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Tsetse flies are the cyclical vectors of deadly human and animal
trypanosomes in sub-Saharan Africa. Tsetse control is a key component
for the integrated management of both plagues, but local eradication
successes have been limited to less than 2% of the infested area. This is
attributed to either resurgence of residual populations that were
omitted from the eradication campaign or reinvasion from neighboring
infested areas. Here we focused on Glossina palpalis gambiensis, a
riverine tsetse species representing the main vector of trypanosomoses
inWest Africa. Wemapped landscape resistance to tsetse genetic flow,
hereafter referred to as friction, to identify natural barriers that isolate
tsetse populations. For this purpose, we fitted a statistical model of the
genetic distance between 37 tsetse populations sampled in the region,
using a set of remotely sensed environmental data as predictors. The
least-cost path between these populations was then estimated using
the predicted friction map. The method enabled us to avoid the sub-
jectivity inherent in the expert-based weighting of environmental
parameters. Finally, we identified potentially isolated clusters of
G. p. gambiensis habitat based on a species distribution model and
ranked them according to their predicted genetic distance to the
main tsetse population. The methodology presented here will in-
form the choice on the most appropriate intervention strategies to be
implemented against tsetse flies in different parts of Africa. It can also
be used to control other pests and to support conservation of
endangered species.

area-wide integrated pest management | eradication | vector control |
remote sensing | resistance surface

Tsetse flies transmit trypanosomes, the causative agents of
sleeping sickness (human African trypanosomosis, HAT) and

nagana (African animal trypanosomosis, AAT). Through increased
disease surveillance and treatment, the number of HAT cases has
substantially declined in the last 15 y (1). However, the elimination
of HAT as a public health problem also requires effective vector
management (1). AAT continues to represent the greatest animal-
health constraint to improved livestock production in sub-Saharan
Africa, causing enormous economic losses (e.g., milk and meat
production) (2). AAT also constrains the integration of crop
farming and livestock keeping, a crucial component for the devel-
opment of sustainable agricultural systems (3). Indeed, AAT affects
animal draft power, and consequently crop production. Also,
keeping less productive trypanotolerant cattle breeds pushes farm-
ers to increase herd sizes with such negative environmental impacts
as overgrazing. As an example, in the Niayes area of Senegal, it was
estimated that the eradication of tsetse flies would allow cattle sales
to triple whereas herd sizes would decrease by 45% (4).

The Challenges of Tsetse Elimination
Despite substantial efforts for over a century, deliberate efforts
to reduce the vast tsetse belt have had very limited success (5). In
past decades, spraying of residual insecticides was effective in
certain areas, but this technique is no longer acceptable on en-
vironmental grounds. More recently, two environmentally friendly
campaigns achieved sustained elimination by targeting isolated
tsetse populations as a whole (6, 7). It is therefore useful to identify
islands (8) or ecological islands (9) where isolated tsetse pop-
ulations could be eradicated without risk of reinvasion. Although
attempts have been made to identify isolated tsetse populations*
(10, 11), a well-defined and reproducible method that can be ap-
plied on a regional scale is still lacking.

Landscape Friction, Genetics, and Dispersal
Given the high costs of field sampling, and the difficulty in accessing
some of the sites, it is impossible to adopt a population genomic
approach based on a systematic sampling of tsetse populations.
Modeling landscape friction would thus represent a major advance
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to inform the prioritizing of tsetse elimination campaigns, with
promising applications at the continent level.
Landscape friction, or its inverse, landscape permeability,

modulates how animal species can move in the environment. In
the field of landscape genetics, friction is modeled to (i) identify
landscape and environmental features that constrain genetic
connectivity, (ii) elucidate the ecological processes that influence
spatial genetic structure, mainly to inform resources management
and conservation, and (iii) predict how future landscape changes
might influence genetic connectivity (12). Landscape friction has
been studied in a number of species, with insects only represented
in fewer than 10% of the studies (13). For example, studying
friction allowed researchers to demonstrate that the rate of water
loss plays a key role in the movement of a terrestrial woodland
salamander, but also that models of habitat suitability or abun-
dance may not be adequate proxies for gene flow (14).
In tsetse, consistent estimates of Glossina palpalis gambiensis

