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Abstract

Introduction—Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) has become the gold 

standard for surgical weight loss. The success of LRYGB may be measured by excess body-mass 

index loss (%EBMIL) over 25 kg/m2, which is partially determined by multiple patient factors. In 

this study, artificial neural network (ANN) modeling was used to derive a reasonable estimate of 

expected postoperative weight loss using only known preoperative patient variables. Additionally, 

ANN modeling allowed for the discriminant prediction of achievement of benchmark 50% 

EBMIL at one year postoperatively.

Methods—Six-hundred and forty-seven LRYGB included patients were retrospectively reviewed 

for preoperative factors independently associated with EBMIL at 180 and 365 days 

postoperatively (EBMIL180 and EBMIL365, respectively). Previously validated factors were 

selectively analyzed, including age; race; gender; preoperative BMI (BMI0); hemoglobin; and 

diagnoses of hypertension (HTN), diabetes mellitus (DM), and depression or anxiety disorder. 

Variables significant upon multivariate analysis (P<.05) were modeled by “traditional” multiple 

linear regression and an ANN, to predict %EBMIL180 and %EBMIL365.

Results—The mean EBMIL180 and EBMIL365 were 56.4%±16.5% and 73.5%±21.5%, 

corresponding to total body weight losses of 25.7%±5.9% and 33.6%±8.0%, respectively. Upon 

multivariate analysis, independent factors associated with EBMIL180 included black race (B=

−6.3%, P<.001), BMI0 (B=−1.1%/unit BMI, P<.001) and DM (B=−3.2%, P<.004). For 

EBMIL365, independently associated factors were female gender (B=6.4%, P<.001), black race 

(B=−6.7%, P<.001), BMI0 (B=−1.2%/unit BMI, P<.001), HTN (B=−3.7%, P=.03) and DM (B=

−6.0%, P<.001). Pearson r2 values for the multiple linear regression and ANN models were .38 

(EBMIL180) and .35 (EBMIL365), and .42 (EBMIL180) and .38 (EBMIL365), respectively. 

ANN-prediction of benchmark 50% EBMIL at 365 days generated an area under the curve of 

0.78±0.03 in the training set (n=518), and 0.83±0.04 (n=129) in the validation set.
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Conclusions—Available at https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR, this, or 

other ANN models may be used to provide an optimized estimate of postoperative EBMIL 

following LRYGB.
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Introduction

The incidence of morbid obesity continues to rise, and patients are increasingly turning to 

surgical weight loss management. Bariatric surgery, while not the first line treatment of 

obesity, is one of the most effective means of achieving substantial and sustained weight 

loss. A highly effective bariatric procedure, the Roux-en-Y gastric bypass operation is 

frequently performed in the U.S [1–3], as it is considered to have the best balance of 

comorbidity resolution and excess weight loss against complications [4]. The laparoscopic 

approach to this operation has reduced associated morbidity as well as length of hospital 

stay [3]. The laparoscopic Roux-en-Y gastric bypass (LRYGB) operation involves exclusion 

of the stomach, leaving only a fundal pouch to which a cut segment of jejunum (“Roux-

limb”) is anastomosed [5, 6]. A biliopancreatic limb with a distal jejunojejunal anastomosis 

is created as well, allowing for weight loss by multiple mechanisms [4, 6, 7].

The weight loss expectations vary widely among candidates. Some patients may aim to lose 

a modest amount of body weight to alleviate comorbidities, while others may envision a 

more significant amount of weight loss. To this effect, the development of a tool to provide 

a reasonable estimate of postoperative excess body-mass index loss (EBMIL, excess defined 

as over 25 kg/m2) may be of benefit to surgical candidates and their physicians [8].

