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We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a
polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model
for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details
of the substitution reaction in terms of conformational changes of the chains and competition between
the invading chain and the chain being displaced for the common complementary chain. We show that
the invading chain is required to be sufficiently longer than the chain being displaced for effecting the
substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce
the substitution time much further. While most of the simulations were carried out in salt-free condi-
tions, we show that presence of salt facilitates the substitution reaction and reduces the substitution
time. Analysis of our data shows that the dominant driving force for the substitution process involving
polyelectrolytes lies in the release of counterions during the substitution. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4936256]

I. INTRODUCTION

Aqueous solutions containing oppositely charged macro-
molecules exhibit rich structural and kinetic behaviors,
depending on the concentrations, composition, molecular
weights, and charge densities of the polyions, concentration
of low molecular weight salts, and temperature. The literature
on this subject is extensive1–15 and there are also several
excellent reviews describing the phenomenology of solutions
of oppositely charged polyelectrolytes.1–3 There are also
many simulation and theoretical investigations related to
adsorption of polyelectrolytes to oppositely charged solid
surfaces and inter-chain interactions.16–34 Basically, in very
dilute solutions, the polycations and polyanions spontaneously
form complexes. The size of such polyelectrolyte complexes
depends on the molecular weights and charge densities
of the components, and even the order of mixing of the
components. At higher concentrations of the polycations and
polyanions, phase separation is of common occurrence and
its understanding is presently an actively pursued research
topic.15,35

The intense interest in the experimental investigations
of polyelectrolyte complexes is stoked by their applications
in delivery platforms in the context of drug delivery and
gene therapy.2 Typically, a cargo such as DNA (which is
negatively charged) is complexed with polycations under
suitable experimental conditions and the resulting complexes
are then delivered into host sites where the DNA is
uncomplexed from its complex. The uncomplexation is
presumably by a substitution reaction where a new polymer
chain competitively displaces one of the components of the
complex. The formation of the complex A-B from A and B
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and the competitive substitution of A by C are sketched in the
cartoon of Fig. 1.

It is widely recognized that the major component of
the driving force for the complexation is the release of
counterions which have been adsorbed on the individual
polyelectrolyte chains before complexation. This entropic
contribution is stronger than even the electrostatic attraction
between the polycation and polyanion. Regarding the
substitution reaction (second step) in Fig. 1, extensive kinetic
studies were conducted some time ago by the Kabanov
and Dautzenberg schools,5–10,12–14 with many unexpected
findings. For example, smaller polycations would complex
first with a longer polyanion before these get displaced
ultimately by longer polycations, demonstrating an interplay
between kinetics and thermodynamics. Also, the various
experimentally investigated systems contained complexes
made of many chains, and not just one polycation and one
polyanion.

Despite such considerable efforts in the past, the
intermolecular forces controlling the complexation (first step
in Fig. 1) of two oppositely charged macromolecules and the
instability of a complex against an invading molecule remains
yet to be fully understood. The objective of the present paper
is to address these issues by considering a system of three
flexible polyelectrolyte chains (polycation A, polyanion B, and
polycation C) which undergo the two steps of Fig. 1. We have
employed the Langevin dynamics simulation method with
explicit account of counterions, and the solvent being taken as
a uniform dielectric continuum. We first address the electric
potential around a single polyelectrolyte chain and the radial
distribution functions of its segments and counterions. Next,
we consider the approach of an oppositely charged flexible
chain and determine the nature of the attractive force between
the two chains during the complexation process. Finally, we
consider the approach of the third chain to the preformed
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FIG. 1. Cartoon of the two steps of complexation and substitution.

complex and the molecular details of the substitution reaction.
Most of the simulations are carried out in salt-free conditions.

We have focused on the underlying force behind the
complexation process and the subsequent substitution process.
In salt-free environment and for flexible polyelectrolyte
chains, we find the force of attraction to be constant during the
interpenetrating complexation stage. Simultaneously, each of
the two chains in the complex shrinks self-consistently with
its complementary chain. An approach by a longer competing
chain loosens the complex and the substitution occurs by
not completely breaking up the complex but by stepwise
displacement of monomers. The time required for successful
substitution depends on the length of the invading chain C
relative to the chain A being displaced from the complex. We
also report that there is a threshold length of the invading
chain, beyond which, the substitution time does not shorten
much. This effect arises from the release of just enough
counterions from the invading chain which correspond to the
charges of the resident chain A. Presence of salt is shown to
reduce the substitution time.

