 

attain an over-simplified summary index, ignoring the true tooth-level caries status. Besides, the 

DMFT/DMFS might exhibit excess of some specific counts (say, zeroes representing the set of 

relatively disease-free carious state), or can exhibit overdispersion, and accounting for the excess 

responses or overdispersion remains a key component is selecting the appropriate modeling 

strategy.

Methods & Results—This concept paper presents the rationale and the theoretical framework 

which a dental researcher might consider at the onset in order to choose a plausible statistical 

model for tooth-level DMFS. Various nuances related to model fitting, selection and parameter 

interpretation are also explained.

Conclusion—The author recommends conceptualizing the correct stochastic framework should 

serve as the guiding force to the dental researcher’s never-ending goal of assessing complex 

covariate-response relationships efficiently.
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Discrete count data abounds in a variety of scientific disciplines such as epidemiology, 

medicine, biology, and in a number of clinical trial settings (1,2). For example, in the 

epidemiology of dental caries, dental researchers exhibit unparallel fidelity to the DMFT/

DMFS index, whose origin dates back to Klein, Palmer and Knutson, 1938 (3). The DMFT/

DMFS index counts the total number of decayed (D), missing (M) and filled (F) tooth/

surfaces for the whole mouth. A common feature of these data is the presence of 

‘overdispersion’ when fitting to a Poisson (P) distribution, the default statistical distribution 
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for count data, in the sense that the sample variance is larger than the sample mean, and 

hence the well-known “unit variance to mean ratio” is violated. Overdispersion might be a 

result of several factors, such as unobserved heterogeneity, missing covariates, or correlation 

among repeated, or longitudinal measures. These count responses are also sometimes 

characterized by excessive observations at one end of the ordering, typically zeroes (4), than 

what is permitted by the distribution under consideration. In caries DMFS, these zeros 

represent the cases where one does not observe any disease.

Modeling strategies that account for overdispersion and excess zeroes continue to remain an 

important area of statistical research, particularly in caries assessments. Often, one choose to 

use a Negative Binomial (NB) regression (5) to model full mouth DMFS to tackle 

overdispersion. In situations of excess zeros, the zero-inflated (ZI) model (6) is widely used 

in dental epidemiology (7). In the ZI framework, the probability of being an excess zero is 

modeled through a mixture distribution allowing greater weight to be placed on the 

probability of observing a zero count (8). A very nice review on applications of the ZI model 

to full-mouth DMFT/DMFS data, and some recommendations appear in (9).

When modeling excess zeroes, it is of utmost importance to consider the latent process from 

which the zeroes evolved. For example, for DMFT/DMFS in any dataset, the zeroes can 

appear from two separate regimes. There might be some tooth/surfaces which had remained 

potentially ‘disease-free’, while others are ‘disease free’ for the present, might have 

developed caries earlier and got cured, or are prone to develop carious lesions in the future. 

The zeroes arising from tooth/surfaces that are never truly at any risk are known as 

‘structural zeroes’, while zeros arising from tooth/surfaces potentially at risk contributes to 

‘sampling zeroes’ (4).

For many data analysis problems, one can assume a latent process that divides the entire set 

of zeroes into the structural and sampling components. The ZI modeling is often more 

advantageous if a dataset contains both these types of zeroes whose probabilities can be 

modeled separately (8). In cases with only an excess of sampling zeroes, Hurdle (H) models 

proposed in (10) are more appropriate. In contrast to the mixture setup in a ZI model, the H 

model is essentially a 2-part model, with the first part modeling a binary response of zero 

versus non-zero, and the second part modeling a truncated-at-zero distribution, such as the 

P, B, etc. This modeling strategy allows for differentiation between the process generating 

the zeroes, and that generating all other count values.

The World Health Organization has adopted the mouth-level aggregative DMF index for 

oral health assessments in national surveys (11). However, it comes with its own set of 

limitations (12). The DMF neither evaluates the number of teeth at risk, not it is useful in 

tracking rate of caries progression. It is not intended for root caries assessment. It provides 

equal weighting to missing, untreated decayed, and well-restored (filled) teeth, which might 

be unrealistic. There is also a lot of controversy in calculating the ‘M’ (missing) component 

of the DMF (12). The DMF is often invalid for elderly subjects where teeth can be lost due 

to a variety of other reasons other than caries. Also, with age, DMF can reach a saturation 

level (13) involving all teeth, and that hinders caries registration even when caries activity 

continues. However, the most perplexing issue are the various possible suggestions (12) in 
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the assignment of the M component in DMF(S) for a missing tooth, which can lead to 

overestimation, or possible underestimation. Yet, the DMFT/DMFS has withstood the test of 

time as the prime index of caries assessment.

