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Abstract

Random fluctuations in gene expression lead to wide cell-to-cell differences in RNA and protein 

counts. Most efforts to understand stochastic gene expression focus on local (intrinisic) 

fluctuations, which have an exact theoretical representation. However, no framework exists to 

model global (extrinsic) mechanisms of stochasticity. We address this problem by dissecting the 

sources of stochasticity that influence the expression of a yeast heat shock gene, SSA1. Our 

observations suggest that extrinsic stochasticity does not influence every step of gene expression, 

but rather arises specifically from cell-to-cell differences in the propensity to transcribe RNA. This 

led us to propose a framework for stochastic gene expression where transcription rates vary 

globally in combination with local, gene-specific fluctuations in all steps of gene expression. The 

proposed model better explains total expression stochasticity than the prevailing ON-OFF model 

and offers transcription as the specific mechanism underlying correlated fluctuations in gene 

expression.
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Introduction

The processes underlying gene expression produce remarkable cell-to-cell heterogeneity of 

RNA and protein counts between genetically identical cells (Chabot et al., 2007; Elowitz et 

al., 2002; Newman et al., 2006; Ozbudak et al., 2002; Raj et al., 2006; Raser and O’Shea, 

2004; Stewart-Ornstein et al., 2012). This heterogeneity arises, in part, from random 

molecular collisions, which introduce local, ‘intrinsic’ fluctuations in transcription and 

translation that act independently on individual genes within the same cell. In contrast, 

global ‘extrinsic’ factors, such as changes in the number of transcription factors or 

ribosomes, act on many genes simultaneously and induce correlated fluctuations between 

genes in the same cell. To quantify and separate global (extrinsic) effects from local 

(intrinsic) mechanisms investigators quantify the covariance between two identical reporter 

genes in single cells (Elowitz et al., 2002; Raser and O’Shea, 2004). The covariance 

between identical genes captures extrinsic sources of variance, while intrinsic mechanisms 

decouple their expression. The relative positioning of the two reporter genes defines whether 

a particular mechanism is labeled intrinsic or extrinsic in a given experiment. The theoretical 

basis of intrinsic noise has been studied extensively (Elgart et al., 2011; Elowitz et al., 2002; 

Gillespie, 1976; Paulsson, 2005; Shahrezaei et al., 2008) yielding a consensus model–the 

ON-OFF model–which seems necessary to explain higher than expected variability in RNA 

and protein levels levels (Blake et al., 2003; Blake et al., 2006; Golding et al., 2005; Harper 

et al., 2011; Lionnet and Singer, 2012; Raj et al., 2006; Raj and van Oudenaarden, 2008; 

Raser and O’Shea, 2004; Suter et al., 2011).

No such model exists for capturing extrinsic stochasticity. For example, differences in cell 

volume (Becskei et al., 2005; Mogno et al., 2010; Newman et al., 2006; Stewart-Ornstein et 

al., 2012), cell cycle position (Zenklusen et al., 2008; Zopf et al., 2013), mitochondrial 

content (Guantes et al., 2015), and co-transcriptional regulation (Gandhi et al., 2011; 
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Stewart-Ornstein et al., 2012) contribute to extrinsic stochasticity, but it remains unclear 

how to incorporate these nonspecific effects into the intrinsic-only ON-OFF model.

Given that both intrinsic and extrinsic sources of noise contribute substantially to stochastic 

gene expression (Elowitz et al., 2002; Stewart-Ornstein et al., 2012; Volfson et al., 2006), it 

is crucial to understand how the interaction between intrinsic and extrinsic factors generates 

total expression stochasticity. Here, the lack of a theoretical framework for handling 

extrinsic noise represents a serious limitation. Rather than modeling both sources of variance 

together, previous investigations separated total variance into its intrinsic and extrinsic 

components, and then analyzed only the intrinsic component (Carey et al., 2013; Dadiani et 

al., 2013; Newman et al., 2006; Raser and O’Shea, 2004; Shalem et al., 2013). New 

mechanistic models of stochastic gene expression will be necessary to analyze sources of 

extrinsic variance, such as changes in cell volume.

Changes in cell volume occur in predictable ways across the cell cycle and introduce a large 

portion of extrinsic variance in gene expression (Becskei et al., 2005; Mogno et al., 2010; 

Newman et al., 2006; Padovan-Merhar et al., 2015; Stewart-Ornstein et al., 2012; Zenklusen 

et al., 2008; Zopf et al., 2013). The physiological changes associated with particular stages 

of the cell cycle also generate extrinsic differences between genetically identical cells. How 

are the impacts of these changes mediated? One possibility is that the rate of every step in 

gene expression–transcription, translation, along with RNA and protein degradation–varies 

as the protein effectors involved change in abundance through the cell cycle. Alternatively, 

extrinsic contributions may operate mainly at one particular step in gene expression.

