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Observed deep energetic eddies by 
seamount wake
Gengxin Chen1, Dongxiao Wang1, Changming Dong2,3, Tingting Zu1, Huijie Xue1,4, 
Yeqiang Shu1, Xiaoqing Chu1, Yiquan Qi1 & Hui Chen5

Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which 
have no footprints at the sea surface) are much less reported in the literature due to the scarcity of 
their observation. In this letter, from recently collected current and temperature data by mooring 
arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) 
with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm 
at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, 
which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake 
when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. 
More observations suggest that the deep eddy should not be an episode in the area. Deep eddies 
significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have 
potential implication for deep-sea sediments transport.

Surface eddies are frequently observed in the Ocean and have substantial impact on physical and biogeo-
chemical budget1–6. However, due to lack of observation, deep eddies are still poorly understood and less 
studies focused on the phenomena7–12. The South China Sea (SCS) is known for the presence of strong 
eddy activity13. The northern SCS has a broad continental shelf and a steep continental slope (Fig. 1a) 
with numerous seamounts. A strong boundary current exists in the northern SCS and flows southward 
near the Xisha area14. Surface mesoscale eddies are frequently observed near the Xisha Islands, including 
eddies locally generated and propagated from the northeastern and eastern regions as well15. A strong 
interaction among currents, eddies and topography is expected in the area.

Samples collected by sediment trap at 1500 m of a mooring in Xisha Trough demonstrate that total 
particle flux increases abruptly from May 2012, which clearly differentiates from its general fluctua-
tion16. Current and temperature observations from the same mooring suggest that one-order larger 
velocity amplitude than usual and obvious positive temperature anomaly occur at deep layer in May 
2012. Through analysis of long-term moored records, a deep energetic and baroclinic eddy is revealed. 
The deep eddy induces larger velocities in deep layer, and should greatly contribute to deep-sea sedi-
ments transport. The deep eddy is generated in a wake when a steering flow in the upper layer passes a 
seamount, which distinguishes from surface eddy genesis by a stratified flow passing an island. Detailed 
examination of the deep eddy and other possible deep eddy events are presented in this study, which 
will add to our knowledge of eddy activities in the SCS and carry implications for future studies of deep 
eddies in the SCS as well as in other regions.

Results
An observed deep eddy.  Moorings A and B are deployed adjacent to Xisha Trough at approximately 
water depth of 1700 m and 1550 m, respectively (Fig. 1; see Method for detail). The velocity amplitudes 
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in the deeper layer (larger than 1000 m) observed at moorings A and B are less than 0.02 m/s for most of 
the time (Fig. 2b,f). An interesting event is that two maximum velocities with the amplitude of 0.18 m/s 
occur between 4 April and 8 May 2012 at mooring A. Larger velocity amplitude in the deeper layer can 
also be observed in Mooring B (Fig. 2f) in May 2012. Observed by sediment trap at 1500 m at mooring 
B, total particle flux increases abruptly from 179 mg/m2/d in May to 398 mg/m2/d in July 2012, which 
presents obvious different fluctuation with that during the same period in 2010 and 201116. It has been 
reported that strong surface eddies in the SCS can extend vertically to thousands of meters, and thus 
induce larger velocity in deep layer17 and transport sediments6. What contributes to the larger velocity 
amplitude and sediments increase in deep layer shown by the mooring arrays?

An eddy is assumed to consist of solid body rotation within a core (r <  R) and 1/r decay elsewhere7,18. 
The azimuthal velocity is governed by
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Here R is the eddy radius; r is the radial distance; and Vmax is the maximum azimuthal velocity. When 
an eddy passes a mooring, the mooring can record two local maximums of velocity amplitude if an eddy 
core (r <  R) passes through it, whereas only one maximum of velocity amplitude is recorded in other 
situations.

Two local maximums of velocity amplitude are shown in the time series of velocity amplitude at 
mooring A in the 40–440 m layer: the one on 26 March 2012 and another on 14 April 2012 (Fig. 2a). In 
between a minimum velocity amplitude is recorded on 6 April 2012. The SLA and geostrophic currents 
suggest that the mooring is passed by a surface, southwestward-propagating, cyclonic eddy at that time 
(Supplementary Figure S1; Fig.  1a,b). The time when the smallest velocity occurred on 6 April 2012 
(Fig.  2a) is when the eddy center passes the mooring. The anomalous temperature series with respect 
to the one-year time-averaged temperature (colors in Fig.  2c) suggests that the surface cyclonic eddy’s 
impact could extend to deeper than 970 m. Mooring B recorded larger velocity in the upper layer but 
with only one velocity core (Fig.  2e). The obvious discrepancy recorded by the two nearby moorings 
could be attributed to the eddy moving in different trajectories across the observational moorings, and 
impact of the SCS western boundary current.

