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Pathological changes in excitability of cortical tissue commonly un-
derlie the initiation and spread of seizure activity in patients suffering
from epilepsy. Accordingly, monitoring excitability and controlling its
degree using antiepileptic drugs (AEDs) is of prime importance for
clinical care and treatment. To date, adequate measures of excitability
and action of AEDs have been difficult to identify. Recent insights
into ongoing cortical activity have identified global levels of phase
synchronization as measures that characterize normal levels of
excitability and quantify any deviation therefrom. Here, we explore
the usefulness of these intrinsic measures to quantify cortical excit-
ability in humans. First, we observe a correlation of such markers with
stimulation-evoked responses suggesting them to be viable excitability
measures based on ongoing activity. Second, we report a significant
covariation with the level of AED load and a wake-dependent
modulation. Our results indicate that excitability in epileptic networks
is effectively reduced by AEDs and suggest the proposed markers as
useful candidates to quantify excitability in routine clinical conditions
overcoming the limitations of electrical or magnetic stimulation.
The wake-dependent time course of these metrics suggests a
homeostatic role of sleep, to rebalance cortical excitability.
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Normal functioning of cortical networks critically depends on
a finely tuned level of excitability, the transient or steady-state

response in which the brain reacts to a stimulus. Whereas small, local
responses indicate a comparably small excitability, large and global
responses consequently suggest excitability to be high. The impor-
tance of adequate excitability levels is highlighted by the pathological
consequences and impaired performance resulting from aberrant
network excitability. In epilepsy, changes in cortical network excit-
ability are believed to be an important cause underlying the initiation
and spread of seizures, that is, the large nonphysiological neuronal
activity events across time and space (1–3). Evidence for changes of
excitability in brain networks affected in epilepsy has come from a
variety of observations. To assess the level of excitability under
in vivo experimental conditions one usually measures the size of the
evoked cortical activity to external perturbations, typically either by
transcranial magnetic stimulation (TMS) or, in the case of epilepsy
patients, by electrical stimulation. Studies of electrical stimulation
with subdural electrodes during interictal periods found the evoked
potentials to be larger in regions related to the cortical onset region
of epileptiform activity (4–6). The enhanced responses to electrical
stimulation in epileptogenic cortex were taken as indication of an
increased excitability of neural tissue in these areas. Similarly, studies
using TMS consistently reported a hyperexcitability in focal epilep-
sies (7–10). Consequently, changes in excitability have been helpful
in identifying the seizure focus before resective surgery. The insight
that epilepsy is related to hyperexcitability is also at the basis of
pharmacological treatment options for patients. Most antiepileptic

drugs (AEDs) aim to reduce the excitability in neural tissue by re-
ducing the excitability of individual neurons through selective ion
channel blockers, enhancing inhibitory synaptic transmission or
inhibiting excitatory synaptic transmission (11). Robust markers of
excitability could therefore potentially be useful to guide the
treatment with AEDs by giving feedback of their effect and effi-
ciency on epileptic networks.
Apart from aberrant pathological deviations, changes in cortical

excitability are believed to play a role in normal conditions during
the course of wake and sleep. A perturbational approach to study
excitability in human cortex found increased responses after a
period of sustained wakefulness that were rebalanced after sleep
(12, 13). Such findings suggest that excitability could increase
during wake, which might result in suboptimal information pro-
cessing in cortical networks (14, 15) and point to a pivotal role of
sleep in rebalancing the level of excitability. However, a continuous
measurement of excitability during the wake/sleep cycle supporting
this hypothesis is hard to obtain with current measures.
A thorough understanding of excitability and how to monitor

