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Abstract

Background—Although empirical evidence for the effectiveness of technology-mediated 

interventions for substance use disorders is rapidly growing, the role of baseline characteristics of 

patients in predicting treatment outcomes of a technology-based therapy is largely unknown.
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Method—Participants were randomly assigned to either standard methadone maintenance 

treatment or reduced standard treatment combined with the computer-based Therapeutic 

Education System (TES). An array of demographic and behavioral characteristics of participants 

(N=160) were measured at baseline. Opioid abstinence and treatment retention were measured 

weekly for a 52-week intervention period. Generalized linear model and Cox-regression were used 

to estimate the predictive roles of baseline characteristics in predicting treatment outcomes.

Results—We found significant predictors of opioid abstinence and treatment retention within 

and across conditions. Among 21 baseline characteristics of participants, employment status, 

anxiety, and ambivalent attitudes toward substance use predicted better opioid abstinence in the 

reduced-standard-plus-TES condition compared to standard treatment. Participants who had used 

cocaine/crack in the past 30 days at baseline showed lower dropout rates in standard treatment, 

whereas those who had not used exhibited lower dropout rates in the reduced-standard-plus-TES 

condition.

Conclusions—This study is the first randomized controlled trial, evaluating over a 12-month 

period, how various aspects of participant characteristics impact outcomes for treatments that do 

or do not include technology-based therapy. Compared to standard alone treatment, including TES 

as part of the care was preferable for patients who were employed, highly anxious, and ambivalent 

about substance use and did not produce worse outcomes for any subgroups of participants.
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1. INTRODUCTION

Media technologies, such as the internet and mobile devices, have shown considerable 

promise in the delivery of behavioral therapies targeting problematic substance use (Chen et 

al., 2012; White et al., 2010). Recent systematic reviews and meta-analyses indicate that 

technology-mediated interventions are effective in the prevention, treatment, and recovery 

support of substance use disorders (SUDs; Marsch and Dallery, 2012; Moore et al., 2011; 

Riper et al., 2011). Benefits of technology-mediated health interventions include their ability 

to expand the reach and effectiveness of care and to enable higher fidelity in the delivery of 

evidence-based interventions (Bickel et al., 2008; Gustafson et al., 2011; Marsch and 

Dallery, 2012). Numerous randomized, controlled trials, such as the computer-based 

Cognitive Behavioral Therapy program (Kiluk et al., 2010) and a web-based Motivational 

Interviewing and a Motivational Enhancement System (Ondersma et al., 2005, 2007) have 

provided growing empirical support for the efficacy and effectiveness of technology-

mediated interventions for SUDs, including enhanced coping skill acquisition, risk 

recognition, and substance use reduction.

One of the most extensively studied technology-based interventions for SUDs is the 

Therapeutic Education System (TES), a fluency building behavioral intervention grounded 

in the Community Reinforcement Approach (CRA) that has been shown to be efficacious in 

treating SUDs (Bickel et al., 2008; Marsch et al., 2014). The 65 interactive modules in the 
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TES address problem solving, self-regulation and coping skills in order to assist individuals 

in implementing positive behavioral changes (Marsch et al., 2011; Marsch et al., 2014).

In one recently published study conducted with opioid-dependent adults in methadone 

maintenance treatment, the authors found that replacing half of the standard counseling with 

the computer-based TES programs (referred to as reduced-standard-plus-TES hereafter) 

produced significantly greater rates of opioid abstinence over a one year follow-up period 

compared to standard alone treatment (Marsch et al., 2014). Despite the promising results, it 

is unknown whether including a computer-based TES as part of the care delivery model is 

still effective for various subgroups of opioid-dependent persons with different baseline 

characteristics. Opioid-dependent individuals with some characteristics may benefit from a 

computer-based therapy (Acosta et al., 2012; Cooney et al., 1991; Roman and Johnson, 

2002), whereas persons with other characteristics (e.g., greater age, low education) may be 

served better with standard treatment. Systematic reviews affirm that baseline characteristics 

can moderate abstinence and study attrition outcomes in SUD treatment (Moore et al., 2011; 

Najt et al., 2011; White et al., 2010). To our knowledge, only two studies have examined the 

predictive validity of baseline characteristics, such as cognitive functioning, in the context of 

technology-based interventions for SUDs (Acosta et al., 2012; Carroll et al., 2011).

Building upon the main outcomes among opioid-dependent participants who were 

randomized to computer-based TES as part of their care versus those who only received 

standard treatment (Marsch et al., 2014), we further examine how differently an array of 

demographic and behavioral characteristics of participants measured at baseline predict 

treatment outcomes. The characteristics examined in this paper are consistent with those that 

have been examined in substance abuse treatment research, allowing us to interpret our 

findings in relation to the broader context of the literature (Ciraulo et al., 2003; Marsch et 

al., 2005; Weekes et al., 2011).