Figure 1.  The bathymetry of the northern SCS. (a) Colors show the bathymetry of the northern SCS. 
Triangle and square are locations of Moorings A and B, respectively. The vectors are geostrophic currents on 
18 April 2012 from altimeter data. The altimetry data over the shelf shallower than 100 m are masked.  
(b) The topographic map from the bathymetry (color) in Xisha area marked by box in (a). (c) The water 
depth profile along the section marked by red line in (b). Maps are generated using Global Mapper v12.
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Structure of larger velocity amplitude in the deeper layer is obviously asynchronous from that of the 
upper water column. For example, at mooring A, a velocity core with a local maximum of 0.18 m/s at 
1100 m occurs on May 5 (Fig. 2b), while the maximum velocity amplitude is only 0.13 m/s at 400–440 m 
and no obvious velocity core is observed at 200–440 m at that time (Fig. 2a). Larger velocity amplitude 
with the value of 0.15 m/s (the white line in Fig. 2a) is observed in the upper 460 m layer before April 19. 
However, the isoline of 0.15 m/s gradually rises to 150 m on May 19. The discrepancy of the upper and 
deep layers between March 20 and May 9, 2012 at mooring A can be better viewed in velocity vectors 
(Fig. 3). Because of the effect of the surface cyclonic eddy, the counterclockwise rotation is presented in 
the upper 400 m layer. Different from the situation in the upper layer, very weak velocities are observed in 
the layer below 1000 m before April 9. After April 9, the water deeper than 1000 m spins clockwise. These 
results suggest that the local maximum of the current speed at 1100 m shown in Fig. 2b is not an exten-
sion of the surface cyclonic eddy. The highest temperature at 1460 m between March and June appears 
on April 25, 2012 with the value of 3.05 °C (Fig. 2d), 0.16 degree warmer than the mean temperature at 
the depth. Note that April 25 is also the middle time of the two maximum velocity amplitudes observed 
by mooring A in the deeper layer (Fig. 2b).

At mooring B, larger velocities are clearly seen between May 4 and June 3 and the average at 1140–
1300 m reaches 0.10 m/s (Fig.  2f). In contrast to the larger velocity in deeper layer, the mean velocity 
amplitude in the upper layer (500–540 m) is only 0.06 m/s in the same period (Fig.  2e). Within one 
month around May 22, the isotherm at 1150–1440 m observed by mooring B (Fig.  2g) considerably 
deepens. Taking the 3.6 °C isotherm as an example, the depth is 1220 m on April 19, but deepens to 

Figure 2.  Current and hydrographic observations. Time series of (a) 40–440 m and (b) 1000–1450 m 
horizontal velocity magnitude observed by mooring A from 5 Mar 2012 to 18 June 2012. Time series of  
(c) temperature (lines) and temperature anomaly (colors) and (d) temperature at around 1463 m from 5 Mar 
2012 to 18 June 2012. (e–g) Similar as (a–c) but observed by mooring B at different depths. (h) Salinity time 
series at 1160–1435 m observed by mooring B from 5 Mar 2012 to 18 June 2012. White lines in (a) represent 
0.15 m/s contour. Red lines in (b,f) represent 75% lines of good data obtained from ADCPs outputs. The 
data in the layers shallower than red lines have more than 75% good quality with values. Note that red line 
in (b) can only be observed around April 14, 2012 at about 1450 m. In this figure, different colorbars are 
used. Figures are plotted using MATLAB.
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1340 m on May 20, and then comes back to 1240 m on June 18. The amplitude of the isotherm reaches 
~120 m. A warm core with the temperature anomaly of 0.37 °C can be found at 1200–1400 m (color in 
Fig. 2g). The salinity changes little (Fig. 2h), but a low-salinity core (~− 0.03 pus) can also be identified 
at about 1350 m around May 19.

Surface eddies in the SCS deepen or raise the isotherms dramatically in the thermocline (~60 m) 
where a strong stratification is observed15, but they have little impact on the isotherms in deep ocean 
where the stratification is relatively weaker than that in the thermocline. However, when an eddy occurs 
in deep ocean, the situation is different. Because of weaker density vertical gradient in deep ocean, the 
same intensity of the perturbation could lead to more dramatic vertical movement of isotherms.