The rest of the paper is organized as follows. The united
atom description for the polyelectrolyte chains and simulation
methods are presented in Section II. Simulation results and
their discussion are given in Section III, followed by a brief
concluding section.

II. MODEL AND SIMULATION METHOD

The flexible polyelectrolyte chains A, B, and C are
modeled as freely jointed chains. Each chain has a certain
number N of spherical beads carrying either +e or −e charge
where e is the fundamental unit charge. The N beads are
connected by N − 1 springs. The counterions are also taken
as spherical beads with point charge of either +e or −e.
When salt is present in the system, it is assumed to be fully
dissociated and its cations and anions are taken as spherical
beads with point charges just as the counterions. The chains,
counterions, and salt ions are placed in a dielectric medium
of uniform dielectric constant ϵ and the medium is taken to
be a cubic box of volume L3. The various beads of the chains
are subjected to excluded volume interaction, bond stretching,
and electrostatic interaction. The counterions and salt ions are
subjected to electrostatic and excluded volume interactions
among themselves and with the polymer beads.

All simulations, in this paper, are carried out using the
Langevin dynamics method and with the periodic boundary
condition. As details of the simulation method are already
presented in our previous papers,17,19,27,28 we give below only
the crucial aspects of the simulations. The dynamics of the

ith particle (either a bead or an ion) follows the Langevin
equation,

m
d2ri
dt2 = −ζvi − ∇riU + fi(t), (1)

where m and ζ are the mass and friction coefficient,
respectively, of the ith particle. The position and velocity
vectors of the ith particle are, respectively, ri and vi. U is
the total potential energy acting on the ith particle. fi is the
noise from the heat bath on the ith particle satisfying the
fluctuation-dissipation theorem,

⟨fi(t) · f j(t ′)⟩ = δi j6kBTζδ(t − t ′), (2)

with kBT being the Boltzmann constant times the absolute
temperature.

For polymer chains, U is a sum of three contributions:
(a) excluded volume interaction, (b) bond stretching, and (c)
electrostatic interaction. For counterions and salt ions, only
the first and third contributions are present.

(a) Excluded volume interaction: The non-electrostatic part
of the interaction potential between two non-bonded beads
is taken as a purely repulsive Lennard-Jones potential,

ULJ =




ϵ LJ[
(
σ

r

)12
− 2
(
σ

r

)6
+ 1], r ≤ σ,

0, r > σ,
(3)

where ϵLJ is the strength, σ is the hard core distance
between two beads, and ϵLJ is used as the unit of energy.
The same form of potential is used for the excluded volume
interaction between polymer beads, beads and ions, and
ions and ions. The value of σ is taken as 1.0l0,0.8l0,
and 0.6l0 for bead-bead, bead-ion, and ion-ion pairs,
respectively, where l0 is the equilibrium bond length. l0 is
used as the unit of length in the simulation.

(b) Bond stretching: The potential energy between two
consecutive beads in a chain is taken as

Ubond = Kb(l − l0)2, (4)

where l is the bond length, l0 is the equilibrium bond
length, and Kb is the spring constant, which is taken
as 5000ϵ LJ/l2

0. In our simulations, fluctuations in bond
length are within 10% of l0.

(c) Electrostatic interaction: The electrostatic interaction
between the charged unit i of valence zi and the charged
unit j of valence z j, separated by distance ri j, is given by
the Coulomb law,

UCoulomb =
ziz je2

4πϵ0ϵri j
, (5)
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where ϵ0 is the permittivity of the vacuum. In our
simulations, the strength of the electrostatic interaction
between a polymer bead and a counterion is parametrized
by the electrostatic strength parameter Γ defined by

Γ =
|zczp |lB

l0
, (6)

where zc is the valency of a counterion (±1), zp is the
valency of a polymer bead (±1), and lB is the Bjerrum
length,

lB =
e2

4πϵ0ϵkBT
. (7)

In the present work, temperature only appears through Γ
with the multiplicative combination of T and the dielectric
constant ϵ which is specific to the solvent used. For
example, the range of Γ is 2.4 < Γ < 3.2 for aqueous
solutions (0 ◦C < T < 100 ◦C) containing polyelectrolytes
with chemical charge separation along the backbone being
about 0.25 nm and monovalent counterions. The Coulomb
interaction is calculated with the standard Ewald summation.36

In simulating the Langevin dynamics, the mass of a
monomer bead is set as the unit mass and that of the
counterions is half-unit mass. The friction coefficient ζ is
chosen as τ−1