To distinguish between these possibilities we propose a theoretical model that incorporates 

both intrinsic and extrinsic sources of noise in a unified framework. We show that this 

hybrid model faithfully captures both intrinsic and extrinsic noise, and predicts the shape of 

the full stochastic expression distribution. We conclude that our hybrid model broadly 

captures the underlying mechanisms that generate noise in gene expression.

Results

Intrinsic and extrinsic stochasticity are mechanistically related

Intrinsic and extrinsic sources of stochasticity are often treated as orthogonal contributors to 

expression variability, since total variance is the sum of intrinsic and extrinsic variance 

(Elowitz et al., 2002; Newman et al., 2006).

(1)

However, intrinsic and extrinsic variances share a more nuanced relationship (Hilfinger and 

Paulsson, 2011; Lei, 2009; Shahrezaei et al., 2008). We represent that relationship using the 

definition of variance and the double expectation theorem E[E[X ∣ e]] = E[X], yielding Eq. 2. 

Here, e represents any extrinsic factor on which the random variable X depends.
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(2)

Eq. 2 demonstrates a key insight: intrinsic variance explicitly depends on extrinsic factors e. 

It is therefore not clear whether intrinsic and extrinsic variance can be considered separately. 

This led us to explore how intrinsic and extrinsic sources of variability might be brought 

together in a single model.

We started with the simplest mechanistic model of gene expression (Fig. 1A). This model 

captures transcription and translation at rates km and kp, along with the degradation of RNA 

(dm) and protein (dp), which occurs in proportion to the amount of each molecule present. 

The stochastic formulation of this model is a chemical master equation (Eq. 3), with Nm and 

Np representing the number of mRNAs and proteins respectively.

(3)

Assuming steady state yields solutions to the model’s first and second moments:

(4)

(5)

A key caveat is that this model only represents intrinsic sources of variability. This follows 

since Eq. 3 equally describes the behavior of all genes whether they lie in the same cell or 

different cells; therefore all genes act completely independently and by definition will not 

display correlated fluctuations. To introduce correlated (extrinsic) fluctuations within single 

cells, one approach would be to replace the rate constants of this model with time-varying 

concentrations, affinities and interactions that determine the average rate of each step. In 

such a model, two genes within the same cell would experience the same cell-specific 
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number of polymerases, transcription factors, ribosomes, and decay factors, but these 

variables would change from cell to cell.

We represent this idea by assuming that extrinsic fluctuations (e.g. the changes in the 

number of polymerases in a cell over time) operate on a slower timescale than intrinsic 

fluctuations (the thermodynamic fluctuations in bimolecular interactions) (Rosenfeld et al., 

2005). In this regime, each parameter in the intrinsic-only model is replaced by a random 

variable: km to Km, kp to Kp dm to Dm, and dp to Dp, where, for example, each individual cell 

experiences a specific transcription rate km drawn from Km (Fig. 1A). The variability in the 

rate constants themselves may be linked, necessitating a joint distribution across all 

parameter values, P(Km = km, Kp = kp, Dm = dm, Dp = dp).

Despite the simplifying assumption of fixed extrinsic rates for each cell, a model 

incorporating these factors yields a quagmire even for mean expression:

(6)

In this worst case scenario, experimentally extracting P(km,kp, dm, dp) would require 

instantaneous estimates of all four rate constants in single cells. The complexity of such a 

system has led the majority of studies to isolate intrinsic stochasticity by itself (Carey et al., 

2013; Dadiani et al., 2013; Newman et al., 2006; Raser and O’Shea, 2004; Shalem et al., 

2013). Alternatively, if extrinsic noise can be represented by only a single parameter that 

varies widely from cell to cell then the theory simplifies considerably. However, it is not 

clear if a model in which a single parameter controls the majority of extrinsic stochasticity 

will capture the cell-to-cell variability observed in real expression distributions. If one 

parameter is primarily responsible for extrinsic noise, it is still not clear which parameter is 

the best candidate. Thus, it may be that every step in gene expression introduces significant 

extrinsic noise, or that extrinsic variation in only one parameter captures most cell-to-cell 

variability. We used the SSA1 promoter in yeast as a model to understand where one 

particular gene falls on this spectrum.

SSA1, a model heat shock inducible promoter

We quantified stochastic expression of a GFP reporter gene driven by the SSA1 promoter in 

S. cerevisiae. SSA1 belongs to the HSP70 family of chaperone proteins, which respond to 

stress conditions including heat shock (Hahn and Young, 2011; Slater et al., 1987; Young 

and Craig, 1993). We fused the promoter to a fast maturing GFP variant (Cormack et al., 

1996; Iizuka et al., 2011) and integrated this reporter gene into the genome at the HIS3 

locus.

Protein half-life sets the timescale of stochastic fluctuations and contributes substantially to 

the balance of intrinsic and extrinsic noise (Wang et al., 2008). We therefore assembled two 

destabilized GFP mutants by exploiting the N-end pathway (Hackett et al., 2006; 

Varshavsky, 1996). N-end amino acid identity determines protein stability; we selected 
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tyrosine (moderately destabilizing) and histidine (very destabilizing) as our N-end amino 

acids (Varshavsky, 1996) and integrated these constructs at the HIS3 locus (Fig. 1B).