The above analysis suggests that an event appears at deep layer in the SCS with high temperature 
anomaly and large velocity amplitude (one order larger than the background velocity). The event deep-
ens isotherm in deep layer up to 120 m, spins clockwise, and lasts for one month. Besides, the event is 
not extension of a surface eddy and so on. It should be a deep eddy that affects the water columns at 
mooring A and then mooring B.

Now we estimate the eddy radius R according to our observations. Firstly, we identify the eddy trans-
lation direction past the mooring. The direction is perpendicular to the vector difference V1,max −  V2,max

19. 
Here, V1,max and V2,max correspond to the velocities at the two time points T1,max and T2,max when the eddy 
core R crosses the mooring. Secondly, the translation velocity U is estimated by thermal wind bal-
ance = −
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20. Here, f is Coriolis frequency, ρ is the potential density and ρ0 is the average poten-
tial density computed from the average potential density at 1160–1435 m over the time series 
(ρ0 =  1027.3 kg/m3). ∂x is estimated as Δ x =  −UΔ t, where Δ t is the time interval of the maximum 
velocity and the minimum velocity induced by the eddy. v is the velocity component perpendicular to 
the direction of x. Finally, based on the eddy translation direction, the vector directions of V1,max and 
V2,max and the distance between the two points at T1,max and T2,max, we have an estimate of R by solving 
a trigonometric function. Using the velocity at 1150–1300 m observed by mooring A, we find the eddy 
propagates westward with an angle of 156 ±  4° from east. That’s why the deep eddy is observed later by 
mooring B. According to the temperature and salinity measured by mooring B, the eddy’s 
northwestward-propagating velocity is estimated as 1.27 ±  0.45 cm/s. Thus, the mean radius R of the deep 
eddy at 1150–1300 m is estimated as 21.3 ±  7.6 km. The notion of having a deep eddy with its core area 
first passing through mooring A followed by its fringe passing through B is supported by the kinematic 
analysis above. The characteristic Rossby number of the eddy can be estimated through the relative vor-
ticity magnitude and the Coriolis coefficient as R0 =  2Vmax/Rf. The anticyclonic eddy has a finite Rossby 
number of 0.39, which is in the same scale of the two coherent eddies affecting deep water in the Labrador 
Sea18.

Because of the larger eddy rotation speed and the smaller eddy size, maybe we couldn’t ignore eddy 
rotation to estimate the eddy radius. If eddy rotation is considered, the relationship will be 
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Figure 3.  Observed current vectors. Time series of velocities observed by mooring A at different depths 
from 29 Feb 2012 to 19 May 2012. Figure is plotted using MATLAB.
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velocity. The formula can be wrote as = −
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r . Because of w <  0 for an anticyclonic eddy, the effective vorticity fe should be smaller 
than the situation that eddy rotation is not considered. This means the eddy size estimated using thermal 
wind balance is smaller than its realistic size. Further discussion can be found in the following text.

Eddy generation.  Surface eddies can be generated when a stratified flow passes an island, that is a 
common phenomenon in the ocean21–23. A flow passing a seamount could also be accompanied with eddy 
genesis, not in the upper layer but in the deep layer. Our observation suggests that a surface cyclonic eddy 
in Xisha area induces a strong and long-lasting current (Figs 1b, 2b, 3 and S1) in April 2012. We propose 
a possible scenario as follows. When the vertically-shearing current flows over a seamount (Fig. 1b,c), the 
friction between the current and the seamount destroys the stratification near the bottom and induces 
a bottom mixing layer or a bottom boundary layer, i.e., a layer with vertically uniform density, which 
results in a horizontal density front. Accompanying the horizontal front is a frontal jet subject to the 
geostrophic constrain. The instability of the frontal jet can lead to a coherent eddy structure, especially 
an anticyclonic eddy when the branch flow of the surface eddy passes the seamount on its left side. That’s 
why stronger deep currents are observed after April 9 (Fig. 3). Compared with eddies in the upper layer 
induced by flow passing an island, eddies related to seamount should be stronger in deep layer.