There are myriad factors validated in previous studies as independent predictors of weight 

loss after LRYGB. Some of these factors are related to the technical aspects of the operation 

itself (i.e., length of the Roux limb), intraoperative findings (i.e. degree of liver fibrosis on 

intraoperative biopsy), or socioeconomic factors. Preoperative demographic and medical 

factors have also been identified, including female gender, black race, age at surgery, 

preoperative weight loss, immediately preoperative BMI (BMI0), diagnoses of hypertension 

(HTN); diabetes mellitus (DM); depression and anxiety, and iron stores. These have all been 

externally validated as independent correlates to EBMIL, and were collectively chosen as a 

panel of comprehensive and easily quantifiable and obtainable variables for review in this 

study [1, 9–18].

Artificial neural networks (ANN) are advanced, continually adapting computational systems 

taught to identify complex non-linear relationships among variables correlated with an 

outcome. Selected independent variables are chosen as the input layer, and an ANN 

algorithm provides an output layer (dependent variables) [19–23]. The ANN is initially 

trained using these layers, which are processed through training nodes, and can subsequently 

be used to predict future outcomes. Its advantages are its ability to continuously adapt its 

algorithm to new patient information and its superior prognostic ability relative to standard 

multiple linear regression models. In this study, we aim to devise a web-based tool to predict 
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EBMIL after LRYGB first by identification of independent preoperative predictors of 

postoperative weight loss in our cohort, with subsequent imputation of those variables into 

an ANN-based model.

Methods

This was a single-institution retrospective cohort study conducted at Vanderbilt University 

Medical Center, a large bariatric referral center in Nashville, TN. Using the Vanderbilt 

University Synthetic Derivative, a de-identified mirror of the electronic medical record, 

1,621 patients from 2004–2013 were identified via CPT code search (43644, Laparoscopy, 

surgical, gastric restrictive procedure with gastric bypass and Roux-en-Y gastroenterostomy 

[roux limb 150 cm or less]) as having undergone LRYGB for bariatric purposes. As all data 

is scrubbed of patient identifiers, this protocol was approved by the Institutional Review 

Board with waiving of informed consent. Patients were excluded if they did not have 

sufficient information in the chart, had an initial BMI < 35 kg/m2, or had clearly spurious 

values which called the data integrity into question (Figure 1). Six-hundred and forty-seven 

patients were identified for inclusion, and their demographics were exported to the Research 

Electronic Data Capture (REDCap) program hosted at Vanderbilt University [24].

Demographics and previously identified independent clinical preoperative predictors of 

EBMIL were chosen for review. These included age at surgery; race; gender; BMI0; pre-

operative weight loss; previous diagnosis of HTN, DM, depression or anxiety; and 

hemoglobin as a surrogate for iron stores. Attribution of comorbidities was based upon 

having an associated ICD-9 diagnosis documented no later than five days postoperatively. 

The hemoglobin measurement used was taken as the preoperative value temporally closest 

to the day of surgery, up to one year prior. The value used to determine whether the patient 

lost weight preoperatively was the most recent BMI documented between 6–12 months prior 

to the day of surgery. The primary endpoints were %EBMIL at 180 ± 30 days and 365 ± 45 

days postoperatively (EBMIL180 and EBMIL365, respectively). %EBMIL was defined as 

100%*(BMI0 − BMIpost-surgery)/(BMI0−25 kg/m2) [8].

A bivariate linear regression analysis was performed to assess the influence of each variable 

on EBMIL180 and EBMIL365. Variables for each endpoint that demonstrated a bivariate 

association (P < 0.1) with EBMIL were entered into a multivariate analysis using the 

method of least squares, to determine independent association with EBMIL180 and 

EBMIL365 (P < 0.05). The groups of preoperative variables significant on multivariate 

analysis represented variables considered in the multiple linear regression models, and as the 

input layers for ANN180 and ANN365, respectively (Figure 2). The ANN model used was a 

three-node back-propagation ANN with k-fold validation. Each node was assigned a training 

value of 0.333, and the model was trained with 3 iterations. The neural network algorithms 

for ANN180 and ANN365 were derived from 80% of the 647 patients (training set); 20% of 

the patients were randomly withheld in ANN derivation to comprise a necessary validation 

set. A full mathematical description of the ANN model has been reviewed previously [19, 