0 , where τ0 =


mσ2/ϵ LJ is the time unit in the
simulations. In defining the time unit, we have taken m = 1
and σ = l0. The Langevin equation, Eq. (1), is integrated
using the velocity-Verlet-finite-differencing scheme. The time
step δt is adjusted between 0.007 and 0.0003. When the
chains are sufficiently far away from each other we have
used δt = 0.007 and when the chains are too close we have
used δt = 0.0003. We have chosen such a small time step in
order to facilitate the exploration of conformational changes
during the rapid complexation process, as was done in our
previous studies.17,27,28 We have used three typical sizes
of the simulation box: 280l3

0 for complexation, 320l3
0 for

substitution in salt-free conditions, and 50l3
0 for substitution

in salty conditions. The values of N , Γ, and the simulation
box size L are variables in our simulations. Most of the results
presented here are for N = 30 or 60 for complexing chains
and N of the invading chain in the range of 36 to 120, and
for Γ = 2.8. When salt is present, we have studied only the
situation of 0.15M monovalent salt. In addition, we have also
calculated the potential of mean force as will be discussed in
Sec. III.

III. RESULTS AND DISCUSSION

The two steps of complexation and substitution sketched
in Fig. 1 are simulated by the following protocol. One
polycation chain A of NA beads is first equilibrated with its
counterions in a simulation box at a prescribed monomer
density and Coulomb strength parameter Γ. In another
simulation box, one polyanion chain B of NB beads is
equilibrated along with its counterions. The segment and
counterion distributions and radial variation of electric
potential for individual chains and their radii of gyration are
monitored after equilibration. These two equilibrated chains
along with their respective counterions are then placed in

a new simulation box with a new size so that the total
monomer density is the same before and after mixing. When
salt is present, the salt ions are introduced randomly into
the simulation box. The initial placement of the chains is
such that the distance R between their centers of mass (CM)
is sufficiently large (about 20 times the radius of gyration
of individual chains in isolation). The complexation process
is followed by monitoring the interchain potential and the
potential of mean force as functions of CM separation distance
R. Also, the related structural quantities such as the radius
of gyration of the component chains of the complex are
monitored.

Once the complexation between A and B is completed,
we have translated this complex along with its counterions
and a new equilibrated polycation chain C of NC beads
along with its counterions into a new simulation box, such
that the distance between the CM of the complex and any
bead of chain C is longer than 20 bond lengths. As time
progresses, the chain C encounters the complex A-B and
competes against A for complexing with B. Under favorable
conditions to be described below, the substitution of A by C
is complete and the required time for substitution depends on
the length of C relative to that of A, lengths of A and B, and
concentration of added salt. Vivid details of the substitution
process are described below. Since some aspects of the first
step of complexation was already presented by us27 using the
same model and simulation method of the present work, our
discussion of the first step is very brief by highlighting only
the new features.

A. Isolated polyelectrolyte chain

For a single equilibrated chain of A or B, we have
computed its radius of gyration Rg , monomer density
distribution ρ(r), counterion density distribution ρc(r), and
electric potential ψ(r) at the radial distance r from the CM of
the chain. The radius of gyration is defined by

R2
g =

1
N

N
i=1

⟨(ri − 1
N

N
j=1

r j)2⟩, (8)

where ri is the position vector of the ith bead and angular
brackets denote the average over chain configurations. The
distributions of the monomer density and counterion density
are defined by

ρ(r) = n(r)
4πr2∆r

(9)

and

ρc(r) = nc(r)
4πr2∆r

, (10)

where n(r) and nc(r) are the numbers of monomers and
counterions, respectively, located in the spherical shell with
inner and outer radii of r and r + ∆r . We have taken ∆r as
1l0 for small r(<20l0) and 4l0 for large r(>20l0). The electric
potential at r is given by

ψ(r) =
2N
i=1

zie
4πϵ0ϵ |ri − r| =

ΓkBT
e

2N
i=1

zil0

|ri − r| , (11)
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where the sum is over all monomers and counterions. This is
calculated by the following procedure. First, a spherical shell
at radius r with width ∆r is constructed. Next, the electric
potential is calculated using Eq. (11) by randomly selecting
100 points in this shell and averaging over them. Furthermore,
this value for the electric potential is averaged over 45 000
time steps and over 9 independent simulations.

As an illustrative example, the results of ψ(r), ρ(r), ρc(r),
and Rg are given in Fig. 2 for N = 60,Γ = 2.8, and L = 280l0.