dispersal at the microscale were obtained using direct methods
(mark–release–recapture) as well as indirect ones (genetic iso-
lation by distance) (15). Although a strong isolation by distance
was observed in this species, tsetse populations separated by only
15 km of rice plantations (16) were found to be more isolated
than others separated by 100 km of gallery forest (15). In other
words, for this riverine tsetse species the friction of riparian
woody vegetation is significantly lower than that of rice planta-
tions. Despite its potential usefulness, no friction map is available
for tsetse flies at any scale, and our attempts to generate one for
G. p. gambiensis by using global land-cover maps and expert-
based cost parameters (13) proved ineffective. By contrast, we
built a friction map by iterating linear regression models of ge-
netic distance and environmental parameters and by determining
least-cost dispersal paths. The novelty of our approach is to relax
the need for expert opinion and to rely fully on the genetic dis-
tance for an evidence-based mapping of landscape connectivity
and for the identification of the most likely dispersal paths. We
subsequently combined the genetics-based analysis of friction
with a tsetse distribution model built using a fully different dataset,
thus considering that habitat suitability and connectivity might not
be influenced by the same environmental factors (14). The end
result is a reproducible methodology that enabled us to locate
potentially isolated tsetse populations that might be considered
as targets in eradication programs.

Results and Discussion
Effect of Environmental Factors on Genetic Distance. Using a linear
regression model, we estimated the relationship between genetic
distance [Cavalli-Sforza and Edwards’ chord distance (CSE), i.e.,
the response] and a set of environmental factors (the explanatory
variables), the latter being initially calculated along the direct
paths connecting tsetse populations pairwise (Figs. S1–S3). Ex-
pert-based permeability/friction scores had been first explored
using global land-cover datasets (Global Land Cover 2000 and
Globcover 2006). No significant correlation was found with genetic
distance (Fig. S1, Table S1, and Details on the Genetic Analysis).
In the regression model, the main variables influencing genetic

distance were (i) the geographic distance, (ii) being located within
the same river basin, and (iii) three different metrics of habitat
fragmentation, namely the patch density [number of habitat patches
(i.e., tree cover >20%) within the 0.2° pixels where landscape
friction is modeled], the class area [number of habitat pixels
(500 × 500 m)]), and the maximum distance between habitat
patches (Fig. 1). The findings were consistent with existing knowl-
edge of G. p. gambiensis ecology. For example, isolation by distance
is well known, as is the effect of watersheds on genetic distance,
even if the latter does not lead to complete isolation (Fig. S4) (11).
Human encroachment on tsetse habitat explains the positive effect
of habitat fragmentation on genetic distance: The further apart the
habitat patches, the more difficult for tsetse to disperse (Fig. 2) (17).

Identification of Tsetse Dispersal Paths. Direct lines connecting the
sampled tsetse populations were initially used to model the genetic

distance against the environmental variables, thereby generating
the initial friction map. Subsequently, the average values for the
environmental variables were recalculated along the least-cost
paths based on the initial friction map (Fig. 3). To this end, a
transition matrix was computed from the friction map. To define
the connectedness between adjacent pixels, we used Rooks’ dis-
tance as a neighborhood function, in which a given pixel is
considered to be connected to the four adjacent pixels. Then, the
least-cost paths between origin and destination points were cal-
culated, minimizing the mean values of friction for the pixels
crossed by the path. The new set of values of explanatory variables
extracted along this least-cost path was used to refit the regression
model. This procedure was repeated 20 times, and models fitted at
each iteration were compared with the Akaike information crite-
rion corrected for small sample size (AICc): The smaller, the
better. A large reduction of AICc was observed between the initial
model based on direct lines and the AICc-best model based on
least-cost paths: Δ AICc = 18 (Fig. 3A). Thus, the regression
model based on least-cost paths (seventh iteration) was much
more plausible than the initial one. It also minimized the root
mean squared error (Fig. 3B).
Apart from the time between sampling events and the geo-

graphical distance, all variables retained in the AICc-best model
(coefficients in Table S2) were describing landscape connectivity
(i.e., landscape fragmentation metrics and the presence of a
watershed) (Fig. 2). There was a nonlinear relationship between
the density and area of habitat patches, as expected in a fragmen-
tation process (Fig. S5). Moreover, the interaction term between
these two variables was retained in the final model. The variables
informing on the composition and shape of the fragmented land-
scape and the geographic distance became more important in the
final model, whereas the importance of watersheds and inter-
actions was reduced (Fig. S6).
The use of least-cost distance confirmed the significant impact

of time between sampling dates on the genetic distance (Table
S2) (16). More importantly, it revealed the importance of land-
scape features related to functional connectivity (Table S2). The
iterative, least-cost-based analysis also improved the mapping of
ecological barriers to tsetse dispersal, with a more contrasted
picture of friction (Fig. 3C).