21].
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Using both the multiple linear regression prediction expressions and the ANN algorithms, 

actual EBMIL vs. predicted EBMIL plots were generated, using Pearson r2 values of the 

linear regression lines as the primary measure of goodness of fit. A receiver-operating 

characteristic (ROC) curve was also generated to assess the ability of ANN365 to predict the 

achievement of benchmark 50% EBMIL [25]. Measures of central tendency were expressed 

as mean ± standard deviation. Area under the curve (AUC) values for ROC curves were 

expressed as AUC ± standard error. Bivariate, multivariate and ANN analysis was 

performed using JMP Statistical Software (Cary, NC) and GraphPad Prism (La Jolla, CA). P 

< 0.05 was used to denote statistical significance.

Results

Patient characteristics from the 647 patient cohort are summarized in Table 1. The mean age 

of the cohort was 47.4 ± 11.0 years. 14.4% were of black race, and 79.6% were female. 

Among all patients, the average EBMIL180 was 56.4% ± 16.5%, and EBMIL365 was 

73.5% ± 21.5%. These values corresponded to total body weight losses of 25.7% ± 5.9% 

and 33.6% ± 8.0%, respectively. Of note, only 299 patients had BMI values 6–12 months 

preoperatively. This was due to a combination of poor chart maintenance, decentralized 

preoperative care as well as a rather stringent six month window chosen for acceptable 

values, as BMI values beyond one year or within six months were felt more likely to 

erroneously reflect the preoperative weight trajectory.

Results of the bivariate and multivariate analyses for EBMIL180 and EBMI365 are reported 

in Table 2 and Table 3, respectively. Bivariate analysis of EBMIL180 revealed associations 

with black race (B = −10.9%, P < .001), BMI0 (B = −1.2%/unit BMI, P < .001), HTN (B = 

−4.7%, P = .003), DM (B = −5.6%, P < .001) and hemoglobin (B = 1.5%, P = .006). 

Independent predictors of EBMIL180 were black race (B = −6.3%, P < .001), BMI0 (B = 

−1.1%/unit BMI, P < .001) and DM (B = −3.2%, P < .004). Results of the bivariate analysis 

of EBMIL365 revealed associations with female gender (B = 8.0%), black race (B = 

−12.6%), BMI0 (B = −1.4%), HTN (B = −8.9%) and DM (B = −8.9%), all at P < .001. 

Independent correlates with EBMI365 were female gender (B = 6.4%, P < .001), black race 

(B = −6.7%, P < .001), BMI0 (B = −1.2%/unit BMI, P < .001), HTN (B = −3.7%, P = .03) 

and DM (B = −6.0%, P < .001).

Plots representing actual EBMIL vs. multiple linear regression-predicted EBMIL at both 

180 and 365 days postoperatively are shown in Figures 3A and 3B. For EBMIL180 and 

EBMIL365, the Pearson r2 values of the linear regression lines, a measure of goodness of fit 

of the model, were .38 and .35, respectively. Plots representing actual EBMIL vs. ANN-

predicted EBMIL at both 180 and 365 days postoperatively are shown in Figures 3C and 

3D. For EBMIL180 and EBMIL365, the Pearson r2 values of the linear regression lines 

were .42 and .38, respectively. At both 180 and 365 days postoperatively, the ANN model 

was more accurate in predicting loss of excess BMI, with a greater Pearson r2 and lower 

root-mean-square error.

Using the ANN algorithm an ROC curve was generated to assess the ability of ANN365 to 

predict achievement of benchmark 50% EBMIL. In the cohort, 87% (564/647) of the 
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patients successfully achieved this goal. The ROC curves obtained from training and 

validation sets of ANN365 analysis in prediction of 50% EBMIL are shown in Figure 5; 

areas under the curve (AUC) for the training set and validation set were 0.78 ± 0.03 and 0.83 

± 0.04, respectively.

Discussion

ANNs are excellent model systems for prediction of postoperative outcomes, and have been 

used in general surgery and surgical oncology, among other specialties [22, 26–35]. In 

bariatric surgery, ANN modeling has been used sparingly. The largest of the few published 

bariatric ANN studies reported outcomes of laparoscopic adjustable gastric banding in Italy. 