The radius of gyration Rg is 10l0, consistent with our
earlier results.19,22 It is clear from Fig. 2 that most of the
polymer beads and counterions are within the distance of the
radius of gyration from the CM. Furthermore, all polymer
beads are within a radius of 2Rg from the CM. In contrast
to the distributions of monomers and counterions, the electric
potential is naturally long ranged and extends up to eight times
Rg for the conditions of the present simulation. There are at
present no analytical formulas to describe ψ(r) given in Fig. 2.
Such long ranged potentials ensure the mutual encounter
between the oppositely charged chains. Furthermore, ψ(r)
of Fig. 2 gets significantly modified by the approach of an
oppositely charged chain as discussed next.

B. Complexation between A and B

After the initial placement of one polycation (A) chain
and one polyanion (B) chain with their CM positions separated
by 10 times Rg , the chains undergo Langevin dynamics over
time. To begin with, the chains undergo diffusion until each
chain is subjected to the electric force from the other chain.
Now, the relative motion of the chains is due to a combination
of diffusion and drift. This process continues until the CM
separation distance is about 4Rg , at which the chains rapidly
collapse into each other. Typical trajectories are presented in
Fig. 3(a) where the CM separation distance is plotted against
time for NA = 60,NB = 60, and Γ = 2.8. The data on positions
and velocities of all beads and counterions are stored at every
1000 time steps from which physical quantities such as Rg ,
degree of ionization, and electric potential of a chain in the
complex are computed. The radius of gyration of the A chain

FIG. 2. Radial dependence of the electric potential ψ(r ), monomer density
ρ(r ), and counterion density ρc(r ) from the center of a single chain for
N = 60,Γ= 2.8 and L = 280l0. The radius of gyration Rg is 10l0. The electric
potential extends up to eight times Rg .

FIG. 3. Complexation process. (a) Typical trajectories of approach of A and
B to form A-B complex, where the CM separation distance between A and B
chains is plotted against time t in units of τ0. (b) Shrinkage of Rg of a chain
during its complexation with its counterpart. (c) Decrease in the effective
degree of ionization of A as complexation proceeds (as CM distance between
A and B decreases). In this process, the adsorbed counterions are released due
to pairing among the beads of A and B.

is given in Fig. 3(b) as a function of the CM separation
distance R. The behavior of the B chain is the same as that
of A in Fig. 3(b), due to the same length for A and B and
the beads carrying point-like charges. Once the chains are in
contact, each chain shrinks in its size due to the attractive
potential created by the beads of the other chain. Both chains
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collapse together equivalently and self-consistently. It must
be remarked that there is a slight temporary increase in Rg
before the drastic chain collapse takes place. We have also
monitored the extent of counterion adsorbed on the chain
backbone during the course of complexation. As described
previously,19,22 we count the number nc of counterions inside
a worm-like tube around the chain backbone of radius rc.
For distances less than rc, the Coulomb energy of attraction
between two monovalent charges is higher than the kinetic
energy of one charge. The effective degree of counterion
adsorption is

αc =
⟨nc⟩
N

, (12)

where ⟨nc⟩ is the number of counterions adsorbed on the chain
averaged over chain configurations at various CM separation
distances. Analogously, we have monitored the number np of
beads of the complementary chain inside the tube of radius rc
around each chain backbone. The average degree of binding
between the polymers is

αp =
⟨np⟩

N
. (13)

Therefore, the average degree of ionization of a chain follows
as

f = 1 − αc − αp. (14)

As the chains undergo complexation, counterions are
displaced by polymer segments. The dependencies of αc,αp,
and f on the CM separation distance are given in Fig.
3(c). Before the complexation begins, f is about 0.4
for N = 60,Γ = 2.8, and L = 280l0. As the complexation
proceeds, the counterions are progressively released as more
and more beads of oppositely charged chains bind together.
All of these results are consistent with previous simulations.27

In fact, the increase in translational entropy accompanying
the release of counterions is the dominant driving force for
aqueous assembly of oppositely charged chains even more
than the electrostatic attraction.27

Based on the details of positions of beads of both chains
and all counterions in the system, the electric potential ψA(R)
at the CM of the A chain is calculated when the CM separation
distance between A and B chains is R, according to

ψA(R) =
4N
i=1

zie
4πϵ0ϵ |ri − rCM,A|

=
ΓkBT

e

4N
i=1

zil0

|ri − rCM,A| , (15)

where rCM,A is the CM position vector of chain A, ri is the
position vector of the ith charged unit. There are 4N charged
units (N beads of A with zi = +1, N counterions of A with
zi = −1, N beads of B with zi = −1, and N counterions of B
with zi = +1). Analogously, the electric potential ψB(R) at the
CM position of the B chain is calculated. The dependencies
of the electric potentials acting on the CM positions of the
chains due to all charged units in the system are given in
Fig. 4(a) as a function of the CM separation distance R
between the two chains. The data in this figure are for

