Skip to main content
. Author manuscript; available in PMC: 2015 Nov 30.
Published in final edited form as: Ann Hum Genet. 2005 Jul;69(0 4):429–442. doi: 10.1046/j.1529-8817.2005.00164.x

Table 3.

Sample size required to detect genetic associations combining different family structures for high penetrances*

ε = 0 ε = 0.005 ε = 0.01
Dominant
  p = 0.05 338(373) 537(500) 2124(∞**)
  p = 0.20 185(217) 202(232) 269(290)
  p = 0.70 1746(2104) 4663(5890) ∞ (∞)
Recessive
  p = 0.05 48005(45598) ∞ (∞) ∞ (∞)
  p = 0.20 1139(1126) 2238(2121) ∞ (∞)
  p = 0.70 155(159) 167(170) 215(216)
Multiplic.
  p = 0.05 1513(1669) ∞ (∞) ∞ (∞)
  p = 0.20 443(486) 564(587) 1458(1568)
  p = 0.70 333(358) 385(409) 704(724)
Additive
  p = 0.05 869(967) 4448(9965) ∞ (∞)
  p = 0.20 335(376) 398(430) 762(752)
  p = 0.70 485(534) 598(650) 1804(1867)
*

The values in brackets are based on the weighting scheme suggested by Risch & Teng (1998);

**

∞ means that 80% power cannot be attained or the sample size required is unrealistically large (greater than 100 000); Significance level α = 5 × 10−8; power 1 − β = 0.80; Dominant model: f2 = f1 = 0.4, f0 = 0.1; Recessive model: f2 = 0.4, f1 = f0 = 0.1; Multiplicative model: f2 = 0.4, f1 = 0.2, f0 = 0.1; Additive model: f2 = 0.4, f1 = 0.25, f0 = 0.1.