A South China Sea model (see Method for the analysis) is utilized to further the investigation of the 
effects of the seamount on the deep eddy qualitatively. The seamount reproduced by the model can be 
clearly identified although it is not exactly the same as that shown in Fig. 1b,c, because of the smoothed 
topography and model resolution. The model can reproduce the surface cyclonic eddy and the deep eddy 
as observed (Fig. 4). The cyclonic eddy at 400 m (the height of the seamount in the model) and the above 
can be seen clearly (Fig. 4a,b). At 600 m and deeper layer, the effect of seamount is evident: an anticy-
clonic eddy is generated to its north (Fig.  4c–e). When the seamount is removed by interpolating the 
surrounding depth to the seamount area, no anticyclonic deep eddy is found (Fig. 4f), which confirms 
the generation mechanism of the deep eddy as a steering flow passing a seamount.

The model outputs are used to further understand the deep eddy evolution. Because the northward 
branch flow of the surface eddy passes the seamount on its left side (Day 0 in Fig. 5), the anticyclonic 

Figure 4.  Simulated currents at different depths. (a–e) Modeled current vectors at 50 m, 400 m, 600 m, 
900 m and 1100 m. (f) Same as (e) but for the situation that the seamount shown in Fig. 1c is removed. 
Triangle and square represent the locations of the moorings A and B, respectively. The region in (b–f) is 
marked by red box in (a). Color shows the bathymetry, and white means the land. Maps are generated using 
MATLAB.
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deep eddy rather than a cyclonic eddy is generated to the north of the seamount. The deep eddy becomes 
stronger and extends northwestward (Days 6 and 12), and then propagates westward due to β  effect when 
the surface eddy leaves and surface current becomes weak (Days 12, 18 and 24). Due to the restriction 
of topography, the deep eddy finally prorogates southwestward along the isobaths (Days 24 and 30).

Compared with at 600 m, the deep eddy tends to be stronger at 900 m (Fig. 5). For details, the deep 
eddy can be identified at 900 m but not at 600 m on Days 0 and 6, is stronger at 900 m than at 600 m on 
Days 12, 18 and 24, and disappears at 600 m but still exists at 900 m on Day 30. These results suggest 
the deep eddy is generated in deep layer, which implicates that only a seamount with enough size could 
induce a robust Taylor vortex. Thus, the energetic (maximum-speed) depth of a deep eddy should be 
determined by the combined effect of steering flow strength and seamount size.

Eddy size is controlled by the baroclinic deformation radius Rd and the seamount size D21. When D is 
bigger than Rd, the eddy size is controlled by Rd, otherwise the eddy size is approximately the same as D. 
For the particular seamount of consideration, D is about 46 (56) km at a depth of 1000 (1200) m. Based 
on the WOA09 data, the mean Brunt–Väisälä frequency N at the mooring locations in the upper 1000 
(1200) m is 0.0149 (0.0149) s−1 in April. If we set the vertical scale H as 1000 (1200) m and the Coriolis 
parameter f as 4.3 ×  10−5 s−1, the Rd can be estimated by Rd =  NH/f ≈  347 (416) km. This means the eddy 
size should be controlled by the seamount size, and thus its radius should be on the order of 23 ~ 28 km, 
which is a bit larger than that estimated using thermal wind balance.

Discussion
This study has showcased the first observation of a SCS deep eddy. The eddy induces the maximum 
velocities during the observational period in deep layer with the amplitude of 0.18 m/s, which is far larger 
than the mean value of 3.4 cm/s. The deep eddy considerably deepens isotherms with the amplitude of 
~120 m, suggesting the eddy has an important impact on deep-sea conditions. Based on observation by 
mooring B, the mean Richardson number =

(∂ / ∂ ) + (∂ / ∂ )
Ri

N

u z v z

2

2 2
 during April 5 to May 4 2012 at 

Figure 5.  Evolution of the simulated deep eddy. Evolution of the simulated deep eddy shown in Fig. 4 at 
600 m and 900 m. Color shows the bathymetry, and white means the land. Maps are generated using MATLAB.
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1160–1320 m, where good-quality temperature, salinity and velocity data are available, is 0.0309 whereas 
it is 0.0219 from May 5 to June 4. The smaller value of Ri suggests that the deep eddy mentioned above 
weakens the ocean stratification and intensifies the vertical shear, and thus could induce stronger turbu-
lent mixing. A rough estimate demonstrates that the strong deep eddy event accounts for 24% of the total 
kinetic energy in deep layer (1175–1220 m) over the three-year observation period from May 2009 to 
August 2012 by mooring B (Table 1). Strong current and mixing induced by the deep eddy should lead 
to the abruptly increase of the particle flux in Xisha Trough from May 201216.