FIG. 4. (a) Plot of electric potential at the CM of A (top) and CM of B
(bottom) as a function of the CM separation distance between A and B. (b)
Contributions from A’s monomers and counterions and B’s monomers and
counterions to the net result of the electric potential at the CM of A as given
in (a). (c) Potential of mean force as a function of CM separation distance
between the complexing chains. (NA= 60,NB = 60,Γ= 2.8, and L = 280l0;
no salt.)

N = 60,Γ = 2.8, and L = 280l0. Within the error bars given
in Fig. 4(a), ψA(R), and ψB(R) are equivalent, except for the
sign.

The electric potential on a chain is essentially constant
until it approaches the other chain at the CM separation
distance of about 4Rg . For interchain distances shorter
than 4Rg , the potential decreases essentially linearly for
the present simulation conditions. Therefore, there is a
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constant force of attraction between the two chains mediated
by their counterions. Specifically, the electric potential ψA

on A arises from all four contributing factors: monomers
of A, counterions of A, monomers of B, and counterions
of B. These contributions are presented in Fig. 4(b) for
N = 60,Γ = 2.8, and L = 280l0. At larger values of R(>40l0),
ψA is essentially due to the monomers and counterions
of A. At shorter interchain distances, intrachain repulsion
becomes stronger due to the shrinkage of the chain, but
this is mitigated by the interchain attraction. For very short
interchain distances, the counterions play a minor role as
they have already been released out of the complex. Thus,
the constant force of attraction between the chains arises due
to a delicate balance between various polyion-polyion and
polyion-counterion interactions.

As an additional check on the constant force of attraction
between the two chains, we have calculated the potential
of mean force between the chains.20 First, at a given CM
separation distance r , we have summed up forces on all beads
of each chain arising from both electrostatic and Lennard-
Jones interactions. Then, we have projected the net force on
a chain on the distance vector connecting the centers of mass
of the chains. The net force F(r) is the vectorial sum of the
projected forces from the two chains. This net force is then
used in calculating the potential of mean force according to

W (R) = −
 R

min(10Rg ,L/2)
F(r)dr, (16)

where we have chosen the reference point of the integral as
the lower of 10Rg and half of the linear size of the simulation
box, instead of infinity. The result of this calculation is given
in Fig. 4(c) for N = 60,Γ = 2.8, and L = 280l0. The linear
dependence of the potential of mean force on the separation
distance is apparent, consistent with the result of Fig. 4(b)
where only electrostatic potential is considered. It must be
however remarked that the constant inter-chain force is not
universal. Our simulations show that the constant force regime
weakens for the electrostatic strength parameter Γ larger than
3 and if additional salt is present in the system.

C. Substitution of a component in A-B complex

We have monitored the interaction between a polycation
chain C of length NCl0 and an already formed A-B complex
from a polycation chain of length NAl0 and a polyanion
chain B of length NBl0. As already mentioned, the chain
C first undergoes diffusion and drift towards the complex
and once any one of the beads of C is in the vicinity of
A-B, the substitution reaction begins. If NC is sufficiently
larger than NA, the substitution reaction (the second step in
Fig. 1) proceeds to completion. Typical snapshots during the
substitution reaction, after a bead of C has contacted A-B,
are given in Fig. 5 for NA = 60 = NB and NC = 120 for
t = 1, 110, 2200, and 3200 at Γ = 2.8 and L = 320l0. No
added salt is present. We have monitored the duration τ of
the substitution as the time elapsed between the state of a

FIG. 5. Snapshots of the substitution
reaction, where a C chain (green) sub-
stitutes an A chain (red) in the A-B
complex (B is blue) at t = 1,110,2200,
and 3200 in units of τ0. NA= 60,NB