Distribution of G. p. gambiensis in the Study Area and Combination
with Landscape Friction.The habitat suitability for G. p. gambiensis
was estimated using a maximum entropy (MaxEnt) model and
mapped independently from landscape friction. Tsetse habitat
was positively associated to vegetation activity [i.e., normalized
difference vegetation index (NDVI)], average precipitations, and
humidity. Conversely, high values for temperature-related variables

Fig. 1. Shape and amplitude of the relationships between genetic distance,
great-circle distance and environmental variables. CSE was calculated be-
tween pairs of G. p. gambiensis populations (37 sampling sites listed in Table
S1) and environmental variables are here extracted along the straight paths.
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[land surface temperature (LST) and air temperature] led to a
low suitability index. Fig. 4 presents the respective contributions
and response curves for the different variables, the most important
being maximum LST and average precipitation. The predictive
power of the MaxEnt model was high, with an area under the
curve of 0.84 (Fig. 4). Moreover, the precision of MaxEnt pre-
dictions was the highest in the areas of interest (northern limit of
the tsetse belt), which was also the most intensively sampled area
(Fig. S7). Finally, we used a density-based clustering algorithm
applied to the MaxEnt output to identify eight clusters of suitable
habitat located at least 10 km apart from the main tsetse habitat.

Model Predictions and Consequences for Tsetse Control. Fig. 5 pre-
sents the eight potentially isolated clusters of tsetse habitat lo-
cated at the northern distribution limit of the G. p. gambiensis
belt in West Africa. The population with the highest predicted
genetic distance from the main tsetse belt (P = 0.003) was close
to Thiès (Senegal). It is also the target of an ongoing eradication
campaign. For this population, genetic isolation was confirmed
by independent morphometric and genetic studies (9). Two other
clusters (6 and 8) with similar genetic distances from the tsetse
belt seemed to be isolated (P = 0.001) and therefore represent
interesting potential targets for elimination efforts. Finally, two
other clusters could be isolated (2 and 7, P < 0.05). Interestingly,
the situation in cluster 2 (Bijagos Islands in Guinea Bissau) is
reminiscent of the Loos Islands in Guinea (not visible in Fig. 5).
The tsetse populations in the Loos Islands were recently targeted
by an elimination program following the demonstration of their
isolation (8).
The present study provides information on potential targets

for tsetse elimination across a vast area. However, should one of
these populations be selected for an elimination program, more
comprehensive local studies would be needed, both to characterize
the exact extent and connectivity of the infested area and to confirm
its genetic isolation. These studies should include systematic sam-
pling of suitable habitats (18) and an independent genetic analysis
involving the target population and those closest to it (9).

Future Prospects. Microsatellite genetic markers are available for
the most important tsetse species: Glossina fuscipes, Glossina
morsitans, Glossina pallidipes, and Glossina tachinoides. Further-
more, the recent sequencing of the full genome of G. morsitans
offers new prospects for either additional microsatellite markers or
other markers such as single-nucleotide polymorphisms (19). Ap-
plying the methodology described in this study to other tsetse
species and regions would provide decision makers with crucial
information on where control or eradication programs might be

more appropriate. Friction maps might also help in those situa-
tions where the populations targeted for eradication are not isolated
(e.g., the Mouhoun River in Burkina Faso and northwestern
Ghana). In fact, artificial barriers to reinvasion such as traps im-
pregnated with insecticides (6) would be more effective if deployed

Fig. 2. Landscape fragmentation and river basins. Landscape fragmentation of G. p. gambiensis habitat based on a tree cover threshold of 20% (year 2000)
(44) and related linear fragmentation indices. (A) Patch area. (B) Patch density. (C) Maximum distance of unsuitable area (or maximum distance between
patches). (D) Locations of the tsetse sampling sites grouped by river basin (45).

Fig. 3. Least-cost distance vs. straight distance. (A) Observed changes in
Akaike information criterion with small-sample size correction (AICc) and
(B) rmse when replacing straight distance with least-cost distance computed
from the friction raster, and iterating the process (x axis). (C) Changes in
landscape genetic friction (colored map) and in least-cost distance (blue line)
between two tsetse populations over the first seven iterations.