Aggregative in nature, the DMFS/DMFT provide a summary caries index for the whole 

mouth without going into the details at the tooth or surface level. To alleviate this, the author 

has earlier proposed modeling caries at the tooth-level (14), by considering the DMFS count 

for each tooth, clustered within a subject. However, there are some important considerations 

in pursuing this theoretical framework which were not discussed in details. This concept 

paper aims to enlighten the dental researchers and other clinical practitioners into 

understanding the correct theoretical premise behind such a model choice, and ways to 

validate such choices in real data applications and simulation studies.

Tooth-level DMFS Modeling Framework Background

With the goal of assessing covariate-response relationships efficiently at the tooth-level, the 

author sets forward with his tooth-level DMFS (14) proposition. Henceforth, DMFS refers 

to the tooth-level count. One might consider various conventions in calculating the DMFS 

discussed in (12), particularly in the context of assigning the ‘M’ component. Whatever be 

the case, it leads to ‘bounded’ counts, where the range of the count is upper-bounded. Note 

that, in the context of DMFT, the range is from 0 to 28 (or 32), depending on whether the 

third molars are included in the scoring. For DMFS, this is either 128, or 148, based on the 

inclusion of the third-molar surfaces (15). All these are amenable to P and NB modeling 

where the unbounded support of the P and NB distributions can be approximated with the 

upper bound values of 28 or 128.

Following the ‘DM5FS’ convention (i.e., for a missing tooth we consider all the surfaces to 

be missing) described in (12), the tooth-level DMFS can range from 0 to 4, or 5, depending 

on the tooth-location. Figure 1 presents the density plot of raw tooth-level DMFS counts 

packed over tooth and subjects from a dataset assessing caries status of Type-2 diabetic, 

Gullah-speaking African-Americans (16). With an upper bound reaching 5, a P or NB model 

is inappropriate here, and one can start modeling with a Binomial (B) distribution. However, 

there can be excess of zeroes (due to the presence of healthy teeth), and also presence of 

clustering because the tooth-level counts are clustered within that subject. Both can lead to 

heterogeneity, and overdispersion, which can be tackled via. the Beta-Binomial (BB) 

specification. The excess zero situation can be handled by either the ZI or H formulation of 

the B distribution, depending on the origin of the zeroes. To accommodate both 

overdispersion and excess zeroes, one can reconsider fitting a ZI or H formulation of the BB 

model (17). After selecting a suitable model, or a set of models, one needs to ascertain the 

model producing the best fit, investigate model fit diagnostics, and finally assess the 

covariate-response relationship by connecting the covariates to the DMFS counts through 

suitable link functions (18), such as the logistic, probit, or cloglog links. We now briefly 

sketch the theoretical framework of the models described above.
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The theoretical framework, model fitting and parameter interpretations

Let Y be a random variable (r.v.) representing the DMFS counts, with y being our observed 

value of the count. Define f(yij) = P(Yij = yij) to be the probability mass function of Y 

corresponding to the jth tooth of the ith subject. For our Binomial model, the distribution 

function of Y is represented by f(yij) = Bin(nij, θij), where the parameters nij and θij 

correspond to the counts (4, or 5), and the probability of experiencing a D, M or F surface 

for the (i, j)th response, respectively. Note, here we assume the probabilities of occurrence of 

a D, M or F surface are all equal. Next, the effect of possible subject level (such as Age, 

gender, glycemic status, etc), and/or tooth-level (such as tooth-type, i.e., whether a tooth is 

either one of incisor, canine, pre-molar and molar; jaw indicator, i.e. whether tooth is located 

in the mandible or the maxilla, etc) covariates can be assessed via a regression function over 

θij using the logit link, such that: , where logit(θij) = log[θij/

(1−θij)], β0 is the model intercept, Xi is the design matrix of covariates (of appropriate 

dimensions) corresponding to the regression parameter vector β, and Ui is the random effect/

intercept term that controls for the clustering. Ui is assigned a Normal distribution with an 

unknown (but estimable) variance σ2, i.e. Ui ~ N(0, σ2), and parameter estimation can 

proceed via maximum likelihood (ML) (19), available in standard software like SAS (20), R 

(21), etc. The exponentiated estimate of a single parameter β1 can be expressed in terms of 

increase/decrease in the odds of having an extra D, M or F surface with 1 unit increase in the 

covariate (for continuous ones), or a change from a 0 to 1 category (for categorical ones), 

conditioned on the other covariates and the clustering effect.