it in brain networks is therefore highly desirable for an un-
derstanding of both normal as well as pathological brain function.
Cortical excitability is generally a product of both excitation and
inhibition in a network. Changes in excitability can consequently
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arise from changes in excitation and/or changes in inhibition. To
date, most approaches to quantify excitability have focused on
perturbational approaches by electrical or magnetic stimulation
where evoked responses to a brief electrical or magnetic stimula-
tion are plotted over time (5, 6, 16, 17). A disadvantage of these
methods, however, is their complex design, which limits regular
clinical use and continued monitoring of the time course over ex-
tended periods of time. Even more so, the fact that such pertur-
bations can induce seizures constitutes a considerable limitation for
its application in patients suffering from epilepsy (18). For these
various reasons, intrinsic excitability measures (IEMs) based on
ongoing activity without the need of external perturbations would
be preferable and likely to provide novel insights because of a
broader applicability due to their noninvasive nature.
Recent insights into cortical activity from computational model-

ing (19, 20), experiments in cultures in vitro (21), rodents (22, 23),
and also human magnetoencephalography and EEG (14, 24)
have pointed to the ability of global synchronization measures to
characterize physiological cortical dynamics. It was shown that
phase synchronization of ongoing cortical activity exhibits mod-
erate mean over a broad range of frequency bands under normal
conditions. The ability to pharmacologically control the excita-
tion/inhibition (E/I) axis in cortical in vitro preparations and
rodents in vivo revealed the E/I level to be a crucial parameter
affecting cortex activity to which synchronization markers are
sensitive. Specifically, the E/I balance or ratio can be modulated
toward a more inhibited system by selectively blocking excitatory
glutamatergic synaptic transmission. Conversely, inhibition can
be reduced by pharmacological application of inhibitory gabaergic
synaptic transmission blockers, leading to an overall disinhibited
state. Experimental approaches in which the E/I axis was altered in
this way have shown that networks, which transition from inhibited
to normal to disinhibited states by pharmacological manipulation,
exhibit spontaneous dynamics characterized by a progressive in-
crease in phase synchronization and a peak in its variability at
normal, unchanged E/I levels. These synchronization changes have
been shown to occur between cell assemblies measured by micro-
electrode arrays and can be observed over a broad frequency range
(21). The distinct changes from cell assemblies in vitro and in ro-
dents suggest global synchronization measures to be potentially
valuable IEMs in human cortical networks.
Here, we explore the use of IEMs as a method to monitor ex-

citability in clinical settings. To this end we first compare intrinsic
measures to more direct measures of excitability using a pertur-
bational approach. Second, we analyze large-scale invasive EEG
(iEEG) datasets obtained during presurgical monitoring of epi-
lepsy patients as well as scalp EEG data of healthy participants
during sustained wakefulness. During the multiday, continuous
iEEG recordings, AEDs were typically tapered off to increase the
likelihood for epileptic seizures and identify their onset zones (25).
These datasets are therefore ideally suited to study electrophysi-
ological markers of excitability in clinical settings under changing
levels of E/I balance due to variations in AED dosage.

Results
In light of the characteristic changes observed in cortical cultures
in vitro and rodents in vivo, we focused on the mean of phase
synchronization dynamics as a potential IEM in cortex in hu-
mans. Specifically, we hypothesized that the mean levels of phase
synchronization should positively correlate with cortical excit-
ability. To evaluate whether such a direct correlation exists we
probed cortical excitability in human electrocorticogram (ECoG)
by electrical stimulation. Previous work has shown that the am-
plitude of evoked cortical potentials by short pulses of electrical
stimulation is a direct measure of cortical excitability: Whereas
small amplitudes indicate a comparably small excitability, large
responses suggest excitability to be high (5, 6, 26). We designed
a stimulation protocol that allowed us to measure electrical

stimulation-evoked responses as a direct marker of excitability, as
well as phase synchronization of ongoing activity as a potential IEM
over long periods of time within individual patients. Fig. 1A shows a
typical evoked response in one channel. The amplitude A of evoked
potentials, measured from highest peak to lowest trough, exhibited
considerable variation (Fig. 1B), indicating varying levels of excit-
ability over the course of hours. Unperturbed time segments before
each stimulus (Fig. 1A, gray bar) were used to calculate phase syn-
chronization in different frequency bands. We observed that mean
synchronization levels R followed a very similar time course (Fig. 1B)
that was reflected in high correlation values between amplitude A
and synchronization R (Fig. 1C). This significant correlation was
observed across a broad range of frequencies from 50 to 400 Hz and
in n = 2 patients under investigation (Fig. 1D). Throughout the
paper, we will focus on IEM in this frequency range (i.e., the bands
50–100 Hz, 100–200 Hz, and 200–400 Hz). Conversely, absolute
power averaged over all channels in these frequency bands did not
exhibit a positive correlation with stimulation-evoked responses
(Fig. S1 A and C). These results provide an indication that mean
levels of phase synchronization are related to cortical excitability
in humans and consequently suggest them as valid indicators of
excitability based on ongoing cortical activity.
Next, we analyzed invasive EEG from 10 patients undergoing