Using 172 patients, weight loss was predicted on the basis of results from the Minnesota 

Multiphasic Personality Inventory-2 test of psychopathology, BMI0 and age [21].

We selected the procedure of LRYGB as it represents the gold standard for weight loss. Its 

role in reduction of BMI, improving comorbidities and decreasing polypharmacy has been 

well-established [2, 6]. Surgical weight loss is reserved only for those of extreme obesity, 

with a BMI greater than 40 kg/m2, or greater than 35 kg/m2 with at least one associated 

weight-related comorbidity, required for candidacy. LRYGB patients have a higher rate of 

medical and psychiatric comorbidities that the general population, and these additional 

comorbidities may have significant contributions to the success of these patients in 

postoperative weight loss. While variance in surgical success can only be partially attributed 

to preoperative comorbidities, they were nonetheless used along with demographics to 

develop a robust predictive tool derived from a cohort of over 600 patients, for estimation of 

EBMIL after LRYGB.

Determination of those variables to examine for this model necessitated thorough review of 

the literature to identify preoperative predictors of EBMIL after LRYGB. A patient-centered 

tool for weight loss estimation after bariatric surgery, reported in 2014, found age and 

preoperative BMI (BMI0) as the most significant predictors of sustained postoperative 

weight loss [1]. Race has also been shown to predict weight loss, as Coleman et al. recently 

reported prospective data showing that black race is associated with impaired weight loss in 

LRYGB [11]. It is a universally accepted recommendation to attempt weight reduction prior 

to LRYGB. The influence of preoperative weight loss on postoperative weight loss, 

however, has not been well established. In one study, modest preoperative weight reduction 

was correlated with sustained weight loss 3–4 years after bypass [12], however, its effect on 

more immediate weight loss has been somewhat ambiguous. A 2012 systematic review of 

preoperative predictors of weight loss after bariatric surgery identified seven studies that 

showed a positive association between preoperative and postoperative weight loss, one 

showed a negative association, and six did not show an association [14].

Various medical conditions have been reported to have an independent association with 

postoperative weight loss. Psychiatric disease, particularly depression and anxiety disorders, 

are common, and are negatively associated with postoperative weight loss in bariatric 

surgery [14]. In 2014, Still et al. reported observational cohort data in which HTN and DM 

were considered as measures associated with decreased weight loss [9]. Hemoglobin A1C 
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also had an inverse correlation with weight loss, suggesting that postoperative weight loss is 

associated with optimal glycemic control [9]. For simplicity, our analysis only considered 

presence or absence of HTN or DM, and not the extent of disease. Diminished iron stores 

have demonstrated significance in impairing weight loss after bariatric surgery [9]. For this 

study, hemoglobin values were chosen as a surrogate for iron stores, as more sensitive 

measures such as serum ferritin, serum iron, and total iron binding capacity were not 

sufficiently available [17]. Collectively, the preoperative clinical variables studied is by no 

means exhaustive, but rather represents a selected set of parameters that in conjunction with 

behavioral changes may govern the success of the operation [12].

In our cohort, risk factors for impaired EBMIL180 and EBMIL365 on multivariate analysis 

were found to be black race, higher BMI0 and DM; male gender and HTN were risk factors 

only for impaired EBMIL365. Using these variables, multiple linear regression functions 

were obtained for endpoints EBMIL180 and EBMIL365. Pearson r2 values for these models 

were .38 and .35, for EBMIL180 and EBMIL365, respectively (Figure 3A and 3B). The 

corresponding Pearson r2 values for the ANN models were .42 and .38 for EBMIL180 and 

EBMIL365, respectively (Figure 3C and 3D), values that fit the data more closely than the 

corresponding multiple linear regression model. As the ANN model was superior, its 

training set algorithm was used to predict 50% EBMIL365, a benchmark sometimes used to 

herald a successful operation, via generation of an ROC curve (Figure 4).