Next, in the Beta-Binomial (BB) specification capable of handling overdispersion, θij is 

allowed to follow a Beta distribution, i.e. θij ~ Beta (aij, bij), where aij, and bij, are the Beta 

parameters. For assessing covariate effects, one parameterizes aij, and bij, as aij = μij * φ and 

bij = (1−μij) * φ and, where φ is an unknown (constant), but estimable, dispersion parameter 

and μij = E(Yij). Note that 0 ≤ μij ≤ 1 and φ > 0. and. Data covariates are then connected to 

the true response Y via the logit link on μij as above. Interpretation remains the same for a 

single parameter β1, however, here the odds are expressed in terms of increase/decrease in 

the ‘mean’ probability of having an extra D/M/F surface, conditioned on other covariates 

and random effects. One might also consider φ to be varying with subjects, tooth, or both 

subject and tooth, i.e., φi, φj, or φij, and estimate those from the data, or connecting those to 

the covariates via. a log link, i.e. , where γ0 the intercept, γ the 

vector of regression parameters corresponding to the design matrix of covariates Y (which 

may or may not be equivalent to X considered above), and Vi is another random effect term 

assigned a N(0, δ2), where δ2 is the variance component for Vi. Covariates here are linked 

linearly to log (φij). Similarly as above, parameter estimation follows standard ML methods 

utilizing available software.

With the goal of accommodating excess zeroes in our model, the choice between the ZI and 

H specification of a Binomial distribution is dictated by the zero-generation process. 

Although both the ZI and H models can be viewed as finite mixture models (22), they often 

produce indistinguishable fits revealed through goodness-of-fit measures. Yet, one model 

might be more applicable than the other based on the objectives and design of the study. 
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Hence, a proper evaluation of the underlying clinical framework is necessary. The ZIB 

probability distribution (23) is given by:

where pij is the probability of excess ‘structural’ zeroes, f(yij) is the B distribution, with f(0) 

the value at yij = 0. The ZIB model puts greater emphasis on the probability of observing a 

zero, which is determined as the sum of the probabilities of observing a structural and a 

sampling zero (the expression corresponding to yij = 0 in the equation above). Thus, the ZIB 

has the ability to pick up two different regimes of zeroes; when pij equals 0, the ZIB reduces 

to the standard B distribution, and with pij approaching 1, the data exhibit greater over-

dispersion. On the contrary, the HB is a modified count model (8) that conceptualizes two 

separate processes generating the zero and positive counts, the positive counts resulting after 

crossing the zero threshold or the ‘hurdle’. Thus, the HB model is defined as

where pij is the probability of a zero, 1−pij is the probability of ‘crossing the hurdle’, and 

f(yij) is the B distribution. In general, the H model is an alternative way to model zero 

modifications (both inflation and deflation), whereas the ZI model can handle only zero-

inflations.

In a ZI framework, there is no selection process leading to a zero or non-zero values; in 

contrast, within the H framework, there is a clear hierarchical process leading to the choice 

of Yij = 0 vs. Yij > 0, and afterwards a process that follows accounting for Yij > 0. Once 

again, one can connect the covariates to θij in both the ZIB and HB models via. a logit link 

as described above after adding the normally distributed random intercept Ui to the linear 

predictor. The excess zero probability pij in both the framework can be estimated from the 

dataset assuming it to be a constant, or connected to the covariates via. a similar logit link 

function. Another normally distributed random intercept Vi (described above) may or may 

not be added to the linear predictor of pij. Both the variance parameters associated with Ui 

and Vi and can be estimated from the data, or they may follow the same normal distribution 

with the same variance parameter, or (Ui, Vi) may be allowed to follow a bivariate normal 

distribution from which the covariance between the two random intercepts for both ZI and H 

models can be estimated. It is likely that for the H model, the covariance can be negative 

because a subject with a greater probability of producing zero counts will tend to have a 

lower binomial success probability in the truncated (Y > 0) second stage.

In order to accommodate both excess zeroes and overdispersion, one can also consider the 

ZI and H specification of the BB model (17, 24). This framework is straightforward, where 

f(yij) in the ZIB and HB models above is replaced with a BB distribution. Note, here the 

covariates can be regressed over any combination of pij, μij, φij, and via. suitable link 
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functions, and interpretations remain the same as described in the context of BB, ZIB and 

HB models. Once again, parameter estimation can follow the ML estimation method in all 

the above specifications of the ZI and H models.

