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Summary

DNA pooling is a cost-effective strategy for genomewise association studies to identify disease 

genes. In the context of family-based association studies, Risch & Teng (1998) mainly considered 

families of identical structures to detect associations between genetic markers and disease, and 

suggested possible approaches to incorporating different family types without a thorough study of 

their properties. However, families collected in real genetic studies often have different structures 

and, more importantly, the informativeness of each family structure depends on the disease model 

which is generally unknown. So there is a need to develop and investigate statistical methods to 

combine information from diverse family types. In this article, we propose a general strategy to 

incorporate different family types by assigning each family an “optimal” weight in association 

tests. In addition, we consider measurement errors in our analysis. When we evaluate our approach 

under different disease models and measurement errors, we find that our weighting scheme may 

lead to a substantial reduction in sample size required over the approach suggested by Risch & 

Teng (1998), and measurement errors may have significant impact on the required sample size 

when the error rates are not negligible.
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Introduction

The genome-wide association study is a promising approach to identifying disease genes. 

However, it is still extremely expensive to genotype hundreds or thousands of individuals at 

hundreds of thousands marker loci with current technologies. As a result, DNA pooling has 

received much attention recently due to its potential in saving genotyping cost (Michelmore 

et al. 1991; Lipkin et al. 1998; Risch & Teng, 1998; Xu et al. 1999; Bader et al. 2001; 

Jawaid et al. 2002; Ito et al. 2003; Wang et al. 2003, among others). Recent developments in 

*Corresponding author: Hongyu Zhao, Ph.D. Department of Epidemiology and Public Health, Yale University School of Medicine, 60 
College Street, New Haven, CT 06520-8034; Phone: (203) 785-6271; Fax: (203) 785-6912. hongyu.zhao@yale.edu. 

HHS Public Access
Author manuscript
Ann Hum Genet. Author manuscript; available in PMC 2015 November 30.

Published in final edited form as:
Ann Hum Genet. 2005 July ; 69(0 4): 429–442. doi:10.1046/j.1529-8817.2005.00164.x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantitative assays and in the design and analysis of pooling studies were reviewed by Sham 

et al. (2002).

For quantitative phenotypes, Bader & Sham (2002) proposed statistical methods to use DNA 

pooling in family-based association designs. For qualitative phenotypes, Risch & Teng 

(1998) derived formulae for calculating power to detect associations for identical family 

structures when DNA pooling is used. Compared to the results of population-based case-

control tests under both individual genotyping and DNA pooling (c.f., Zou & Zhao, 2004), 

their research shows that when families with parents are used pooling leads to higher power, 

especially as the number of affected children increases, although when case-parent trias are 

used the power between them is similar. Note that family-based designs are robust to 

population stratification, and family-based association tests are promising when pooled 

DNA is used. However, families often have different structures in practical genetic studies, 

and it is more flexible if a study does not constrain family types. For example, it may not be 

easy to collect only families with three affected children. More importantly, Risch & Teng’s 

(1998) research and our own suggest that the sample sizes required for various family 

structures depend on the disease model, which is often unknown to researchers. Therefore, 

there is a need to develop statistical methods to combine families of different types both for 

practical and design considerations. As pointed out by Risch & Teng (1998), simple pooling 

of families of different structures, e.g., all affecteds are pooled together and all parents and 

unaffecteds are pooled together, is not a robust procedure. They proposed two ways to 

combine families of different structures. The first is to form pools using only families with 

identical structures, the second is to duplicate individuals for different family types, so that 

the ratio of the number of affecteds and the number of unaffecteds remains constant. 

However, they did not investigate the properties nor the power of their proposed methods. In 

this article, we consider the first method of forming pools using families of the same 

structures. Through marker score distributions, we first derive formulae for the mean and 

variance of the test statistic using DNA pooling data from families of identical structures. 