Although the ANN model was algorithmically sophisticated, the input factors were easy to 

quantify. Using only demographics, BMI and basic knowledge of the patient’s medical 

history, one can easily make an independent determination of estimated EBMIL180 and 

EBMIL365. This ANN model can be used as a web-based weight loss prediction calculator 

accessible to patients (currently available at https://redcap.vanderbilt.edu/surveys/?

s=3HCR43AKXR; Figure 5), or plausibly incorporated as a platform within an electronic 

medical record accessible to health care providers. Further, ANNs offer the flexibility to 

adapt continually to newly input patient data, and to optimize the model’s overall prognostic 

ability. To the authors’ knowledge, this is the first implementation of neural network 

modeling for prediction of postoperative weight loss.

This study has several limitations. There is the drawback inherent in the accuracy and bias 

of data collected retrospectively rather than prospectively. The cohort in this study was also 

biased by inclusion of only those patients who attended six and twelve month follow-up 

appointments at Vanderbilt University, perhaps representing a more closely monitored, 

adherent and motivated group of patients. This study also currently lacks external validity, 

as the patient cohort underwent institution-specific preoperative and postoperative 

preparation and follow-up protocols, although somewhat standardized due to the 

institution’s designation as a Bariatric Surgery Center of Excellence since 2005. 

Furthermore, the 647 patients were operated on by a relatively small number of bariatric 

surgeons. In addition, while patients customarily attended 6 and 12 month follow-up 

appointments, the regularity of these visits beyond this time frame was inconsistent 

preventing accurate data collection beyond one year. As it is known that weight loss may 

continue to occur after one year, this study does not allow for the estimation of sustained 

weight loss. It is our hope that as ANNs are integrated into routine clinical care, this 

Wise et al. Page 6

Surg Endosc. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR
https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR


limitation will be overcome. Finally, while ANNs have improved prognostic accuracy, the 

model does not conveniently express the relative contribution of each variable in predicting 

the outcome, as opposed to a multiple linear regression analysis. Thus, a “black box” 

approach in deriving the output variable from input variables in necessitated [21].

In summary, successful postsurgical weight loss is partially dependent on multiple 

preoperative patient factors. Our cohort demonstrated black race, higher BMI0, DM, HTN 

and male gender as independent markers for a less successful operation. Using these 

predictors, an ANN model allows for development of a patient-centered tool with which to 

obtain an optimized estimate of postoperative EBMIL at 6 and 12 months. This model can 

be readily translated to a web-based platform as a novel patient-centered tool; alternatively, 

it may assist bariatric surgeons either as a preoperative screening tool or a means to provide 

realistic expectations to their patients.
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Figure 1. 
Derivation of the 647 patient study cohort

Wise et al. Page 10

Surg Endosc. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Diagram of the 3-node artificial neural network for prediction of excess body-mass index 

loss at one year postoperatively (EBMIL365).
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Figure 3. 
Actual vs. predicted EBMIL plots for both models, at 180 and 365 days postoperatively

A- Plot of actual vs. multiple linear regression-predicted EBMIL180; r2 = .38, root-mean-

square error (RMSE) = 13.0. B- Plot of actual vs. multiple linear regression-predicted 

EBMIL365; r2 = .35, RMSE = 17.4. C- Plot of actual vs. artificial neural network-predicted 

EBMIL180; r2 = 0.42, root-mean-square error (RMSE) = 12.6. D- Plot of actual vs. artificial 

neural network-predicted EBMIL365; r2 = .38, RMSE = 16.9. Linear regression lines with 

95% confidence bands are included on all plots (dashed lines).
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Figure 4. 
Receiver-operating characteristic curve for the 518 patient ANN training cohort (AUC = 

0.78 ± 0.03; solid line), and the 129 patient ANN validation cohort (AUC = 0.83 ± 0.04; 

dashed line) for the model to predict benchmark 50% EBMIL365
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Figure 5. 
Demonstration of web-based weight loss estimation tool

The ANN-derived algorithm is available for use at “https://redcap.vanderbilt.edu/surveys/?

s=3HCR43AKXR”.
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Table 1

Preoperative Clinical Characteristics of the Study Population

Variable Patients Analyzed Patients with Trait (categorical)
Mean ± SD (continuous)