The time evolution of 1175–1225 m depth-averaged velocities (blue line in Fig. 6a) suggests more than 
72% of velocities are less than 0.04 m/s during May 2009 and August 2012. However, larger velocities, 
even larger than that at 400–450 m (red line in Fig.  6a), are also observed, for example, in June 2009, 
September 2009, August 2010, May 2012 and so on. These events last longer than 3 weeks and all of them 
correspond to strong northward currents at earlier time in the upper layer (Figure S2). Empirical orthog-
onal function analysis is applied to analyze the velocity observations by mooring B. The result shows that 
the first three dominant modes account for 68%, 16% and 6%, respectively, of the total variance. Mode 1 
demonstrates the deep currents are mainly southwestward or northeastward (Fig. 6b), which should be 
attributed to the impact of the west boundary current in the SCS. Besides, the deep currents are nearly 
uniform as the no eddy situation in most of the time shown in Fig. 2f. Mode 2 represents the sheared 
deep currents, implying that some events affect the deep-sea conditions. The sheared currents tend to be 
across-isobath slanted in the northwest-southeast direction.

Instrument Time Depth (m) Measurement

Mooring A  
(16.85°N, 110.68°E) 
Water depth: 1708 m

ADCP 20110823–20120817 40–440, 
1000–1450 u, v

SBE 56 20110823–20120817 375–970 t

SBE 37 20110823–20120817 1463 p, t

Mooring B  
(17.17°N, 110.43°E) 
Water depth: 1567 m

ADCP 20090504–20100904 35–460, 
1170–1430 u, v

ADCP 20100905–20110822 140–640, 
1175–1435 u, v

ADCP 20110823–20120817 65–540, 
1140–1365 u, v

CT 20110823–20120817
1150–1435 
(t), 1160–
1435 (s)

t, s

Table 1.   Information of the moorings. The “Depth (m)” column is denoted as the effective measurements 
depth.

Figure 6.  Long-term moored current record. (a) Time series of the mean 400–450 m (thin-red line), 
1175–1225 m (thick-blue line) velocity amplitudes and the mean across-isobath velocity component at 1175–
1225 m (thick-gray line; negative values mean northwestward) observed by mooring B from May 2009 to 
August 2012. (b) Spatial structure of the first two horizontal velocity modes. (c) The power spectrum of the 
mean across-isobath velocity component at 1175–1225 m and the 95% confidence curve (gray line). Figures 
are plotted using MATLAB.
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The power spectrum of the across-isobath velocity component (gray line in Fig.  6a negative values 
mean northwestward) shows a significant peak centered at a period of 32 d (Fig.  6c). If we set island 
size D as 50 km, unperturbed upstream velocity U as 0.1 m/s and eddy shedding interval T as 30 d, 
the Strouhal number St = D/TU is estimated to be 0.19. For numerical experiments of fluid around an 
obstacle21 and in a nonrotating frame24, the St values are 0.23 and 0.2, respectively. The consistence in 
St number with other eddy shedding processes is a further evidence for the present argument that the 
deep high moment energy events are deep eddies. The significantly increased velocity amplitudes, kinetic 
energy and the cross-slope currents in deep layers could be attributed to deep eddies, which is thus not 
a negligible factor when the SCS deep circulation and deep-sea sediments are examined. More observa-
tions are desirable to further understand deep eddies and their regional impact.

Based on the numerical model, another two deep eddies (E1 and E2) in different situations are shown 
(Figure S3). In the E1 case, no strong surface current exists in the upper 600 m near the seamount. 
However, due to topographic steering, a cyclonic circulation and thus a northward current appear at 
900 m near the seamount. As a result, the deep eddy E1 appears at 900 m but not at 600 m during its 
whole life. E1 is relatively weak and tends to be local. In the E2 case, a strong cyclonic circulation with 
a large northward current appears near the seamount. Besides, a strong northeastward current exists to 
the north of 17°N. The energetic E2 finally propagates northeastward along the isobaths due to the effect 
of background flow. These cases indicate that the Xisha Trough is an area of deep eddy generation, and 
deep eddies can dissipate locally or propagate in different directions due to β  effect, background currents 
and so on.

Methods
Measurements from the mooring system.  The primary measurements are obtained from two 
moorings (A and B in Fig. 1). Mooring A was deployed approximately at 16.85°N, 110.68°E in the north-
western SCS (A in Fig. 1) from August 2011 to August 2012, containing an upward-looking 75 kHz and 
a downward-looking 150 kHz Workhorse Acoustic Doppler Current Profiles (ADCP) at depths of about 
465 m and 972 m, respectively. Between the two ADCPs, 11 Temperature Logger Sea-Bird Electronic 
(SBE) 56s at a uniform interval of 50 m, measure single-point temperature series. In addition, a SBE 56 
and a SBE 37 at about 370 m record a single-point temperature and pressure series. In addition, another 
SBE 37 measures temperature at about 1463 m.