presurgical monitoring during which antiepileptic medication
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Fig. 1. Intrinsic measures of synchronization correlate with the size of
stimulation-evoked responses. (A) Evoked responses to subdural electrical
stimulation were used to directly infer cortical excitability. The plot shows a
representative example of the mean evoked response from one electrode of
patient 1. Excitability is reflected by the size of the evoked potential and
was quantified as the absolute difference A between positive and negative
maxima of the evoked response. Electrical stimulation was continuously
applied (approx. 0.3 Hz) for multiple hours, allowing continuous measure-
ment of cortical excitability. Unperturbed segments before the stimulation
(gray bar) were used to calculate synchronization R across different elec-
trodes. (B) Time course of stimulation-evoked response A and synchroniza-
tion R of ongoing cortical activity over multiple hours in patient 1. Each black
dot corresponds to a stimulation block (i.e., 10 min). (C) Evoked response
amplitude A and synchronization R are highly correlated across broad fre-
quency bands. Black line shows linear regression, R2 reflects the goodness of
fit. (D) Summary results of linear regression analysis (R2 values, **P ≤ 0.001)
for different frequency ranges of patient 1 and patient 2.
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had been varied. No stimulation was performed in these patients.
The type of AEDs used during this time, their dosages, and the
time course by which they were tapered off were solely de-
termined by clinical considerations and varied between patients.
We were interested whether synchronization measures would,
analogously to in vitro analyses under pharmacological manip-
ulation, exhibit an AED-dependent trajectory that would be
consistent with the hypothesis of a change in E/I balance. We
thereby focused particularly on mean levels of synchronization R
in the frequency range of 50–100 Hz because stimulation analysis
had revealed a good correlation with evoked responses in this
frequency band and because this frequency range could also be
resolved in datasets recorded with lower sampling rates. In the
following we will therefore use R50−100Hz as the primary IEM,
although results were generally robust over a broader range of
frequencies (Fig. S2 and see Fig. 3). Mean synchronization R
exhibited considerable variability during the multiday recordings
in each patient. Fig. 2A shows time courses for four represen-
tative patients. Typically, R was low during days with high AED
load and increased when AEDs were reduced. The time course
of R thereby closely followed an inverse relation with AED load.
Because especially the highest R values showed a strong de-
pendence on AED, we averaged over each day’s highest 12 h to
determine a daily mean (Fig. 2A, solid bars). Absolute signal
power in these frequency bands did not, similar to stimulation

results, correlate as well with AED load (Fig. S1 B and D). To
quantify the visually observed dependence of R on AED dosage
(Fig. 2A), we compared R values from one day of highest AED
load (high AED) to the day with the lowest dose of AED (low
AED) in each patient. The day with high AED load was usually
the first full day of recording. When there was more than 1 d with
the same amount of low or no AED, we chose the one furthest
away from the high-AED day. Statistical analysis revealed a
significant increase in R from high to low levels of AED for the
majority of patients (Fig. 2B, two-sided paired sample t test).
As a test whether the observed changes in R were only driven by

a subset of channels we repeated the synchronization analysis for
channels in the seizure onset zone only as well as for the channels
outside the seizure onset zone. As channels that were part of the
seizure onset zone we considered those that had been defined by an
experienced epileptologist as channels from which at least one
seizure had originated. The remaining channels were consequently
defined as those outside of the seizure onset zone. Fig. S3 shows
results from two representative patients; the AED-dependent
changes in R are similarly observed in networks encompassing all
channels, only channels of the seizure onset zone, and only channels
outside the seizure onset zone. Our results are therefore consistent
with the hypothesis that AEDs reduce the E/I balance and decrease
excitability in widespread cortical networks.
To gain better insight into the function of AEDs on network