Age at Surgery 647 47.4 ± 11.0 years

Female Gender 647 515/647 (79.6%)

Black Race 647 93/647 (14.4%)

BMI0 647 47.0 ± 8.5 kg/m2

Hypertension 647 506/647 (78.2%)

Diabetes Mellitus 647 331/647 (51.2%)

Depression Disorder 647 56/647 (8.7%)

Anxiety Disorder 647 97/647 (15.0%)

Hemoglobin 609 13.4 ± 1.2 g/dL

Preop. Wt. Loss 299 160/299 (53.5%)

%EBMIL180 647 56.4% ± 16.5%

%EBMIL365 647 73.5% ± 21.5%

SD- standard deviation; %EBMIL180- %excess body-mass index loss (over 25 kg/m2) at 180 days postoperatively; %EBMIL365- %excess body-

mass index loss (over 25 kg/m2) at 365 days postoperatively
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Table 2

Bivariate and Multivariate Analysis of Factors Associated with Excess Body-Mass Index Loss, 180 days 

postoperatively

Variable Bivariate Analysis Multivariate Analysis

B (95% CI) P B (95% CI) P

Age (yrs) −0.03% (−0.14, 0.09) .64 - -

Female Gender 1.6% (−1.6, 4.7) .95 - -

Black Race −10.9% (−14.4, −7.3) <.001 −6.3% (−3.3, −9.3) <.001

BMI0 −1.2% (−1.3, −1.0) <.001 −1.1% (−1.0, −1.2) <.001

Hypertension −4.7% (−7.8, −1.6) .003 −1.8 (−4.4, 0.8) .17

Diabetes Mellitus −5.6% (−8.1, −3.1) <.001 −3.2% (−5.3, −1.0) .004

Depression Disorder −0.6% (−3.8, 2.6) .72 - -

Anxiety Disorder −0.6% (−4.2, 3.0) .75 - -

Hemoglobin 1.5% (0.4, 2.5) .006 0.2% (−0.7, 1.0) .67

Preop. Wt. Loss 0.9% (−3.0, 4.7) .66 - -

B- Units of %EBMIL180/unit variable (e.g. −0.03% EBMIL180/year) Italics indicate variables included in multivariate analysis; Bold indicates 
variables included in multiple linear regression and artificial neural network models (P < .05). Multivariable model was a standard least squares fit, 

n = 609, constant = 110.9%, r2 = .38, F = 75.2, P < .001.
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Table 3

Bivariate and Multivariate Analysis of Factors Associated with Excess Body-Mass Index Loss, 365 days 

postoperatively

Variable
Bivariate Analysis Multivariate Analysis

B (95% CI) P B (95% CI) P

Age (yrs) −0.1% (−0.2, 0.06) .22 - -

Female Gender 8.0% (3.9, 12.1) <.001 6.4% (3.0, 9.8) <.001

Black Race −12.6% (−17.2, −8.0) <.001 −6.7% (−10.6, −2.8) <.001

BMI0 −1.4% (−1.5, −1.2) <.001 −1.2% (−1.4, −1.1) <.001

Hypertension −8.9% (−12.8, −4.9) <.001 −3.7% (−7.2, −0.3) .03

Diabetes Mellitus −8.9% (−12.2, −5.7) <.001 −6.0% (−8.8, 3.2) <.001

Depression Disorder −1.9% (−4.0, 7.8) .40 - -

Anxiety Disorder −1.0% (−5.6, 3.7) .69 - -

Hemoglobin 0.9% (−0.4, 2.3) .18 - -

Preop. Wt. Loss 0.7% (−4.4, 5.7) .79 - -

B- Units of %EBMIL365/unit variable (e.g. −0.1% EBMIL365/year) Italics indicate variables included in multivariate analysis; Bold indicates 
variables included in multiple linear regression and artificial neural network models (P < .05). Multivariable model was a standard least squares fit, 

n = 647, constant = 137.1%, r2 = .35, F = 69.9, P < .001.
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