= 60,NC = 120,Γ= 2.8, L = 320l0, and
no salt.
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C bead attaching to the complex and the state when all A
beads are detached from the complex. During the substitution
process, the beads of A, B, and C exhibit rich dynamics. We
summarize the various details behind the substitution process
by plotting the time-evolution of the CM separation distances
of the three chain pairs: A-B, B-C, and C-A. This plot is given
in Fig. 6(a) for NA = 30,NB = 30,NC = 42,L = 320l0, and
Γ = 2.8. The initiation and end of the substitution reaction
are marked as ti and t f , respectively, and τ = t f − ti. The
average distance between the B and C chains is larger
than that between A and B chains for most of the time.
Of course, at the end of the reaction, the A-B distance
grows towards infinity. Also, due to electrostatic repulsion
between A and C, the A-C distance is always larger than
the other two distances during the substitution. As another
representation of the exchange process, we have presented
a typical trajectory of the substitution reaction in Fig.
6(b) as a plot of B-C distance versus A-B distance for
NA = 30,NB = 30,NC = 120,Γ = 2.8, and L = 320l0. In this
reaction coordinate scheme, the substitution begins at the
top left and ends at bottom right. In the basin, competitive
exchange between C monomers and A monomers by the B
monomers continues to occur until the reaction proceeds to
completion. If the conditions are unsuited for substitution,
the three-chain complex continues to rattle around in the
basin without the reaction ever reaching completion. This

is illustrated in Fig. 6(c), where NA = 60,NB = 60, and
NC = 60 for Γ = 2.8 and L = 320l0. Since the chain lengths
of the competitors are the same (NA = 60,NC = 60), there is
continuous swapping of beads of A and C by the beads of B.
When the length of the invading chain C is the same as that of
the resident chain A, the mutual exchange of A and C beads
is endless and the substitution of A in A-B by C never occurs.

We have analyzed the data to obtain the probability
of a particular monomer of C to contact the A-B complex
and its role on τ. Also, we have analyzed which monomers
among the B chain are prone for eventual complexation
with the invading chain. It turns out that all monomers of
chain C contact the complex randomly with essentially equal
probability. Moreover, the substitution time is essentially
independent of which C bead makes the initial contact with
the complex. However, the transfer of B monomers from A
to C is cooperative. We find that the beads at the either end
of the B chain predominantly initiate the transfer from A
to C. By labeling the first B bead located on the starting
end as bead 0 (and the last bead at the opposite end as
bead 29, for NB = 30), we have counted the fraction of time
τA(i) spent by the ith bead of B on chain A during the
whole duration τ of substitution. This is plotted in Fig. 7
for NA = 30,NB = 30,NC = 42,Γ = 2.8, and L = 320l0, with
averages constructed over 60 independent simulations. As seen
from this figure, the time for exchange increases progressively

FIG. 6. (a) Illustration of a typical successful substitution trajectory. The three CM distances among the three chains are plotted against time. A-B is the initial
complex and B-C is the final complex. The substitution begins at ti and ends at t f . The substitution time τ is t f − ti. NA= 30,NB = 30,NC = 120,Γ= 2.8,
L = 320l0, and no salt. (b) Reaction coordinate representation of substitution reaction for NA= 30,NB = 30,NC = 42, L = 320l0,Γ= 2.8, and no salt.
(c) Illustration of a typical unsuccessful substitution trajectory. The three CM distances among the three chains are plotted against time. A-B is the initial
complex and C is the invading chain. NA= 60,NB = 60,NC = 60, L = 320l0,Γ= 2.8, and no salt.
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FIG. 7. Cooperativity of B monomers during substitution of A by C. The
fraction of time spent by the ith bead of B chain on the A chain during
substitution versus the bead index i.

as the B chain rips out of A from one of B’s ends and merges
with C in essentially a sequential manner.

D. Substitution time

The substitution time required by a chain C of length
NCl0 to displace a chain of A of length NAl0 from an A-B
complex (NA = NB) depends on NA,NC, and the presence of
simple electrolyte salts. The substitution times for different
combinations are shown in Fig. 8, where τ is plotted against
the ratio (NC/NA) of the length of the invading chain to that
of the chain being substituted.

First, we discuss the invasion of one A-B complex, made
from one A chain of NA = 30 and one B chain of NB = 30,
by one C chain with NC in the range between 36 and 120.
For NC ≃ NA, the substitution time is expected to diverge to
infinity as seen in Fig. 6(c). When NA = 30, we have found
that C chains shorter than NC = 36 take very long time for
substitution in our simulations. For NC > 36, we show in Fig.
8(a) that the substitution time decreases dramatically as the
length of C chain increases from 36 to 42. Beyond this value
of NC(=42), τ is remarkably insensitive to the length of the
C chain. Thus there is a threshold value of NC for effectively
executing the substitution reaction and it is unnecessary to
make the invading chain longer beyond this threshold value.
The error bars are based on 60 independent simulation runs.
As the value of NC is closer to NA, the error bar gets bigger
as expected.