We measured the cell-to-cell distribution of GFP produced by each construct using flow 

cytometry. The constructs behaved as expected, with mean expression the highest for 

SSA1P-GFP, then SSA1P-Y-GFP, and then SSA1P-H-GFP. All strains also expressed 

higher at 37 ° C than 22 ° C (Fig. 1C, Fig. S1B-F).

Flow cytometry enables us to record gene expression variability among single cells. 

However, the units of this measurement, arbitrary units of fluorescence, are problematic 

since stochastic models of gene expression operate in units of protein number (Np, Eq. 3). 

We therefore used Fluorescence Correlation Spectroscopy (FCS) and quantitative western 

blotting to calibrate fluorescence distributions in units of absolute protein. Our estimates of 

the absolute molecule count to fluorescence conversion factor were concordant between 

these two methods (Fig. 1E-H). Details of both calibration experiments are in the 

Experimental Procedures and in the Supplement.

Intrinsic and extrinsic variance both contribute to steady state SSA1P-GFP expression

With a protocol for calibrating our cytometer measurements in units of protein count, we 

quantified stochastic expression of our reporter constructs. Steady state measurements were 

obtained at 22 ° C and 37 ° C. The mean steady state expression level in the untagged 

diploid single-copy strain was 80958±5160 GFP molecules per cell at 37 ° C , which 

decreased by a factor of 10 at 22 ° C (Fig. 1C). As expected, the destabilized reporters 

SSA1P-Y-GFP and SSA1P-H-GFP showed lower steady state expression at 4921.5±257 and 

4170.4±193 proteins per cell, respectively (Table S1, Figs. S1B-G). All errors are 99% 

confidence intervals based on biological replicates’ fluorescence measurements. The 

absolute counts scale with an error of ± 22 % (99% CI, see Experimental Procedures) which 

do not affect relative comparisons, as all fluorescence measurements are multiplied by a 

common conversion factor.

We measured extrinsic and intrinsic noise by comparing expression between diploid strains 

containing either one or two copies of the same reporter gene on homologous chromosomes 

(Chabot et al., 2007; Stewart-Ornstein et al., 2012) (Fig. 1D). Details can be found in the 

Supplement under the heading “Estimation of intrinsic and extrinsic noise by 1- and 2-copy 

reporter strains.” This approach avoids difficulties with reporter equivalence in dual color 

experiments (Chabot et al., 2007; Stewart-Ornstein et al., 2012). At 37 °C intrinsic noise 

comprises 7 % of SSA1P-GFP expression stochasticity (Table S1). At 22 ° C , the balance 

shifts to 15% intrinsic variance. The destabilized reporters SSA1P-Y-GFP and SSA1P-H-

GFP generate variance with larger contributions from intrinsic variance–as high as 45% for 

SSA1P-H-GFP at 22 ° C. These results are consistent with previous observations that lower 

expression shifts the source of variance toward intrinsic noise (Bar-Even et al., 2006; 

Newman et al., 2006; Stewart-Ornstein et al., 2012). Nonetheless, even at the very lowest 

expression of a few thousand proteins per cell, more than 50% of expression variability 

originates extrinsically. This observation underlines the need for quantitative models that 

represent both sources of stochasticity.
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RNA and protein degradation rates constant across cell cycle

We first tested whether extrinsic factors might contribute to variability through fluctuations 

in the rates of mRNA and protein degradation. To do so we measured bulk degradation rate 

constants across different phases of the cell cycle, a cellular process that contributes 

substantially to extrinsic noise in gene expression (Becskei et al., 2005; Mogno et al., 2010; 

Newman et al., 2006; Stewart-Ornstein et al., 2012; Zenklusen et al., 2008; Zopf et al., 

2013). The cell cycle is an attractive model of extrinsic noise because the expression of 

genes tends to rise as the cell grows (Fig. 2A), naturally titrating the levels of candidate 

extrinsic factors (Mogno et al., 2010; Newman et al., 2006; Stewart-Ornstein et al., 2012).

To measure protein degradation of GFP we blocked translation using cycloheximide when 

the cells were at 37 ° C steady state and recorded the initial decline in signal over time by 

flow cytometry. As expected, fluorescence from SSA1P-H-GFP declines at a faster rate than 

SSA1P-Y-GFP, yielding bulk d p values of .039±.0044min −1 and .011±.00085min −1 

respectively. Untagged GFP degraded at a rate well below the dilution rate, with the 

degradation rate by dilution alone corresponding to 9 0 minute division cycles (bulk d p = .

0078±.00035min −1).