2. METHODS

2.1. Treatment random assignment

Eligible participants (N = 160, ≥18 years of age) recruited from a large methadone 

maintenance treatment (MMT) program, were randomly assigned to either (a) standard 

treatment or (b) reduced-standard-plus-TES condition in an intent-to-treat design. 

Demographics of the participants, eligibility criteria, general study procedures, and the 

CONSORT diagram are reported in Marsch et al. (2014).

Participants in the standard treatment condition received substance abuse counseling once a 

week for the first four weeks, and then every other week over the 52-week intervention 

period. The content of these sessions was largely similar to many other MMT programs, 

including discussion of current problems and treatment progress. Participants in the reduced-

standard-plus-TES condition received the same standard counseling content offered by 

counselors to participants in the standard treatment condition during the first half of each 

scheduled counseling session, and spent the other half of their session using the computer-

based TES program.
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2.2. Urine drug testing

Participants were asked to provide urine samples to a research staff member at the study site 

on a weekly basis. Point-of-care qualitative urine test cups (Drug Test Systems, Dover, NH) 

were used to test for the presence of barbiturates, THC, cocaine, benzodiazepines, 

methamphetamine, opiates, methadone, oxycodone, and propoxyphene. Opioid abstinence 

was confirmed when all the urinalysis results for opiates, propoxyphene, and oxycodone 

were negative (Marsch et al., 2014).

2.3. Measures of baseline characteristics

Categorical baseline characteristics measured with multi-level responses, such as marital 

status, were dichotomized prior to the predictor analyses (Quinn and Keough, 2002). The 

Addiction Severity Index (McLellan et al., 1980) was used to measure substance use in the 

past 30 days, including sedatives, cocaine/crack, and alcohol intoxication. No use was coded 

as “0” and any use was coded as “1”. Summated scores for the Beck Depression Inventory-

II (BDI-II; Beck et al., 1996) and the Beck Anxiety Inventory (BAI; Beck and Steer, 1990) 

were calculated to assess participants’ level of depression and severity of anxiety symptoms 

at baseline. The HIV/AIDS Knowledge Test (Marsch and Bickel, 2001) was modified into 

25 items to measure HIV/hepatitis knowledge and sexual/drug risk behaviors (0= no correct 

answers, 25 = a perfect score). Lastly, participants responded to the Stage of Change 

Readiness and Treatment Engagement Scale (SOCRATES 8A; Miller and Tonigan, 1996). 

The summated scores were transferred into decile scores for the Recognition, Ambivalence, 

and Taking Steps sub-scales, ranging from 10 to 90.

2.4. Statistical analyses

Generalized linear models (GLM) with logit link and binomial distribution were conducted 

to estimate the effect of the predictors on proportion-based binary responses for opioid 

abstinence (i.e., opioid-positive or –negative; Quinn and Keough, 2002). After examining 

the predictor effects within each study condition, the study condition was entered into the 

model with each predictor to explore an interaction effect between a given predictor and the 

study conditions. Cox proportional hazards regressions analyses were conducted to 

determine the unique contribution of each predictor on treatment retention within and across 

study conditions (Cox and Oakes, 1984).

3. RESULTS

3.1. Predictors of opioid abstinence and retention within each study condition

For participants in the reduced-standard-plus-TES condition, eight variables (e.g., being 

Hispanic) predicted a higher percentage of weeks abstinent (Table 1). Five variables (e.g., 

more years of education) predicted a lower percentage of total weeks abstinent.

For participants in the standard treatment condition, only SOCRATES Taking Steps sub-

scale scores predicted higher percentages of total weeks with opioid abstinence. Eight 

predictors (e.g., older age, being male, married and employed) revealed negative 

associations with percentage of total weeks with opioid abstinence.
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Cox proportional hazards regression indicated that dropout rates decreased as one unit 

increased in the age of participants in the reduced-standard-plus-TES group (HR = .97, p < .

05), but dropout rates increased when participants in both conditions were involved in risky 

drug injection behaviors in the past 30 days at baseline (HR = 1.88 for participants in the 

reduced-standard-plus-TES condition; HR = 1.98 for participants in the standard condition, 

p < .05).

3.2. Interaction effects: Predictors of opioid abstinence and retention across conditions

Three predictors (employment status, BAI score and Ambivalence score) showed significant 

interaction effects across study conditions on the outcome of opioid abstinence (Table 1). 