Bouyer et al. PNAS | November 24, 2015 | vol. 112 | no. 47 | 14577

A
PP

LI
ED

BI
O
LO

G
IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516778112/-/DCSupplemental/pnas.201516778SI.pdf?targetid=nameddest=SF7


in high-friction areas. The use of such artificial barriers might
therefore enable sequential eradication programs, by dividing
the target populations into partially isolated subunits (20). Fur-
thermore, in those areas exposed to strong reinvasion pressure,
landscape friction analysis could guide the adoption of alternative
strategies (e.g., reduction of tsetse densities below the threshold
of disease transmission), thus preventing major economic losses
due to unsuccessful eradication attempts.
Finally, identifying natural barriers to dispersal and quantifying

their environmental determinants might help to manage other
pests, or conversely it could be used to improve the conservation
of endangered species occurring as metapopulations (21). In-
deed, locating genetic corridors across high-friction landscapes is
becoming crucial for the conservation of natural populations in a
context of increasing fragmentation of ecosystems (12).

Methods
Genetic Analysis. We inferred tsetse dispersal using the CSE calculated be-
tween 37 populations of G. p. gambiensis from West Africa. Samples were
collected along the northern limit of the distribution, where tsetse habitat is
most fragmented (22) (Table S3). Most populations (24 out of 37) were
specifically sampled for this study using biconical traps (1–11 traps by site).
Traps were set at ∼100-m intervals for a maximum period of 1 wk and with a
maximum distance of 1 km between first and last traps (10). We also in-
cluded in the analysis 13 previously sampled populations (9, 10). The geo-
graphical coordinates and data collection dates are presented in Table S3.
Each population was sampled once.

In total, 1,158 flies were genotyped at seven loci following a previously
described protocol (16). All genotyping was handled or supervised by the
same person (S.R.), thus ensuring optimal calibration of allele sizes across

subsamples. Males were coded as homozygous at X-linked loci. Overall, 61%
of the flies were females, which are more informative given that four out of
the seven loci are X-linked. Details on the genotyping procedure and the loci
selected are presented in Details on the Genetic Analysis, together with tests
of linkage disequilibrium and departure from Hardy–Weinberg (HW) equilibrium.

Three different genetic distances were initially explored: Wright’s fixation
index FST (23), CSE (24), and Bowcock et al.’s shared allelic distance (25). After
an exploratory data analysis, CSE was selected, because it behaves better in
case of missing data and is more appropriate for measuring relative distances
between pairs of populations (26–28). We detail how CSE was calculated in
Details on the Genetic Analysis.

Environmental Datasets for the Analysis of Genetic Distance. First, we explored
the relationship between CSE and expert-based land-cover permeability
scores (Table S1 and Fig. S1). Because of the failure of the latter to predict
observed genetic distances, a range of spatially explicit environmental
datasets selected based on the ecology of G. p. gambiensis were explored as
explanatory variables. We considered climate (temperature and rainfall),
land cover, human and cattle population, and topography (average slope
and elevation change) (Figs. S2 and S3 and Environmental Variables and
Relationship with the Genetic Distance). We also considered hydrological
features (river basins) and habitat fragmentation metrics derived from
Moderate Resolution Imaging Spectroradiometer (MODIS) tree cover (i.e.,
the area and density of patches of suitable habitat and the maximum dis-
tance between patches of suitable habitat) (Fig. 2, Fig. S4, and Environ-
mental Variables and Relationship with the Genetic Distance). Considering
the collection dates of the entomological data (2007–2010), and given the
studied genetic markers, we focused on environmental datasets collected
after 2000. For all gridded environmental datasets, average values were
calculated along each line connecting tsetse sampling sites pairwise. Principal

Fig. 4. Distribution of G. p. gambiensis in West Africa. (A) Mean habitat
suitability index predicted by a MaxEnt model. The index varies between
0 (less suitable, red scale) and 1 (highly suitable, green scale). (B) Contribu-
tion of variables to the suitability index by decreasing importance (95%
confidence interval in red and individual values in blue). lst_max, maximum
land surface temperature (MODIS); lst_min, minimum land surface tempera-
ture (MODIS); mir_max, maximum mid-infrared reflectance (MODIS); mir_min,
minimum mid-infrared reflectance; ndvi_max, maximum normalized differ-
ence vegetation index (MODIS); ndvi_min, minimum normalized difference
vegetation index (MODIS); prec_mean, mean yearly rainfalls (WorldClim grid);
t_mean, mean annual temperature (WorldClim grid). (C and D) Response
curves of the most contributing variables (lst_max and prec_mean, respectively).
(E) Area under the curve for the average MaxEnt model (in red) and the 45
submodels (in blue) (see Details on the MaxEnt Model for details).