We adopted a drug-free approach to measure RNA degradation. Heat shocking cells by 

shifting their temperature from 22 ° C to 37 ° C elicits a large pulse of RNA expression 

(Slater et al., 1987). This pulse is followed by canonical, HSF1-mediated transcriptional 

deactivation 20 minutes after heat shock (Young and Craig, 1993). To take advantage of this 

natural, partial transcriptional shutoff, we fit an incomplete shutoff model of RNA and 

protein degradation to the decay curve of expression as it relaxes toward 37 ° C equilibrium. 

The model was parameterized using protein degradation rates obtained from the 

cycloheximide experiment. RNA degradation rates for each of our constructs were: .029±.

0067min −1 (SSA1P-H-GFP), .035±.0024min −1 (SSA1P-Y-GFP), and .038±.013min −1 

(SSA1P-GFP). The remarkable agreement between these three estimates for RNA 

degradation suggests that the slight differences in RNA sequence of the three constructs 

mediate very little change in the RNA degradation rate.

With bulk decay rates in hand we tested the extent to which dm and dp vary across cell size 

by partitioning cells into bins by forward scatter size (Fig. 2A) and applying the same 

degradation models to each bin (Fig. 2B). For all three constructs the bins show a 

remarkable lack of trend (Fig. 2C, left panels), indicating that dp is invariant across cell size. 

SSA1P-GFP degradation rates derived from cycloheximide block experiments are 

substantially less than the normal growth rate, demonstrating that N-end methionine GFP 

degrades primarily by dilution alone. On the whole we observe very little extrinsic 

variability in dp across cells that vary widely in volume.

We then fit RNA degradation curves across the same forward scatter bins. All plots show 

more variability than for protein degradation rates, yet trend less than a factor of two away 

from the bulk rate constant (Fig. 2C, right panels). RNA degradation across cell size is also 

invariant.
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Our data show that both RNA and protein degradation rates vary minimally with cell size 

and cell cycle, and indicate that extrinsic variance from the cell cycle must be mediated 

through transcription or translation rates.

Hybrid model predicts expression distribution without fitting

Two lines of evidence elsewhere suggest transcription rate (km) is the primary source of 

extrinsic variance. First, if km were static from cell-to-cell, intrinsic variance would account 

for all of the variance in RNA count distributions. In contrast, the largest study of intrinsic 

and extrinsic variance to date demonstrates that extrinsic variance contributes 20-90% of 

total variance at the RNA level (Gandhi et al., 2011). Second, genes regulated by the same 

transcription factors MSN2/4 covary in their expression fluctuations (Stewart-Ornstein et al., 

2012), a finding consistent with an extrinsically varying Km. These data led us to focus on a 

hybrid model where km is the only extrinsically varying parameter within forward scatter 

bins. We derived analytical forms of mean expression along with intrinsic and extrinsic 

variance for an extrinsically varying Km.

(7)

(8)

(9)

This trio of equations is directly solvable, without fitting, using the experimental 

measurements we made. Flow cytometry, calibrated by fluorescence correlation 

spectroscopy, yielded E[Np] in units of proteins/cell and permitted measurement of variance 

in units of proteins 2. The single and double copy strains enabled quantification of intrinsic 

and extrinsic variance as described above, and the degradation rates were obtained by 

cycloheximide block and transcriptionally mediated inhibition near 37 ° C steady state 

(above). Thus, this set of equations can be solved directly, yielding the translation rate kp 

and the first two moments of the extrinsically varying distribution of Km:

(10)

(11)
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(12)

By solving these equations we obtained values for all of the parameters in the hybrid 

intrinsic-extrinsic model. Our goal was to determine the extent to which this hybrid model 

captures the whole distribution of observed expression stochasticity. To generate expression 

distributions from this model we first needed to make a principled choice about the Km 

distribution itself.

We hypothesized that the shape of Km is determined by cell-to-cell variability in the 

concentration of a protein, or proteins, and therefore, that Km would take the shape of typical 

protein expression distributions. To get an idea of which distributions empirically fit the 

shape of expression stochasticity, we fit all common statistical distributions to each 

expression distribution in a random promoter library fused to GFP (Data S2) (Mogno et al., 

2010). In 80% of 288 expression distributions the top rank was the generalized extreme 

value distribution with zero scale parameter (Gumbel, or type-I extreme value distribution). 

The Gumbel distribution was ranked in the top 3 in 100% of fits. Previously, Gamma 

distributions were noted to well-approximate expression variability (Taniguchi et al., 2010) 

in E. coli, however, Gamma fits ranked in the top 3 in only 5 of 288 distributions.

Broad agreement of generic gene expression distributions with the Gumbel distribution led 

us to hypothesize that Km would also be Gumbel distributed. Gumbel distributions have two 

parameters, μ and σ, which are uniquely specified by the mean and variance of Km above 

(see Supplement under the heading “Km as a Generalized Extreme Value distribution”).