Next, we consider the invasion of one A-B complex made
with twice longer chains (NA = 60,NB = 60) than in the above
discussed complex. The lengths of the invading C chain are
NC = 80,85,90, and 120. The dependence of τ on the ratio
NC/NA is included in Fig. 8(a). Exactly, the same trend as
observed for the 30:30 A-B complex is seen for the 60:60 A-B
complex as well, with the threshold value of NC/NA about 1.5.
In other words, only about 50% longer chain of C is adequate
to fully substitute an A chain. As is evident from Fig. 8(a), the
time needed to make the substitution in a 60:60 A-B complex
is longer than in a 30:30 A-B complex for any given NC/NA

ratio.

FIG. 8. (a) Plot of substitution time τ versus the ratio of the length of the
invading chain to that of the chain being displaced for 30:30 A-B complex
(bottom) and 60:60 A-B complex (top); no salt (Γ= 2.8, L = 320l0). (b)
Dependence of τ on NC/NA for NA= 30= NB with 0.15M monovalent
salt (Γ= 2.8, L = 50l0).

The presence of added salt significantly reduces
the substitution time, in agreement with experimental
observations.13,14 Our simulation results for the monovalent
salt concentration of 0.15M are shown in Fig. 8(b), where
τ is plotted against NC/NA for NA = 30,NB = 30,Γ = 2.8,
and L = 50l0. Here NC is in the range of 39 to 90. By
comparing the graphs in Figs. 8(a) and 8(b), we observe that
τ is substantially shorter in the presence of salt. Again, even
in the presence of salt, there exists a threshold value of NC

(about 1.5 times NA) beyond which the value of NC does not
affect τ much.

In order to get an insight into why only a threshold value
of C chain length is sufficient to successfully displace the
A chain in the A-B complex, we have calculated the local
change in electric potential during the substitution. Let ψi A be
the electric potential of the ith bead of B when it is binding
with a bead of the A chain. When the ith bead of B jumps out
of A and binds with a bead of C, let the electric potential be
ψiC. The potential difference arising from electrostatics alone
for this jump of the ith bead of B is ψi = ψiC − ψi A. Since
the chain C is longer than the chain A, one would anticipate
that the beads of B would fall into the more attractive well
of C away from the attractive well of A in a monotonic
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fashion. However, this naive expectation is not borne out
in our simulations. Using the same nomenclature of index
labeling in Fig. 7, the local electric potentials ψi A and ψiC

are plotted in Fig. 9(a) as a function of the bead label i for
NA = 30,NB = 30,NC = 42,L = 320l0, and Γ = 2.8. During
the early stages of substitution, there is a favorable gain in
electrostatic potential energy (the gain is positive in Fig. 9(a),
because the B chain is negatively charged) as the B beads
jump from the A chain to the C chain. During the early stages
of substitution, the B beads jump into more favorable local
potential from the C chain in comparison with that from the
A chain (ψiC > ψi A and B is negatively charged). Therefore,
the swapping of B with C away from A is a favorable process
based on electrostatics alone during the early stage. However,
at a later stage (i ≥ 20 for NB = 30), the exchange becomes
unfavorable as seen in Fig. 9(a). Now, ψi A is greater than ψiC,
making the last stage of the substitution unfavorable based on
electrostatic interaction alone. Thus, Fig. 9(a) shows that the
electrostatic potential difference between chain C and chain
A initiates the substitution but not enough to complete it.

Towards identifying the additional driving force necessary
for completing the substitution process, we have monitored

FIG. 9. (a) Plot of local potential on the ith bead of B from chain A, ψA(i)
(black square), and that from chain C,ψC(i) (red circle), versus bead index i.
Electrostatics initiates the substitution, but does not finish it. (b) Free energy
contribution from the translational entropy of released counterions versus the
length of the invading chain.

the counterions and the translational entropy of the released
counterions during the substitution. We have counted the
number of counterions in the simulation box (outside the
worm-like tubes around the backbones of the chains) before
the substitution begins and after the substitution ends. Let
these numbers be ∆n1 and ∆n2, respectively. Assuming ideal
behavior, the total entropy gain due to the released counterions
accompanying the substitution reaction is

∆S
kB
= ∆n2 ln

V
Vc∆n2

− ∆n2 − ∆n1 ln
V

Vc∆n1
+ ∆n1, (17)

where V is the volume of the simulation box and Vc is the
volume of a counterion taken as l3