Our general results cover those of Risch & Teng (1998) as special cases. Based on these 

results, we propose a weighting scheme to combine data of different family types. When our 

approach is applied to different disease models we find that it may lead to significant 

reduction in sample size requirements compared to those through Risch & Teng’s approach 

under certain disease models. We also consider errors in measuring allele frequencies, which 

are unavoidable for DNA pooling technology. Recent research suggests that for a given 

DNA pooling sample, the standard deviation of the estimated allele frequency is between 

1% and 4% (cf., Buetow et al. 2001; Grupe et al. 2001; Le Hellard et al. 2002, and Sham et 

al. 2002). For example, Le Hellard et al. (2002) reported that using the SNaPshot™ Method, 

which is based on allele-specific extension or minisequencing from a primer adjacent to the 

site of the SNP, the standard deviations for estimating allele frequency are from 1% to 4% 

depending on the specific markers being tested. Therefore, we also incorporate measurement 

errors into our approach. Our numerical results show that the sample size required to attain 

the desired significance level and power using pooled DNA samples may be seriously 

affected when the error rates are not negligible.
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Genetic Models and Measurement Error Models

Consider a disease locus with two alleles D and d, and a marker locus with two alleles A and 

a. Assume that the penetrance is f2 for genotype DD, f1 for genotype Dd, and f0 for genotype 

dd. Denote the frequency of allele A in the families of structure (r, s, a) by p(r, s, a), where r 

(= 0, 1, 2) is the number of available parents in a family, s (= 1, 2, …) is the number of 

siblings, and a (= 1, …, s) is the number of affected siblings. Let q(r, s, a) = 1 − p(r, s, a). In 

this paper, we assume Hardy- Weinberg equilibrium for parents. If r = 1, that is, for the 

family type with only one parent, we further assume random mating between two parents, 

and the parents are missing at random. This is a reasonable assumption if the parental 

missingness is not related to the phenotype. For the ith family of structure (r, s, a), where i = 

1, …, n(r, s, a) and n(r, s, a) is the number of families of type (r, s, a) in the sample, let 

be the true (unobservable) number of allele A at the marker locus for the jth (j = 1, …, a) 

affected sibling,  be the true (unobservable) number of allele A for the jth (j = 1, …, s 

− a) unaffected sibling, and  be the true (unobservable) number of allele A for the jth 

(j = 1, …, r) parent, who may be the father or mother. Here, to simplify our analysis, we 

treat the parental phenotypes as unknown. Let n be the total number of families drawn at 

random from the ascertainment subpopulation, which consists of all families with at least 

one affected sibling, then the n(r, s, a) (r = 0, 1, 2; s = 1, 2, …; a = 1, …, s) are random 

variables that satisfy . For each family type we form two 

pools, one consisting of affected siblings, and the other consisting of unaffected siblings and 

available parents. Here, we discard the families in which all children are affected and no 

parents are available, because the control group cannot be formed for such families.

For a genetic model, denote the mean and variance of  by μ(r, s, a) X and , and 

the covariance and mixed second moment of  and  by γ(r, s, a)XX and 

Δ(r, s, a)XX, respectively. Other notations are defined similarly. The formulae for calculating 

these means, variances, covariances and mixed second moments are provided in Appendix 

A. To consider measurement errors, we assume the following measurement error models

(1)

where p̂(r, s, a) A is the sample frequency of allele A among the affected siblings of family 

type (r, s, a), and p̂(r, s, a) U is the sample frequency of allele A among the unaffected siblings 

and available parents of family type (r, s, a). Given  and , ξ(r, s, a) and 

η(r, s, a) are independent normal random variables with mean 0 and variance ε2. Here we 

assume that for the DNA pooling technology, standard deviation ε is not affected by family 

structures or true allele proportions. However, ε may be related to these factors in practice. 
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In this case, we need to replace ε by ε(r, s, a) for the family type (r, s, a) in the formulae 

below.

Statistical Tests Combining Families of Different Structures

To test the null hypothesis of H0: no association between the marker and disease, we form 

our pools using families with identical structures. To simplify our presentation, we consider 

the case of perfect linkage disequilibrium between the marker locus and disease locus, i.e., 

the two loci are identical. More general situations are discussed in the Discussion Section. 