Using this framework we solved our model for expression data across different forward 

scatter bins. For each bin we measured mean expression and both intrinsic and extrinsic 

variance. We accounted for minimal changes in dm and dp across the cell cycle by measuring 

bin-specific values for both (2). With five observables for each bin, we solved the model for 

the two unknown parameters of Km–E[Km] and Var[Km]–and for the translation rate kp. The 

mean and variance of Km were then used to deduce the Gumbel parameters μk and σk for 

each bin. Parameter sets are reported in Data S3. These results are a complete model-based 

characterization of the full expression distribution taking into account the contributions from 

both intrinsic and extrinsic stochasticity, and yield testable predictions about SSA1 

transcription and translation rates.

How well do these resulting parameter sets correspond to experimental observations? 

Although mean, intrinsic and extrinsic variance of our measured distributions are guaranteed 

to be correct, mean and variance do not uniquely determine the shape of gene expression 

distributions (Huh and Paulsson, 2011; Sherman and Cohen, 2014). In contrast, four 

statistical moments very nearly recapitulate gene expression distributions (Sherman and 

Cohen, 2014). The large number of cells measured enabled us to obtain reproducible 

estimates of the skewness and kurtosis for each bin. We then sought to test whether the 

model parameterized above, for each bin, is consistent with these higher moments.
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We used the experimentally parameterized model to simulate expression distributions from 

each forward scatter bin (see Supplement). Our simulated mean, intrinsic variance and 

extrinsic variance were in agreement with our experimental quantities, as expected since 

these quantities were used to generate the parameters. We then computed total distribution 

skewness and kurtosis–quantities not used for any fitting–to determine whether these total 

moments agree with those from our experimental data. Like total variance, total skewness 

and kurtosis each comprise intrinsic and extrinsic terms, in addition to other covariant terms.

(13)

(14)

Inserting the estimated distributions for each simulated conditional moment into Eqs. 13 and 

14 yielded predicted values of total skewness and kurtosis that we could compare to our 

experimental data. We found that the model almost exactly predicts higher order distribution 

moments (Fig. 3A and B), indicating our model likely reproduces, without fitting, the entire 

distribution comprised of both intrinsic and extrinsic noise (Sherman and Cohen, 2014).

Although we were encouraged that our model matched the higher order moments without 

fitting, it was still possible that all models of gene expression would also yield close 

agreement with higher moments. We compared our results to the best available alternative 

model, the widely accepted ON-OFF model, which, although it captures only intrinsic noise, 

has been used to model total stochasticity previously (Golding et al., 2005; Neuert et al., 

2013; Raser and O’Shea, 2004; So et al., 2011; Suter et al., 2011). However, using an 

established fitting procedure for the ON-OFF model (Sherman and Cohen, 2014) we found 

no solutions that returned the correct higher order moments of the expression distribution 

across the forward scatter bins. To confirm this non-result, we relaxed the fitting constraints 

by fitting on only mean and variance, which did yield some candidate solutions (Fig. S3A). 

When we Gillespie-simulate these candidate parameter sets, we find, as expected, that they 

fail to capture the full distribution shape. In particular, the ON-OFF model, though having 

one additional parameter than the extrinsic Km model we propose, fails to reproduce both 

peak position and tail behavior (Fig. 3C and D).

In contrast, Gillespie-simulation of our model demonstrates excellent agreement between the 

predicted distribution and the measured distribution, as expected given the agreement 

between the first four moments. This exercise led us to conclude that agreement between 

mean and variances does not guarantee that the rest of the distribution will fall into place. 

On the contrary, while no parameter set exists where the ON-OFF model can capture the 

SSA1P-GFP distribution, our model, with one less parameter, provides excellent agreement 

using only mean and the two variances.
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Although experimental data here and elsewhere (Gandhi et al., 2011; Stewart-Ornstein et al., 

2012) suggests a crucial role for extrinsically varying transcription rates, it is unclear 

whether translation rates also contribute. In the Supplement we show that a model of 

extrinsically varying translation rates Kp yields similar moment predictions (Fig. S3B and 

C), leaving open the possibility that translation may also vary extrinsically alone, or in 

combination with transcription rates.

Model predicts N-end degron also mediates differences in translation, but not 
transcription

We next used our hybrid extrinsic Km model to analyze stochastic expression in the 

destabilized constructs, SSA1P-H-GFP and SSA1P-Y-GFP. Because the mechanisms of N-

end mediated degradation are well understood we expected that the predicted parameters for 

these constructs would be the same, except for the protein degradation rate. We found close 

agreement between the three constructs’ bulk transcription rates (E[Km]): SSA1P-GFP, 

SSA1P-Y-GFP, and SSA1P-H-GFP were .35±.04min −1, .33±.05min −1, and .40±.05min −1 

respectively. Unexpectedly, the predicted bulk translation rates substantially differed from 

one another. SSA1P-GFP translated most efficiently at 73.27±4.0min −1, while the 

destabilized constructs translated at slower rates of 7.69±2.34min −1 for SSA1P-Y-GFP and 

18.16±1.38min −1 for SSA1P-H-GFP.