Being employed predicted significantly worse outcomes in the standard condition relative to 

the reduced-standard-plus-TES condition (B = 0.30, p < 0.01, d = .11). Higher BAI scores 

predicted better opioid abstinence for the reduced-standard-plus-TES condition participants 

by 0.06 (p < 0.01, d = .57) compared to those in the standard condition. Higher Ambivalence 

scores predicted better opioid abstinence for the reduced-standard-plus-TES condition 

participants by 0.02 (p < 0.01, d = .40) compared to those in the standard condition.

Different dropout rates and patterns were observed in the hazard ratios across study arms as 

related to past 30 days cocaine/crack use at baseline. Participants who had used cocaine/

crack in the past 30 days at baseline (n = 76) were more likely to drop out, especially 

approximately 30 weeks after the intervention started, when they were assigned to the 

reduced-standard-plus-TES condition compared to the standard treatment condition (Fig. 

1A). For participants who had not used cocaine/crack in the past 30 days at baseline (n = 

84), lower dropout rates emerged at approximately 10 weeks after the intervention started 

when they were assigned to the reduced-standard-plus-TES condition (Fig. 1B).

4. DISCUSSION

The current study examined a wide array of patient characteristics at baseline and their 

moderating impact on treatment outcomes when the computer-based TES intervention was 

or was not offered as part of the treatment model. The predictor analyses allowed us to 

identify a set of specific baseline characteristics of the participants that demonstrated 

different treatment outcomes across study arms. The-reduced-standard-plus-TES condition 

resulted in relatively better treatment outcomes compared to the standard alone treatment for 

subgroups of participants with four baseline characteristics: employment status, high anxiety 

scores, high ambivalence scores for opioid abstinence; and past 30 days cocaine/crack use 

for study retention.

Although speculative, the self-directed and self-paced aspect of TES, or fluency-building 

programing employed in the TES system worked well for the patients with high anxiety 

scores at baseline. For greater ambivalent attitudes, perhaps individuals who were 

ambivalent about continuing substance use had positive experiences with the TES by 

receiving immediate feedback and scores reflecting mastery of relevant coping skills and 

knowledge, and these learning experiences motivated them to reduce their problematic 

opioid use. The reported retention result suggests that it may be clinically important to 
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incorporate a targeted intervention for cocaine and crack use as part of treatment for opioid 

dependence.

Our statistical analyses are also clinically significant. For example, a one unit increase in the 

ambivalence scores resulted in a 2% increase in the abstinence rate for those in the reduced 

standard-plus-TES group. The ambivalence scores ranged from 10 to 90. With this wide 

range in the ambivalence scores, if someone has a baseline ambivalent score of 60, s/he is 

likely to have 60% better abstinence rates when assigned to the reduced-standard-plus-TES 

group compared to those who have a baseline ambivalent score of 30.

Our analyses were designed to address empirical questions, whether patients with certain 

characteristics will do better or worse when the technology-based therapy was offered as 

part of the care. Some may speculate whether a technology-based intervention can be 

effective and feasible for subgroups of participants that are presumed to be difficult to treat. 

We found that TES was not contraindicated for any subgroup examined. That is, those 18 

non-significant moderating characteristics reported here (e.g., age, ethnicity, past risky 

behaviors) imply that these characteristics should not be considered as technology-specific 

barriers (Choo et al., 2012) in receiving the computer-based TES as part of the care.

Although not assessed here, poor computer literacy could be a barrier for achieving a 

positive treatment outcome from a technology-based therapy. Examining computer literacy 

or eHealth literacy (Norman and Skinner, 2006) and its relation to outcomes could have 

been meaningful. In this trial, however, TES was intentionally designed to be useful by a 

broad array of users and did not assume any prior computer experience. Future work on 

technology-based SUD interventions should ensure the lack of computer literacy at baseline 

does not work against patients as a built-in barrier or discriminatory factor.

In summary, the results of the present study identify subgroups of substance users that can 

benefit from technology-assisted SUD interventions. A clinician may conclude that offering 

TES as part of the service delivery model can: 1) work better than standard alone treatment 

especially for patients who are employed, highly anxious, or ambivalent about continuation 

of substance use; and 2) is also effective for persons presenting for addiction treatment with 

those 18 non-significant moderator characteristics, as we found that including TES as part of 

the care was not contraindicated for these subgroups.
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Highlights

The study examined a technology-based behavioral intervention for SUDs.

Baseline characteristics of participants were examined as moderating factors.

Treatment outcomes include opioid abstinence and treatment retention.

Interaction effects between study arms and treatment outcomes emerged.

Specific sub-groups particularly benefited from the technology-based Therapeutic 

Education System.
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Figure 1. 
Cocaine/crack use at baseline and dropout rate changes across study conditions over the 52 

study weeks. (A) The hazard ratio for participants with cocaine/crack use in the past 30 days 

at baseline. (B) The hazard ratio for participants with no cocaine/crack use in the past 30 

days at baseline.
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