As in Risch & Teng (1998), a one-sided test will be used. Consider the following general 

weighting scheme combining information from various family structures:

where the w(r, s, a) are weights to be discussed below. It can be seen that under the null 

hypothesis H0, p̂(r, s, a) A − p̂(r, s, a) U has mean 0, and variance

which can be estimated by

Where

is the sample frequency of allele A for family type (r, s, a), and E1 denotes the expectation 

over all possible values of n(r, s, a). Other estimation methods of the frequency of allele A for 

family type (r, s, a) under H0 are possible (c.f., Risch & Teng, 1998). So under H0,
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The optimal value of w(r, s, a) in the sense of minimizing V(T) is given by

That is, the weights should be inversely proportional to the corresponding variances. The 

minimal variance is given by

Therefore, we propose the following test statistic for H0:

Using a one-sided test and assuming asymptotic normality (a proof on the asymptotic 

normality of the test statistic t under H0 is provided in Appendix B), the power to reject the 

null hypothesis with significance level α can be approximated by

where μ(r, s, a) and  are the mean and variance of the difference between the two allele 

frequency estimates p̂(r, s, a) A and p̂(r, s, a) U under the alternative hypothesis H1, 

respectively, whose expressions are given by (A.22) and (A.24) in Appendix A, and

With

being the expected frequency of allele A in family type (r, s, a) under H1, Φ is the 

cumulative standard normal distribution function, and zα the upper 100α percentile of the 

standard normal distribution. If the penetrances are low, then p̃(r, s, a) is simplified to
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Where  is the conditional probability of the mating type of parents, G = (u, v), given 

the family type being (r, s, a). The sample size necessary to obtain a power of 1 − β with a 

significance level of α satisfies

(2)

In particular, when there is no measurement error, i.e., ε = 0, we have

where  is given in (A.24), λ(r, s, a) is the proportion of families with type (r, s, a) in 

the ascertainment subpopulation, and we have used the first order approximation of 

 (see (A.25) and (A.26) in Appendix A). Note that the resulting sample size n has 

included uninformative families, i.e. those families with type (0, a, a).

If we use the weights suggested by Risch & Teng (1998), i.e. w(r, s, a) is proportional to 

an(r, s, a), then the test statistic for H0 is

The corresponding power to reject the null hypothesis with significance level α is given by

The sample size necessary to obtain a power of 1 − β with a significance level of α satisfies

(3)

For the case of ε = 0, the sample size required is
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Numerical Results and Simulation Study

Now we consider an example given by Risch & Teng (1998) to (i) compare the sample sizes 

required to detect association under our weighting design and the weighting scheme 

suggested by Risch & Teng (1998); (ii) illustrate the impact of measurement errors on 

sample size; and (iii) compare the sample sizes required to detect association only using 

families of the same structures and combining different family structures. In this regard, we 

should note that because combining different family types needs more pools, our method is 

slightly more expensive.

We consider two types of family structures: (a) (0, 3, 2), i.e., two affected and one 

unaffected children, and no parents; and (b) (0, 3, 1), i.e., one affected and two unaffected 

children, and no parents. From formulae (2) and (3) we calculate the sample size necessary 

to attain the significance level of α = 5 × 10−8 and power of 1 − β = 80%, the levels 

suggested by Risch & Merikangas (1996) for a genome scan, under various genetic models 

and measurement errors. The results are presented in Table 2 for low penetrances and Table 

3 for high penetrances. Note that the sample sizes provided in the tables are the number of 

families required. It should be mentioned that the sample sizes obtained in our calculations 

do not include uninformative families with the structure (0, a, a) because there are no such 

families in the population we considered. Based on the results in these tables, we can see 

that (i) For low penetrances, the sample sizes required under our weighting scheme and that 

suggested by Risch & Teng (1998) are almost the same; both are close to the case of using 

only families of type (0, 3, 1). This can be easily understood by noting that for the low 

penetrances, there are much more families with structure (0, 3, 1) than those with structure 

(0, 3, 2). For high penetrances, the sample sizes required under our weighting scheme are 

generally smaller than those under that of Risch & Teng (1998). The difference is largest for 

dominant models, and smallest for recessive models. It can also be observed that for the 

recessive model and not large allele frequencies, the weighting method of Risch & Teng is 

even slightly better, although the difference is small (the largest relative difference is about 

5%). This is not surprising because our weighting scheme will not necessarily result in a 

uniformly optimal power. (ii) The impact of measurement errors on sample size is generally 

large. Relative to the case of low penetrances, for high penetrances the impact is not very 

large when the error rates are small and the allele frequencies are not small. But the impact 

can be substantial for moderate error rates (ε = 0.01) or small allele frequencies, especially 

for low penetrances. In these cases, there is a dramatic increase in sample sizes.