The difference in translation rate, but not transcription rate between the destabilized reporter 

constructs warranted further investigation across the cell cycle. Overall SSA1P-H-GFP and 

SSA1P-Y-GFP GFP transcribed similarly even across cells of different sizes (Fig. 4A), 

indicating that the two nucleotide differences in the N-end sequence have little effect on the 

transcription rate. In contrast SSA1P-H-GFP consistently translates faster than SSA1P-Y-

GFP (Fig. 4B). These data suggest that SSA1P-H-GFP is both translated and degraded faster 

than SSA1P-Y-GFP.

If SSA1P-H-GFP is translated faster than SSA1P-Y-GFP, a prediction made from steady 

state observations, then we expect to observe differences in the dynamics of their expression 

during heat shock. Since SSA1P-H-GFP degrades 2-3 faster than SSA1P-Y-GFP, the null 

expectation (translation rates equal) is that during heat shock SSA1P-H-GFP expression 

should express 2-3 times less than SSA1P-Y-GFP at all points. In contrast, we observed that 

SSA1P-H-GFP exhibited an equal or slightly faster rise in expression during heat shock 

compared to SSA1P-Y-GFP, with peak SSA1P-H-GFP expression exceeding peak SSA1P-

Y-GFP expression (Fig. 4C). Following the initial rise SSA1P-H-GFP signal degrades more 

rapidly, as expected by the more destabilized N-end tag. These temporal results support the 

steady-state prediction that apparent translation rates differ between SSA1P-H-GFP and 

SSA1P-Y-GFP.

Rise in mid-cycle transcription rate is driven extrinsically

Although average transcription rates were consistent for all three constructs, SSA1P-GFP 

exhibits a different pattern across forward scatter bins. Consistent with previous 

observations (Zopf et al., 2013) SSA1P-GFP has a distinct mid-cycle peak in transcription 

rate (Fig. 5A). From bin 2 to 3 the average transcription rate more than doubles, consistent 
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with the appearance of a second active gene during DNA replication. To what extent are the 

newly replicated genes coherently expressed (correlated)? If the two copies exhibit 

independent fluctuations, and Km is the model-fit distribution of transcription rates in bin 2, 

then the distribution in bin 3 should be  (the intrinsic limit). In the extrinsic limit, 

expression of two identical genes would be perfectly correlated, and the distribution in bin 3 

would be 2Km. Graphically we see in Fig. 5B that the extrinsic limit better approximates the 

experimentally measured distribution for bin 3, suggesting a transcriptionally-mediated 

extrinsic factor drives highly correlated fluctuations in the new gene copy.

We cannot directly measure correlation between the old and the newly replicated gene 

copies, but the one- and two-copy experiments permit direct quantification of correlation 

between two identical genes in single cells across the cell cycle. Since extrinsic variance 

(Ev) is equal to the covariance, Pearson’s correlation ρ=Ev/σ2, where σ2 is expression 

variance. As seen in Fig. 5C, expression correlation rises to near unity midway through the 

cell cycle.

Extrinsic Km model explains super-Poissonian RNA distributions

Single-molecule RNA FISH experiments show that genes’ RNA count distributions exhibit 

both Poisson and super-Poisson statistics (Gandhi et al., 2011; Taniguchi et al., 2010; 

Zenklusen et al., 2008). The observation of super-Poisson distributions led investigators to 

hypothesize an ON and OFF state for genes, implying bursty gene expression. Crucially, this 

model represents an intrinsic-only process, predicting that RNA-level expression of identical 

genes in single cells would be perfectly independent.

In contrast to this prediction a recent study showed correlation of expression at the RNA 

level among non-identical genes, indicating significant extrinsic stochasticity acting at the 

RNA level. Our model predicts that wider-than-expected RNA distributions derive from 

cell-to-cell variation in the transcription rate. Consistent with this prediction our model 

captures both Poisson and super-Poisson RNA distributions in this study (Fig. 6A-D). 

Super-Poisson expression patterns can therefore be explained as cell-to-cell variability in the 

rate of transcription without invoking discrete ON and OFF promoter states.

Discussion

The prevailing ON-OFF model postulates that many genes have an active and a quiescent 

state, which leads to transcriptional bursting. Key support for the ON-OFF model originates 

from studies demonstrating transcriptional bursting by time-lapse microscopy (Chubb et al., 

2006; Golding et al., 2005). We have proposed an alternative model in which cells vary in 

their propensity to transcribe. The resulting model, a hybrid intrinsic model with 

extrinsically varying transcription rate (depicted graphically in Fig. 7), recapitulates the full 

expression distribution shape without fitting, and does not necessitate incorporation of ON 

and OFF states. In contrast, the ON-OFF model fails to capture total expression 

stochasticity, primarily by underestimating the tail or skewness seen experimentally.