Fig. 5. Isolated patches of suitable habitat for G. p. gambiensis. (A) Land-
scape friction is the colored background, and habitat patches are delimited
with blue contours. (B) The main tsetse belt predicted by MaxEnt for a
sensitivity of 0.90 is in gray and habitat patches are shown as filled, red
shapes. Contours and shapes of isolated patches were defined as 5-km radius
buffers around pixels of habitat patches. The genetic distance of these
patches to the main tsetse belt (reddish scale) was predicted by the AICc-best
regression model along least-cost paths. Asterisks after cluster numbers
represent the P values for the friction between the patches and the general
habitat: (***) P = 10−3, (**) 10−3 ≤ P < 10−2, (*) 10−2 ≤ P < 5 10−2.
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components analysis was used to identify the most correlated variables.
When strong correlations were found (jrj > 0.8), one of the variables was
discarded, and the one with the most straightforward or acknowledged
effect on the genetic distance was retained (Environmental Variables and
Relationship with the Genetic Distance). To assess the shape and strength of
the relationship between genetic distance and predictors, scatterplots were
drawn with superimposed linear and loess-smoothed fits (Fig. 1 and Fig. S4).
To account for the nonlinear fragmentation process (Fig. S5), the patch
density was discretized into three categories (low, medium, and high). Ad-
ditional data on this exploration phase and on how the data were prepared
for the model are presented in Environmental Variables and Relationship
with the Genetic Distance.

Linear Regression Model of the Genetic Distance. The goal was to find the best
environmental predictors of the genetic distance between pairs of tsetse fly
populations. We used a linear regression model fitted with generalized least
squares (GLS) (29), having the genetic distance (CSE) as the response, and the
selected environmental variables as the predictors. The time elapsed be-
tween population sampling was forced into the models to control for pos-
sible genetic drift. To account for possible autocorrelation, we clustered
tsetse populations according to the geographic distance. Hierarchical as-
cending clustering (Ward method) was used to form partitions of various
sizes (from 1 to 19 clusters) based on the Euclidian distance between pairs of
populations. Cluster membership was then used to define the grouping
structure in the GLS model (30). We selected the eight-cluster partition for
which AICc was the lowest with the full GLS model (with all fixed effects)
(31). Preliminary analyses revealed that model residuals increased with the
fitted genetic distance. To account for this heteroscedasticity, we modeled
residuals variance with a power function of the fitted values. Model good-
ness of fit was assessed using various indicators, including the proportion of
variance explained by the fixed effects, quantile–quantile plots of residuals,
and the detection of influential observations for GLS coefficients.

Finally, we selected the AICc-best model among all possible submodels in
which were forced the Euclidian distance between tsetse populations and the
time elapsed between population sampling. Regarding model validation,
model selection with Akaike information criteria is formally equivalent to
model cross-validation (32). We checked our results with the asymptotically
equivalent leave-one-cluster-out cross-validation (CLCV). To do so, we fitted
the model to the data with all of the cluster-based groups of distances but
one, and predicted the genetic distance with this model for the populations
belonging to the left-out group. Prediction errors were then summed for
this group, and the process was iterated for all groups. The averaged pre-
diction error was then used as the CLCV indicator to compare the 10 AICc-
best models. The first four models were very close in terms of AICc and CLCV,
and more generally there was a good agreement between AICc and CLCV
(Spearman’s rank correlation of 0.65, P = 0.02).

To build the friction maps, the AICc-best model was used to predict the
genetic distance at each pixel location for the different predictors, setting at
0 both the time elapsed between population sampling and the geographical
distance.