To compare the sample sizes required by the design combining different family structures, 

and by the design only using families of the same structures, we further calculate the sample 

sizes by using the families with types (0, 3, 2) and (0, 3, 1) for the case of no measurement 

errors, respectively. The results for high penetrances are provided in Table 4. It is clear from 
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this table that the sample sizes required for incorporating different family structures are 

between those separately using families with type (0, 3, 2) or (0, 3, 1). One family structure 

is not always preferable over the other, and the relative information for disease association 

depends on specific disease models. Similar conclusions can be drawn for low penetrances. 

Therefore, there is added benefit in incorporating various family structures when the mode 

of inheritance is unknown.

We conduct some simulation studies to confirm our large sample results. We first generate 

the genotypes of parents assuming Hardy-Weinberg Equilibrium, and the genotypes of three 

children assuming Mendelian transmission. Using the penetrances f2, f1 and f0 we simulate 

the disease status of each child. For a given sample size we confine ourselves to the families 

with one or two affected children. The test statistic t is used to calculate the empirical type I 

error rate and power. Note that to see whether our method leads to a correct type I error rate, 

a very large number of simulations is needed to consider α = 5 × 10−8. So we consider the 

nominal significance level of α = 0.05 instead. The empirical type I error rate is the 

proportion of significant replicates out of the total number of replicates under H0. By 

making use of the sample sizes suggested by the asymptotic power approximations (when 

the sample size suggested is ∞, we do not report power), we can calculate the empirical 

power and hence check whether a power of 80% can be attained. The empirical power is the 

proportion of significant replicates out of the total number of replicates under H1. Based on 

500 replicates (100 replicates for the case of recessive model and very low allele frequency, 

p = 0.05) our results are summarized in Table 5 for empirical type I error rate and in Table 6 

for empirical power. It can be seen that the empirical type I error rates and empirical powers 

are generally close to the significance level of 0.05 and power of 80%, respectively.

Discussion

In this article, we have developed a general weighting scheme to combine families of 

different structures in the detection of genetic associations using DNA pooling through 

family-based association designs. In addition, we explicitly modelled the measurement 

errors in our approach. It is observed that our weighting scheme is usually better than that 

suggested by Risch & Teng (1998). In the example we considered, where the families have 

two different types of structures, the efficiency of the design combining families of different 

structures is always between those of the designs only using families with one of the two 

structures. However, because it is generally much easier to collect families of different 

structures in practice and, more importantly, the informativeness of each family structure 

depends on the disease model, which is often unknown, we advocate the use of a study 

design that maximizes the usage of available family data. We also studied the impact of 

measurement errors on the sample size required. Our numerical results showed that, similar 

to the case of pooled population data (Zou & Zhao, 2004), the sample size required to attain 

a desired significance level and power using pooled DNA may significantly increase as the 

measurement errors increase for family-based association tests. However, such impact can 

be reduced if multiple replicates of each pooled sample are measured. For example, if four 

replicate measurements are used and accordingly, p̂(r, s, a) A and p̂(r, s, a) U are replaced by the 

averages of these four measurements, then the standard deviation ε will be reduced by half, 

ε/2, and all formulae in the paper are still true. Thus, if ε = 0.01, then the standard deviation 
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after four replicate measurements will be 0.005. From Tables 2 and 3 we see that the sample 

sizes required are greatly reduced. As a result of measurement errors it is possible that a 

specified power, e.g. 80%, may never be achieved under certain disease models (see results 

in Tables 2 and 3). Therefore, our analysis emphasizes the importance of reducing 

measurement errors in DNA pooling studies. Note that in our discussion the standard 

deviation ε is assumed to be known. If ε is unknown then we can infer it from laboratory 

experiments or from the distributions of the test statistics (Jawaid et al. 2002). Although a 

precise value of ε is impossible, our findings based on asymptotic results and simulation 

studies in Section 4 suggest that for high penetrances the effect of a minor misspecification 

of ε (for example, the estimate of ε is 0.005 but ε = 0.0075 in reality) on the association test 

is not very large. Relatively speaking the effect is slightly larger for low allele frequencies. 