Mooring B was deployed at approximately at a location 17.17°N, 110.43°E on May 2009. This mooring 
also had an upward-looking 75 kHz and a downward-looking 150 kHz ADCPs. From August 23 2011, 21 
Infinity conductivity and temperature sensors (CT), which are data logger for temperature and salinity 
measurements, were added in the mooring below the 150 kHz ADCP at 15 m interval, and a Seaguard 
Recording Current Meter (RCM), which records a single-point temperature, pressure and current, was 
set at the bottom of the mooring. The RCM could be used to assist in inferring the depth of CT and to 
amend the measurement error of the downward-looking ADCP at the sea floor.

Vertical resolution of the upper and lower ADCPs is 8 or 16 m and 4 m, respectively. Sampling time 
frequency of the ADCP is every 30 min or 1 h. The time interval of CT and the RCM is 1 h, whereas 
the time interval is 10 min for the two SBE 37s and 30 s for SBE 56s. In this study, the ADCP current 
velocities, the temperate and salinity measured by Infinity-CTs and SBE 56s are linearly interpolated onto 
a uniform 5 m interval. Time series of the measurements are averaged to daily intervals. More details of 
the mooring measurements used in this study are summarized in Table 1.

Sea surface data from satellites.  Daily geostrophic current and sea surface height anomaly 
derived from the altimeter data distributed by the Archiving, Validation, and Interpretation of Satellite 
Oceanographic data (AVISO) are used to examine mesoscale eddies that could be identified in the sur-
face layer. The weekly geostrophic current and sea surface height distributed by AVISO are averaged into 
monthly climatological data to verify the model performance.

Model setup.  The model is configured around the South China Sea (99°E–140°E, 1°N–30°N) by the 
Regional Ocean Modeling System25 (ROMS) with a horizontal resolution of 1/20° ×  1/20° and 40 vertical 
layers by terrain-following s-ordinate26. The bottom topography is obtained from ETOPO2 with min-
imum water depth set equal to 5 m, and it is slightly smoothed to reduce truncation error. The model 
is forced with climatological monthly atmospheric forcing (wind, short wave radiation, precipitation, 
2-m air temperature and humidity, mean sea level pressure, and cloud cover) from ECMWF Re-analysis 
Interim (ERA-Interim) products (provided by European Centre for Medium-Range Weather Forecasts), 
surface net heat fluxes are calculated by the Coupled Ocean-Atmosphere Response Experiment (COARE 
3.0) algorithm27. The model open boundary information is provided by the climatological monthly rea-
nalysis results from Simple Ocean Data Assimilation (SODA). The model is spun up from a rest with 
initial conditions provided by the climatological temperature and salinity in January from SODA, and it 
runs for 24 years, the 6-day averaged outputs of the last year are used for analysis.

The model driven by the monthly climatological forcing could reasonably capture features of the 
seasonal circulation in the SCS (Figure S4), with a basin-wide cyclonic circulation during winter, and a 
cyclonic northern gyre and an anti–cyclonic southern gyre forming a dipole with a jet streaming away 
from the coast of Vietnam28. The simulated structure of sea surface elevation also agree reasonably well 
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with satellite observation (Figure S4). Note that different colorbars for the observed and simulated sea 
surface elevations are because the sea surface height in AVISO data is above geiod. The annual mean net 
volume transport in Luzon strait, an important factor in affecting the SCS circulation29, is around 4Sv 
(1Sv =  106 m3/s) westward, and it shows distinct seasonal variability (Figure S5), which agrees well with 
that summarized by previous study30. The good model/data agreements suggest that the model is able to 
capture the fundamental processing in the SCS, and thus is suitable for the aim of a “process-oriented” 
study on a steering flow passing a seamount. Besides, the climatological model is beneficial for simplify-
ing the problem and figuring out what actually induces the deep eddy.

We choose a period, during which a cyclonic eddy exists in the upper layer around the Xisha island 
for more than one month (Fig.  4a), similar to the situation in Mid-April, 2012, to check the velocity 
patterns in the deeper layers. An experiment run is also performed, in which the seamount is removed 
by interpolating the surrounding depth to the seamount area.
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