Building the Least-Cost Paths. The first iteration of the least-cost paths was
based on the initial friction map, as built using the direct paths. Least-cost
distances between origin and destination points were calculated using the
functions available in the raster and gdistance packages for R (33, 34). Then,
averages for all environmental variables were recalculated along the least-
cost paths, and Euclidian distances were replaced by the least-cost distances.
We subsequently refitted the full model and we selected the AICc-best
submodel. The latter was then used to predict the friction across the study
region. Finally, we recomputed the least-cost distances based on the updated
friction map and iterated this process until the AICc of the best model was
stabilized (Fig. 3A). Fig. 3C presents the initial friction and its changes for
the first seven iterations. Table S2 and Fig. S6 present the coefficients of the
AICc-best model used to build the final friction map and to predict the
genetic distance between the potentially isolated tsetse populations asso-
ciated with the eight habitat clusters (Fig. 5). The dataset including all en-
vironmental parameters and the genetic distances between pairs of populations
is available as Dataset S1.

Tsetse Distribution Model. The entomological data used for the regional
distribution model of G. p. gambiensis originated from recent baseline surveys
for tsetse eradication projects in West Africa: 2007–2008 in Senegal (18), 2008–
2009 in Ghana, and 2007–2012 in Burkina Faso (35). Unbaited biconical traps
were used in all surveys (36). For the present analysis, only presence/absence

data were used. Absence data were filtered by the duration of trapping
(≥3 d), and absence data within 5 km from a presence data were discarded.
Presence and absence data were also filtered to keep only one presence or
absence point within a radius of 5 km. From the initial 2,853 presence and
6,088 absence records, 450 and 516 data points, respectively, were finally
retained.

Regarding environmental data used to predict habitat suitability, time
series of high-spatial-resolution remote sensing data (1 km) were down-
loaded, cleaned, and summarized to build relevant environmental and cli-
matic covariates. We combined 11 y of MODIS vegetation and thermal
products (January 2003–December 2013). Eight-day composite daytime (DLST)
and nighttime land surface temperature (NLST) were extracted from
MOD11A2/MYD11A2 temperature and emissivity MODIS products. DLST and
NLST were used as proxies for both soil and air temperature, which play an
important role in shaping tsetse habitat. Low-quality pixels were removed
from the raw data using the quality assessment layer and outliers were fil-
tered using a variant of the boxplot algorithm (37). Vegetation indices at
1 km of spatial resolution and with temporal resolution of 16 d (MOD13A2/
MYD13A2) were also downloaded and processed using the quality assess-
ment layer. In particular, the NDVI and middle infrared (MIR) reflectance
were selected to describe the vegetation and soil condition in the study area.
Temperature and precipitation from WorldClim were also used (38).

A MaxEnt model was used to estimate a habitat suitability index for
G. p. gambiensis in the study area (39). The logistic output from this method
is a suitability index that ranges between 0 (less suitable habitat) and 1 (highly
suitable habitat). The threshold for presence was set to allow a 90% sensitivity
(40). Details on the parameterization of MaxEnt and the selection of pseu-
doabsences are available in Details on the MaxEnt Model.

Identification of Isolated Patches. To identify the connected patches from the
MaxEnt output, we used the function ConnCompLabel in the SDMTools
package (41). Then, we used a clustering algorithm to detect clusters of
pixels based on their geographical proximity. To this end, we used the
function dbscan from the eponymous R package (42). We withdrew isolated
pixels as well as those belonging to small clusters (fewer than 20 pixels).
Then, we computed the minimum distance between the (centroids of)
cluster pixels and those from the general population. We discarded clusters
located at less than 10 km from the main tsetse belt because they were
unlikely to be genetically isolated from it, and these pixels were thereafter
considered as part of the main tsetse belt. Then, we grouped together
clusters that were geographically close to each other using a hierarchical
ascending classification procedure, with the so-called simple (neighbor-
joining) algorithm. At the end of this step, nine clusters were left. One of
them was discarded because it was cut by the eastern limit of the analysis
window. Finally, we computed the predicted least-cost distance between the
clusters and the main tsetse belt using the AICc-best model and the friction
raster formerly estimated (Fig. 5 and Table S2). In this sample of eight
habitat patches, the correlation of geographic and genetic distances was not
significant (Spearman’s rank correlation of 0.43, P = 0.30). To test the sig-
nificance of the isolation of these clusters, a statistical test was built whereby
for each cluster the genetic distance to the main tsetse belt was compared
with those between 999 pairs of points randomly generated within the main
belt, with the same geographical distance between them as between the
patch and the general population (minimum P = 0.001). All genetic distances
between pairs of points were computed with the procedure previously de-
scribed, using the AICc-best model and the friction raster formerly esti-
mated. All analyses were conducted using R software (43).
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