However, for low penetrances such an effect can be large (data not shown).

It should be pointed out that we have assumed that the parental phenotypes are unknown in 

order to simplify our analysis. If the parental disease prevalence is low, then our results are 

close to the case of unaffected parents. Generally we can use separate pools for families with 

affected parents and for families with unaffected parents. More precisely we can consider 

the following family types separately: two affected parents, two unaffected parents, and one 

affected parent and one unaffected parent for the families with two parents; one affected 

parent, and one unaffected parent for the families with only one parent; and the families with 

no parents. Such consideration should provide additional information. The analytical details 

can be given along the line devised here. However, this will be more complicated and 

remains to be studied in our future work.

In this discussion we have assumed perfect linkage disequilibrium between the disease locus 

and marker locus. However, it is more likely that the marker being examined is in 

incomplete linkage disequilibrium with the genetic variant of interest. In this case it is 

necessary to derive the penetrances of the genotypes at a marker locus for each family 

structure (r, s, a). Then all the formulae obtained previously can be used. Risch & Teng’s 

(1998) results can serve this purpose, although the problem will be more difficult if several 

markers are considered together. In fact, let p(r, s, a) and q(r, s, a) be the frequencies of alleles 

D and d at the disease locus, and f2, f1 and f0 still be the penetrances of genotypes DD, Dd 

and dd, respectively. Further, let  and  be the frequencies of alleles A and a at 

the marker locus, and  and  be the penetrances of genotypes AA, Aa and aa, 

respectively. If we use Bengtsson & Thomson’s (1981) definition of the linkage 

disequilibrium parameter δ:

then from Risch & Teng (1998) we have
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and

where δ(r, s, a) is the linkage disequilibrium measure in the family structure (r, s, a). 

Therefore,

and

Note that  and  may be dependent on the family structures. But the formulae in this 

paper can still be used for this case as long as we substitute them for f2, f1 and f0, 

respectively.

In this paper we have assumed the random missingness of parental genotypes so that the 

available and missing parents have the same marker score distributions. This is plausible if 

the parental missingness is not related to the phenotype. For example, the random 

missingness assumption holds if we are unable to locate the parents because of death from 

some other disease or accident. However, in the situation where the missingness of a parent 

is related to the phenotype, this assumption may not be reasonable. For instance, in a study 

of genetic factors in an aggressive form of cancer, it is more likely that parents carrying the 

disease-predisposing allele are missing. A detailed discussion can be found in Allen et al. 

(2003). The construction of appropriate test statistics under this scenario warrants further 

research.
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Appendix A

In this appendix, we first derive the marginal distributions and joint distributions of the 

marker scores  for the affected siblings,  for the unaffected siblings, and 

 for the parents whose phenotypes are assumed to be unknown, then their means, 

variances and covariances, and finally the mean and variance of the difference between the 

two allele frequency estimates p̂(r, s, a) A and p̂(r, s, a) U for the families with identical 

structures under the null hypothesis H0 and alternative hypothesis H1. We give only the 

results under H1 as the distributions under H0 can be obtained by replacing the penetrances 

f2, f1 and f0 by the disease prevalence for each family type (r, s, a).

Marginal marker score distributions

Let G = (u, v) be the mating type of parents and  be the conditional probability of G = 

(u, v) given the family type being (r, s, a). When the parents are missing at random, the 

values of  are given in Table 1 and this reduces to Table 1 of Risch & Teng (1998) if 

the penetrances are low so that the unaffected individuals can be regarded as having 

unknown phenotypes. Denote  when u ≠ v. Then the distribution of 

 is

(A.