0. Taking the values of
∆n1 and ∆n2 from the simulations, for various values of NC,
the free energy contribution −∆S/kB arising from counterion
release is plotted in Fig. 9(b) against the length of chain
C. Here, the complex is made from NA = 30 and NB = 30
and NC is in the range from 36 to 120. Also, Γ = 2.8 and
L = 320l0. As seen in Fig. 9(b), the entropic contribution from
the released counterions is very significant (about 80kBT for
NC = 42) in comparison with the net gain in energy due to
electrostatics (about ≤ 10kBT for NC = 42, as seen in Fig.
9(a)). Furthermore, the entropic gain increases precipitously
as the chain length of C increases from 36 to 42 and beyond
NC ≃ 42, it becomes only weakly dependent on NC. This is
due to the fact that the counterions adsorbed on the part of
the C chain that is superfluous to the stoichiometric length
needed to displace the A chain are not released into the
background. The threshold value of NC seen in Fig. 9(b) is
consistent with the results of Fig. 8(a). As demonstrated in our
previous work27 changes in chain conformational entropy are
insignificant in comparison with electrostatic and counterion
entropy contributions. Combination of the results given in
Figs. 9(a) and 9(b) leads to the conclusion that the substitution
reaction and the existence of a sufficient length of the invading
chain relative to the length of the chain being displaced are
dominantly controlled by the release of counterions.

IV. SUMMARY

We have performed Langevin dynamics simulations of
the substitution process where a polyelectrolyte chain A, that
is already complexed with its complementary polyelectrolyte
chain B, is competitively displaced by an invading chain C
which is also complementary to B. Towards a fundamental
understanding of this ubiquitous phenomenon relevant
to many experimental situations involving polyelectrolyte
complexes and gene therapy, we have monitored various
forces involved in this process by explicitly accounting
for the counterions, chain conformations, and local electric
potentials. Specifically, we have addressed (1) the electric
potential around an isolated flexible polyelectrolyte chain, (2)
its modification by the approach of an oppositely charged
flexible polyelectrolyte and the accompanying changes in
chain conformations and sizes, and (3) invasion by the third
chain and the nature of competition between two similarly
charged chains for their single complementary chain. Most of
our simulations are performed without any added salt.
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The range of the electric potential around a flexible
polyelectrolyte chain extends up to distances of an order of
magnitude larger than its radius of gyration. This potential
is significantly modified when a chain of opposite charge
approaches within a distance of about four times the
radius of gyration. Both the Langevin dynamics simulations
and potential of mean force calculations show that the
attraction between two interpenetrating oppositely charged
polyelectrolytes is under a constant force for the simulation
parameters in the present study. This remarkable result is
found to be arising from a delicate combination of interaction
between A-A monomers, A-B monomers, B-B monomers,
and interactions among all counterions in the system and the
polymer segments. Concomitant with the presence of constant
force of attraction, counterions of both complexing chains are
released and each chain collapses into the other equivalently
and self-consistently.

Upon the invasion by C, and if C is longer than A, the B
segments begin to transfer from A to C in a cooperative and
sequential manner essentially from one end to the other. On the
other hand, the substitution efficiency is relatively insensitive
to which segment of the invading chain C makes the first
contact with the A-B complex. We find that if the lengths of
A and C are comparable, the substitution does not proceed
to completion and the system is frustrated into a three-chain
complex with continuous swapping between segments of A-B
pairs and B-C pairs. On the other hand if the invading chain
is longer than the chain being displaced, the substitution
proceeds towards completion and we have monitored the
substitution time as a function of the ratio NC/NA of the length
of the invading chain to that of the resident chain. As this
ratio increases, the substitution time decreases precipitously
until a threshold value of about 1.5 for NC/NA. Beyond this
threshold value, the substitution time becomes remarkably
insensitive to the length of the invading chain. We also find
that the presence of salt facilitates the substitution reaction
and significantly reduces the substitution time. By considering
electrical potential differences and translational entropy of
counterions during the substitution process, we conclude
that the electrostatic interaction is sufficient to initiate the
substitution but not enough to complete the process and that
the entropic gain from the counterion release is necessary
for the completion of the substitution reaction. We also find
that the occurrence of the threshold length of the invading
chain, beyond which the substitution time is insensitive to NC,
originates from the counterion release. Once the monomers of
A complexed with B are replaced by those from C, the rest of
the monomers of C do not release their adsorbed counterions
thus not contributing any more to the driving force for the
complexation process.

It would be desirable to extend the present simulations
to tens of chains, instead of just the three chain system
presented here, in order to make quantitative connections to

experimental observations which typically involve many more
chains in the complex formation and substitution.
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