Skip to main content
. Author manuscript; available in PMC: 2015 Nov 30.
Published in final edited form as: Ann Hum Genet. 2005 Jul;69(0 4):429–442. doi: 10.1046/j.1529-8817.2005.00164.x

Table 2.

Sample size required to detect genetic associations combining different family structures for low penetrances*

ε = 0 ε = 0.005 ε = 0.01
Dominant
  p = 0.05 532(533) 1702(1701) **(∞)
  p = 0.20 355(357) 456(457) 2751(2969)
  p = 0.70 4286(4306) ∞ (∞) ∞ (∞)
Recessive
  p = 0.05 59117(59092) ∞ (∞) ∞ (∞)
  p = 0.20 1494(1495) 45486(∞) ∞ (∞)
  p = 0.70 270(270) 353(353) 3312(4511)
Multiplic.
  p = 0.05 2026(2030) ∞ (∞) ∞ (∞)
  p = 0.20 653(654) 1135(1135) ∞ (∞)
  p = 0.70 639(640) 1256(1255) ∞ (∞)
Additive
  p = 0.05 1209(1212) ∞ (∞) ∞ (∞)
  p = 0.20 524(525) 788(789) 97207(∞)
  p = 0.70 984(986) 3547(3571) ∞ (∞)
*

The values in brackets are based on the weighting scheme suggested by Risch & Teng (1998);

**

∞ means that 80% power cannot be attained or the sample size required is unrealistically large (greater than 100 000); Significance level α = 5 × 10−8; power 1 − β = 0.80; Dominant model: f2 = f1 = 0.004, f0 = 0.001; Recessive model: f2 = 0.004, f1 = f0 = 0.001; Multiplicative model: f2 = 0.004, f1 = 0.002, f0 = 0.001; Additive model: f2 = 0.004, f1 = 0.0025, f0 = 0.001.