1)

The distribution of  can be obtained by replacing fw by 1 − fw in formula (A.1), where 

w = 0, 1 and 2 and the probabilities are denoted by α(r, s, a) Y (w′), where w′ = 0, 1 and 2. In 

the following discussion, u, v, w, and w′ always take a value of 0, 1, or 2.

Denote the numbers of allele A of the father and mother in the ith family of structure (r, s, a) 

by  and , respectively. Note that the notation  in the previous sections 

is not necessarily the same as  and can be equal to  depending on the observed 

results. The distribution of marker scores for the father is given by

(A.2)

and the distribution for the mother can be obtained by replacing  by  in 

formula (A.2), and is denoted as α(r, s, a)Z(m) (w′).
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Joint marker score distributions

Now we consider the joint distributions for marker scores. Let α(r, s, a) XY (u, v) denote the 

probability that one affected sibling and one unaffected sibling in the family with type (r, s, 

a) have u and v alleles A, respectively. Then it can be shown that

(A.3)

(A.

4)

(A.5)

(A.

6)

(A.7)

(A.

8)

(A.9)

(A.

10)

and
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(A.11)

The joint distribution for two affected (unaffected) siblings can be obtained by replacing 1 − 

fw(fw) by fw(1 − fw. Note that at this time, 1 − fw in the formulas remains unchanged) in the 

formulas (A.3)–(A.11), and is denoted as α(r, s, a) XX (u, v) (α(r, s, a) YY (u, v)).

Likewise, if we let α(r, s, a) XZ(f) (u, v) be the probability that one affected sibling and the 

father in the family with type (r, s, a) have u and v alleles A, respectively, then we obtain

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

and

(A.20)

Zou and Zhao Page 14

Ann Hum Genet. Author manuscript; available in PMC 2015 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The joint distribution for one affected sibling and the mother can be obtained by replacing 

 by  in the formulae (A.12)–(A.20), and is denoted by α(r, s, a) XZ(m) (u, v), and 

the joint distribution for one unaffected sibling and the father can be obtained by replacing 

fw by 1 − fw in the formulae (A.12)–(A.20), and is denoted by α(r, s, a) YZ(f) (u, v). As for the 

joint distribution for one unaffected sibling and the mother, this can be obtained by replacing 

 by  and fw by 1 − fw in the formulae (A.12)–(A.20) and is denoted by 

α(r, s, a) YZ(m) (u, v).

Mean, variance, and covariance of marker scores

From the marker score distributions of the affected and unaffected siblings and their parents, 

and the joint distributions of the family members, we can obtain the corresponding 

expectations, variances, and covariances:

Similarly, we can obtain the expressions for the expectations of  and ;

The variances of  and  have similar forms;

The expressions of the covariances between  and  and  and  are 

similar;
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(A.21)

The covariance  has a similar form to  except 

 and μ(r, s, a)Z(m) are in place of  and μ(r, s, a) Z(f) in the above formula. 

Likewise, the expressions for the covariance  can be obtained by 

replacing fw by 1 − fw in formula (A.21), and the covariance  can be 

obtained by replacing fw by 1 − fw,  by  and μ(r, s, a) Z(f) by μ(r, s, a) Z(m) in 

formula (A.21).

Mean and variance of the difference between the two allele frequency estimates p̂(r, s, a) A 

and p ̂(r, s, a) U for families with identical structures.

In the following, we derive the mean and variance of p̂(r, s, a) A − p̂(r, s, a) U under the 

alternative hypothesis. It can be shown that the means of allele frequency estimates in the 

case group and control group are

and

respectively. If we define

and note that
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since we have assumed random mating of parents when r = 1, then we have

(A.22)

Likewise, we can show that

and

where E1 denotes the expectation over all possible values of n(r, s, a). Now define

and

Then from the formulae for  and γ(r, s, a) YZ(i) (i = 1, 2) provided above (noting that 

 etc., defined above, depend only on the sum of the variances etc. for both parents, 

we can regard the first parent as the father, and the second parent as the mother), we have
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and

(A.23)

Note that the mating of the parents is assumed to be random when r = 1. Hence

and

Therefore, the variance of p̂(r, s, a) U can be expressed as

Further, we can obtain
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where

has similar meaning to γ(r, s, a) YZ given in (A.23) except we should replace 1 − fw by fw in 

the expression. Consequently,

(A.