Although transcriptional bursting likely occurs for some genes, a large fraction of stochastic 

gene expression arises from mechanisms acting coherently on genes distantly positioned 
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within single cells. This conclusion is supported by studies in yeast demonstrating large 

extrinsic contributions to expression stochasticity (Raser and O’Shea, 2004; Stewart-

Ornstein et al., 2012; Volfson et al., 2006). Intrinsic fluctuations may be more prominent in 

mammalian cells (Levesque and Raj, 2013; Raj et al., 2006), although recent advances in 

single-cell RNA-seq provide broad evidence of correlated fluctuations among genes in 

single mammalian cells (Klein et al., 2015; Marinov et al., 2014). Given that transcriptional 

bursting has been directly observed for some genes we suggest either that bursting 

contributes only a modest fraction of total gene stochasticity, or that bursting is highly 

coordinated between distantly positioned genes, driven, perhaps, by extreme extrinsic 

fluctuations in transcription factor concentrations. We have shown that for SSA1, cell-to-cell 

differences in the propensity to transcribe best explains the mechanism by which distant 

genes express in a correlated fashion. Further work will help elucidate whether such a 

mechanism is specific to heat shock genes, S. cerevisiae, or represents a general biological 

principle.

Future work will focus on two caveats to our approach. First, it was unclear how to select a 

specific distribution for the random variable Km. We confronted this issue by assuming that 

Km might vary as a single protein. Based on a variety of measured protein distributions we 

arrived at the Gumbel distribution, however, any highly skewed distribution might replace 

the Gumbel in our model. This is consistent with the fat-tailed distribution recently proposed 

by Rosenfeld et al. to represent ensemble transcription rates in vivo (Rosenfeld et al., 2015). 

The true distributional form of Km should reflect the fact that the transcription rate is a 

complex cis-regulatory function, one that is saturable and depends on the concentration of 

multiple trans-acting molecules. Second, once we eliminated extrinsically varying 

degradation rates, evidence from outside work pointed us toward an extrinsically varying 

transcription (Km) model. Nevertheless, an extrinsically varying Kp model is also consistent 

with our data (Supplement, Fig. S3B,C), leaving open the possibility that translation may 

also contribute to extrinsic stochasticity. We anticipate that hybrid models that incorporate 

both intrinsic and extrinsic sources of variability will be important tools for unraveling the 

mechanisms underlying stochastic gene expression in many systems.

Experimental Procedures

S. cerevisiae strains were generated in the BY4743 background. Flow cytometry was 

accomplished with a Cytomics FC500 MPL (Beckman Coulter, Brea, CA). A single 

cytometer profile was used for all experiments, and Flow-Check Fluorospheres (Beckman 

Coulter, 6605359) calibration before every experiment demonstrated <3% drift over the 

course of all measurements (3 months). Instrument noise was also approximated with Flow 

Check beads and found to be negligible in comparison to biological noise (Fig. S4).

Calibration of flow cytometry fluorescence in units of absolute protein per cell was obtained 

as follows. A general assumption that justifies the use of fluorescent reporters is that a fixed 

constant kct relates the fluorescence (Fi) of the ith cell to the actual number of fluorescent 

proteins Pi inside. Thus, kctFi = Pi, or using the mean, kct = ⟨Pi⟩/⟨Fi⟩. To determine kct we 

simultaneously performed flow cytometry on a concentrated culture of cells to measure ⟨Fi⟩, 

determined cell concentration using a Nexcelom Cellomter X2 cell counter, and lysed the 
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cells. After removing the insoluble protein debris, which did not contain measurable 

amounts of GFP (Fig. 1E D1-D2), we measured the concentration of fluorescent molecules 

⟨Pi⟩ in the lysate by fluorescence correlation spectroscopy (Crick et al., 2006; Magde et al., 

1972). Combining these numbers and tracking volume changes we obtained estimates of 

GFP molecules per cell (see Supplement for details). For our instrument we find kct = 

1826±403 proteins/a.u. based on four biological replicates evaluated on different days. 

Technical replicates split immediately before cellular lysis yielded little error, with one day 

resulting in kct=1416±67 proteins/a.u.

We validated our FCS calibration with Western blotting of the same samples (Fig. 1E-H) 

(Garcia and Phillips, 2011). To obtain absolute quantification by Western blot we spiked 

purified GFP at different concentrations into our autofluorescent control samples (Fig. 1E, 

S1-S4, G, A1-A6). Samples G1 and G2 represent technical replicates split at the point of 

cytometry, and thus capture technical error introduced from the lysis steps, sample handling, 

and quantification by Western or FCS. Close agreement between FCS measurements and 

corresponding Western blot quantifications (Fig. 1F, H) gave us confidence that FCS 

provides a reliable quantitation of GFP molecule count. Additional methods may be found in 

the Supplement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental setup and validation
A Hybrid model of intrinsic and extrinsic noise represents transcription (Km), translation 

(Km), and protein (Dp) and RNA (Dm) degradation with each step’s rate being a random 

variable (capital letter). B Gene constructs are, from top to bottom, SSA1P-GFP, SSA1P-Y-