Note, instead of modeling pij, one can choose to model (1−pij) representing the probability 

of ‘not crossing the hurdle’, and consequently the sign of the estimated covariance is 

expected to reverse. However, there remain subtle differences in the interpretation of the 

regressions parameters on pij and θij, for both models. For pij, the parameters are evaluated 

in terms of the odds of ‘structural zero DMFS versus a random DMFS (that includes the 

sampling zeroes)’ for the ZI model, and of ‘no DMFS versus a positive DMFS’ for the H 

model. For θij, the parameters are again evaluated in terms of the odds of ‘experiencing an 

additional D/M/F surface among surfaces that includes sampling zeroes’ for the ZI model, 

and of ‘experiencing an additional D/M/F surface, given that there is at least one such 

surface (i.e., after crossing the hurdle)’ for the H model. Intuitively, some of the covariates 

(such as Age) might be predicting pij, and θij in a completely opposite direction, which 

should be the case. Also note that the interpretation of regression parameters in the BB (and 

B) model for θij, and μij, are not the same as that in the H specification for θij. For the BB 

and B models, the parameters have marginal interpretation, while for the H model the 

parameters are interpreted conditional on crossing the hurdle of having at least one DMFS 

counts, and hence they are not comparable. However, certain parameter transformations 

similar to (9, 24) can be adopted to render the parameters suitable for comparisons.

Post model fit, the competing models (B, BB, ZIB, HB, ZIBB and HBB) should be 

compared via popular model selection techniques such as Deviance, AIC, BIC, etc criteria 

popularly used in statistical model fitting and available in almost all software, or using the 

Vuong’s test (25) to arrive at the ‘best model’. Finally, goodness of fit can be assessed 

through visual checks by plotting the observed proportion minus the mean (expected) 

probability at each count for the competing models, and the best model is expected to yield 

values that lie close to a horizontal line passing through the origin. Inference in terms of 

odds from the best model can then be reported by assessing statistical significance of the 

parameters at a 5% level. Finally, in order to quantify the effect of model misspecification 

on the regression parameters (i.e., trying to understand how far away the model parameters 

are estimated from their true values using the wrong model under ground truth), simulation 

studies that uses artificially generated data under various scenarios are necessary. After 

generating data from one of the models, the parameter estimates obtained after fitting the 

above class of competing models can be compared via mean squared error (MSE), coverage 

probability (CP), etc. The model that closely resemble the underlying data generation will 

have the minimum MSE and maximum CP. However, one needs to be careful in comparing 

the model parameters β while comparing the BB and H models in light of the discussion 

above, and the recommendations in (9, 23).

Moving Forward

The analysis of clustered count data with finite upper bounds that exhibits overdispersion 

and excess zeroes remains a complex statistical problem. With the aim to better understand 

dental caries, the author proposes to model (bounded) tooth-level DMFS over the usual 
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mouth-level (aggregative) DMFS, and sketches the theoretical framework of a set of 

plausible statistical models which a dental researcher might consider at the onset. Various 

nuances related to model fitting, selection and parameter interpretation are also explained 

which should serve as a guiding force to dental researchers interested in assessing complex 

covariate-response relationships.

In this context, the recommendations of the author are the same as described in the excellent 

review article on caries assessment (9), and the estimation of overall exposure effects in ZI 

models (24). A researcher might have at his/her disposal a rich toolbox of models with 

varying complexity, staring from the simple B model to the ZI and H specification of a BB 

model. No matter whatever the starting models are, the final model selection should always 

consider comparing various model fit statistics like deviance, AIC, BIC, etc. This may seem 

counter-intuitive, because the model fit statistics can sometimes choose a simpler model 

over a more complex one which seems to better explain the underlying stochastic 

phenomenon. Note that the ZI and H structure of the B or BB models are just some 

theoretical ramifications aiming to better explain the ground truth, and there remains a 

possibility that a much simpler model can sometimes be closer to the truth. Next, covariate 

choice for the two separate regressions (say, pij and θij for the HB model) should also follow 

the recommendations in (9). Finally, adding a random intercept term (Ui and Vi) to these 

regressions is quintessential in controlling the effects of clustering as we move from mouth-

level to tooth-level DMFS assessments, and ignoring these might lead to possible 

underestimation of true p-values and narrowing of confidence intervals of covariate effects 

(26).

The search for the most efficient index for caries assessment remains an open problem even 

today. The author contends that exploring tooth-level DMFS should throw some new light 

into caries assessments. The rate of caries progression is not homogenous throughout the 

mouth, and different regions are susceptible to different degrees of carious lesions (such as, 

molars can be different than incisors). The tooth-level DMFS counts can provide inference 

and prediction for each tooth at various locations inside the mouth, which are not possible 

using the popular full-mouth DMFT/DMFS measures. In light of the statistical framework 

described in this concept paper and other recommendations suggested in (9, 24), further 

studies and analysis using tooth-level DMFS are warranted.
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Fig. 1. 
Density histogram of tooth-level DMFS counts for the Gullah dataset
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