24)

From Stephan (1945), we have

(A.25)
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where as before, λ(r, s, a) is the proportion of families with type (r, s, a) in the ascertainment 

subpopulation, and can be accurately estimated when the sample size is large. If we use the 

first order approximation of , then we get

(A.26)

We use formula (A.26) to estimate the sample size required to detect association in this 

study, although it is straightforward to approximate power and sample size using the second 

order approximation of . In fact, our numerical calculation for the example given 

in Section 4 shows that using the first and second order approximations lead to almost 

identical power (data not shown). If we, like Risch & Teng (1998), assume that the 

penetrance is low, then the expectation and variance of the difference between the sample 

frequencies among the affecteds and controls, p̂(r, s, a) A − p̂(r, s, a) U, under the alternative 

hypothesis reduce to

(A.27)

and

(A.28)

respectively, where
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and

These results are the same as those in Risch & Teng (1998). Equations (A.27) and (A.28) 

give unified formulae for various family structures. By taking different values of r, s and a, 

we can obtain the corresponding results in Risch & Teng (1998).

Appendix B

In this appendix, we prove the asymptotic normality of our proposed test statistic t under H0. 

For convenience we denote the variance of the measurement error by  when the sample 

size is n. When tn is a nonzero constant, the proof is obvious. Now we assume that 

, where ℓ is a constant. It can be seen that

where

has mean zero and variance

under H0. Note that when n → ∞,

where → p. means convergence in probability. So from the central limit theorem and the 

assumptions given in Section 2, we have
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where → d. means convergence in distribution. On the other hand, under H0, p̂(r, s, a) → p. 

p(r, s, a). Hence,

Thus,
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Table 1

Conditional probability  of mating type given a affected and s − a unaffected children

Mating
type

population
frequency

(2,2) g22

(2,1) g21

(2,0) g20

(1,2) g12

(1,1) g11

(1,0) g10

(0,2) g02

(0,1) g01

(0,0) g00

*
Ks,a is the sum of all numerators in the third column.
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Table 2

Sample size required to detect genetic associations combining different family structures for low penetrances*

ε = 0 ε = 0.005 ε = 0.01

Dominant

  p = 0.05 532(533) 1702(1701) ∞**(∞)

  p = 0.20 355(357) 456(457) 2751(2969)

  p = 0.70 4286(4306) ∞ (∞) ∞ (∞)

Recessive

  p = 0.05 59117(59092) ∞ (∞) ∞ (∞)

  p = 0.20 1494(1495) 45486(∞) ∞ (∞)

  p = 0.70 270(270) 353(353) 3312(4511)

Multiplic.

  p = 0.05 2026(2030) ∞ (∞) ∞ (∞)

  p = 0.20 653(654) 1135(1135) ∞ (∞)

  p = 0.70 639(640) 1256(1255) ∞ (∞)

Additive

  p = 0.05 1209(1212) ∞ (∞) ∞ (∞)

  p = 0.20 524(525) 788(789) 97207(∞)

  p = 0.70 984(986) 3547(3571) ∞ (∞)

*
The values in brackets are based on the weighting scheme suggested by Risch & Teng (1998);

**
∞ means that 80% power cannot be attained or the sample size required is unrealistically large (greater than 100 000); Significance level α = 5 × 

10−8; power 1 − β = 0.80; Dominant model: f2 = f1 = 0.004, f0 = 0.001; Recessive model: f2 = 0.004, f1 = f0 = 0.001; Multiplicative model: f2 = 

0.004, f1 = 0.002, f0 = 0.001; Additive model: f2 = 0.004, f1 = 0.0025, f0 = 0.001.
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Table 3

Sample size required to detect genetic associations combining different family structures for high penetrances*

ε = 0 ε = 0.005 ε = 0.01

Dominant

  p = 0.05 338(373) 537(500) 2124(∞**)

  p = 0.20 185(217) 202(232) 269(290)

  p = 0.70 1746(2104) 4663(5890) ∞ (∞)