GFP, and SSA1P-H-GFP. C Basal GFP expression at 22° C and 37 ° C of BY4743 diploid 

yeast strains with single chromosomal integrants of SSA1P-GFP demonstrates temperature 

sensitive expression. D Expression of one-copy versus two-copy diploid SSA1P-GFP 

strains. E Western blot of autofluorescent controls with increasing concentrations of purified 

GFP spiked into GFP-negative lysate as standards (S1-S4), two replicates of GFP purified 

from lysate (G1, G2) from SSA1P-GFP strain replicates, and resuspended insoluble debris 

from the same samples (D1, D2). F Density integrals for the standards (blue) plotted versus 

the calculated number of molecules of spiked-in purified GFP. Blue dashed line is a third 

order polynomial best fit. G1 and G2 (green triangles) are plotted as Western blot band 

density versus FCS-measured particle count. G Western blot of finer dilutions of 

autofluorescent standard S3 (from first blot) as new standards (A1-A6), and the same two 

replicates of GFP from lysate (G1, G2). H Density integrals for the standards (blue) plotted 
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versus the calculated number of molecules of spiked-in purified GFP. Blue dashed line is a 

third order polynomial best fit. G1 and G2 (green triangles) are plotted as Western blot band 

density versus FCS-measured particle count. See also Figures S1 and S4.
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Figure 2. RNA and protein degradation rates conditioned on cell size
A Single-cell SSA1P-Y-GFP expression measured by flow cytometry in one replicate (37 ° 

C) plotted against forward scatter. The same forward scatter bin parameters were used 

across all experiments. B Protein decay constants were obtained by tracking bin-specific 

(color-coded to match A, above) decay in the presence of the translation-blocking agent 

cycloheximide. RNA decay constants were obtained by tracking transcriptionally-mediated 

inhibition of SSA1 expression after heat shock, and constrained by the protein decay rate. C 
Estimated protein (left column) and RNA (right column) decay constants for each forward 

scatter bin. Red lines are median rate constant estimates, blue lines are 25th and 75th 

percentiles, and whiskers mark the full range. Gray regions indicate decay constants 

estimated on the bulk data rather than binned by forward scatter (99% CI). For SSA1P-GFP 

protein degradation (bottom left), the green region represents the 99% CI for expected 

degradation assuming dilution from growth alone. See also Figure S2.
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Figure 3. Extrinsic Km model distributional predictions
SSA1P-GFP single copy measured expression (red, 99% CI) versus extrinsic Km model 

predicted (blue) A central skewness and B central kurtosis. C measured SSA1P-GFP 

distribution versus simulated distribution for the best fit ON-OFF model for an example 

forward scatter bin, along with a D QQ-plot of the same data. E measured SSA1P-GFP 

distribution versus simulated distribution for extrinsic Km model for an example forward 

scatter bin, along with a F QQ-plot of the same data. RNA decay constants. See also Figure 

S3.
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Figure 4. SSA1P-H-GFP and SSA1P-Y-GFP differ in translation rate but not transcription rate
SSA1P-H-GFP (red) and SSA1P-Y-GFP (magenta) predicted single-copy A average 

transcription rates and B translation rates across forward scatter. Error bars are SEM. C Heat 

shock induction comparison of SSA1P-H-GFP (red) and SSA1P-Y-GFP (magenta) single-

copy strains. All errors are 99% CI. See also Figure S4.
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Figure 5. SSA1P-GFP transcriptional rate distribution across the cell cycle
A Average transcriptional rate (EKm) for SSA1P-GFP single-copy strain across forward 

scatter; error bars are SEM. B In red and magenta are the distributions of Km with means 

EKm corresponding to the red and magenta arrowed points in A. From the red to magenta 

distribution, the average transcription rate doubles. Given the red distribution, the expected 

intrinsic limit is plotted in cyan, and the extrinsic limit in blue, while the magenta 

distribution represents the experimentally derived behavior. C Pearson’s ρ across the 

forward scatter represents the correlation between identical SSA1P-GFP copies in diploid 

cells; error bars are SEM.
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Figure 6. Extrinsic model consistent with RNA count distributions
All figures are RNA count distributions from Gandhi et al. (Gandhi et al., 2011). Extrinsic 

Km model distributions (blue) were determined from the first and second moments and 

plotted against experimental data (red). Distributions are A TAF5 (μ=σ2), B MDN1 (μ=σ2), 

C GAL10 (μ=σ2), and D GAL1 (μ=σ2).
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Figure 7. Graphical representation of the hybrid model
Distribution shape represents the extrinsic Km distribution. Overall expression increases with 

increasing km (x-axis), but in addition, each column demonstrates expression heterogeneity 

representing the intrinsic stochasticity conditioned on km. (Inset) Each Km distribution is 

itself conditioned on cell volume via forward scatter, with increasing volume corresponding 

to Km distributions with rising means, and varying shapes.
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