Recessive

  p = 0.05 48005(45598) ∞ (∞) ∞ (∞)

  p = 0.20 1139(1126) 2238(2121) ∞ (∞)

  p = 0.70 155(159) 167(170) 215(216)

Multiplic.

  p = 0.05 1513(1669) ∞ (∞) ∞ (∞)

  p = 0.20 443(486) 564(587) 1458(1568)

  p = 0.70 333(358) 385(409) 704(724)

Additive

  p = 0.05 869(967) 4448(9965) ∞ (∞)

  p = 0.20 335(376) 398(430) 762(752)

  p = 0.70 485(534) 598(650) 1804(1867)

*
The values in brackets are based on the weighting scheme suggested by Risch & Teng (1998);

**
∞ means that 80% power cannot be attained or the sample size required is unrealistically large (greater than 100 000); Significance level α = 5 × 

10−8; power 1 − β = 0.80; Dominant model: f2 = f1 = 0.4, f0 = 0.1; Recessive model: f2 = 0.4, f1 = f0 = 0.1; Multiplicative model: f2 = 0.4, f1 = 

0.2, f0 = 0.1; Additive model: f2 = 0.4, f1 = 0.25, f0 = 0.1.
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Table 4

Sample sizes required to detect genetic associations combining different family structures and using only the 

same family structures for high penetrances* and no measurement errors

Using both
(0, 3, 2) and (0, 3, 1)

Using only
(0, 3, 2)

Using only
(0, 3, 1)

Dominant

  p = 0.05 338(373) 208 355

  p = 0.20 185(217) 187 184

  p = 0.70 1746(2104) 2539 1417

Recessive

  p = 0.05 48005(45598) 17237 55431

  p = 0.20 1139(1126) 534 1275

  p = 0.70 155(159) 150 152

Multiplic.

  p = 0.05 1513(1669) 1116 1556

  p = 0.20 443(486) 359 459

  p = 0.70 333(358) 348 322

Additive

  p = 0.05 869(967) 615 898

  p = 0.20 335(376) 299 342

  p = 0.70 485(534) 534 459

*
The values in brackets are based on the weighting scheme suggested by Risch & Teng (1998); Significance level α = 5 × 10−8; power 1 − β = 

0.80; Dominant model: f2 = f1 = 0.4, f0 = 0.1; Recessive model: f2 = 0.4, f1 = f0 = 0.1; Multiplicative model: f2 = 0.4, f1 = 0.2, f0 = 0.1; Additive 

model: f2 = 0.4, f1 = 0.25, f0 = 0.1.
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Table 5

Empirical type I error rate for prevalence of 0.1*

ε = 0 ε = 0.005 ε = 0.01

p = 0.05 0.064 0.049 0.057

p = 0.20 0.048 0.042 0.044

p = 0.70 0.060 0.070 0.068

*
The critical value is 1.6449 (which corresponds to the significance level of 0.05 under normality), and the sample size is 200.
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Table 6

Empirical power using sample sizes obtained through asymptotic approximation for high penetrances*

ε = 0 ε = 0.005 ε = 0.01

Dominant

  p = 0.05 0.840 0.842 0.866

  p = 0.20 0.840 0.846 0.840

  p = 0.70 0.896 0.896

Recessive

  p = 0.05 0.780

  p = 0.20 0.808 0.702

  p = 0.70 0.796 0.836 0.804

Multiplic.

  p = 0.05 0.872

  p = 0.20 0.796 0.830 0.852

  p = 0.70 0.790 0.818 0.814

Additive

  p = 0.05 0.774 0.796

  p = 0.20 0.800 0.764 0.890

  p = 0.70 0.780 0.730 0.816

*
The critical value is 5.3267 (which corresponds to the significance level of 5 × 10−8 under normality); Dominant model: f2 = f1 = 0.4, f0 = 0.1; 

Recessive model: f2 = 0.4, f1 = f0 = 0.1; Multiplicative model: f2 = 0.4, f1 = 0.2, f0 = 0.1; Additive model: f2 = 0.4, f1 = 0.25, f0 = 0.1.
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