dynamics, we separated days on which no AED had been given
from days where AED had been applied. We observed that
cortical network activity without AED typically settled at R levels
in the vicinity of R ’ 0.5 (Fig. 3A, black bars in histogram).
Previous in vitro studies had suggested that normal cortical dy-
namics under a physiological E/I balance is, besides moderate
levels of the mean, characterized by a maximum in variability of
synchronization (21). In our case, we observed that peak vari-
ability H was found at R ’ 0.5 (Fig. 3A, gray circles). For a
measure like R bounded between [0,1] a peak variability occur-
ring near R ’ 0.5 is not surprising because any fluctuations will
be increasingly cut off the closer the mean gets to either of the
boundaries, resulting in decreases of variability there. During
times when AEDs had been administered, we observed that
markedly more time was spent at lower R values, as is evident by
the left shift visible in the histogram (Fig. 3A, blue bars in his-
togram). Comparison between “no AED” and “AED” hours
revealed a significant decrease from R ’ 0.5 to lower values
across a broad range of frequencies along with a drop in vari-
ability H (Fig. 3B, two-sided independent sample t test). Fig. 3C
schematically summarizes the qualitative behavior of IEMs as a
function of the ratio of excitation and inhibition (E/I) or, more
generally, network excitability as observed in our data. As ex-
citability is pharmacologically increased from disfacilitated to
disinhibited dynamics, R increases. In our data we observed an
increase of R when AED load was reduced. This is in line with
observations in cortex cultures and provides strong indication for
an increase in excitability in cortical networks when AEDs are
tapered off. These analogies suggest that excitability is effectively
reduced by AEDs (Fig. 3C, blue arrow) and, together with the
correlation to stimulation-evoked responses reported above,
provide further support for R as a measure of cortical excit-
ability. An advantage of excitability measures based on ongoing
activity such as R is their ability to be used for continuous
monitoring over extended periods of time. In the following we
will further explore how this continual measurement can uncover
insights into the modulation of excitability.
Apart from the dependency on AED load, we observed that R

exhibited considerable variability within a day (Fig. 2A, gray
markers). To further investigate these modulations we averaged
the daily time course of all 10 subjects and over all 70 d. Values
of R showed a characteristic modulation over the course of a
day: an increase and high levels from morning to evening hours
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Fig. 2. Intrinsic measures of synchronization track AED action during mul-
tiday recordings. (A, 1–4) Markers and level of medication of four patients.
(Top) AED dosage. (Bottom) Changes in mean phase synchronization (R) for
the frequency band 50–100 Hz. Dots correspond to 1-h measurements (red
dots signify that at least one epileptic seizure occurred during this 1 h; gray
dots signify no seizures). Daily averages were taken over the 12 highest
hours of each day and are plotted as bars. Light colors were used when
recordings did not encompass a full 24-h day. Error bars on each solid bar
indicate SEM. Time on the x axis is labled in days, where each day starts at
midnight. (B) Differences between full days of low and high AED levels for
all 10 patients. *P ≤ 0.05, **P ≤ 0.001, two-sided paired sample t test. For
complete time courses of the other high-frequency bands, see Fig. S2.
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followed by a decrease and low levels during the night (Fig. 4A
and Fig. S4). The increase from morning hours (hours 5–7) to
evening hours (hours 17–19) was significant over a broad fre-
quency range (Fig. 4B, two-sided paired sample t test) and could
suggest distinct changes in cortical excitability over the 24-h time
course. Because, on average, patients were more likely to be
awake during daytime hours and more likely to sleep during
nighttime hours, we hypothesized that this modulation of R
could be related to changing levels of vigilance and be a function
of time awake. Although the average sleep pattern of patients
provides some indication for such a vigilance-dependent modu-
lation, further proof is needed because a rigorous control of
vigilance across time for all patients was not feasible in a clinical
setting. To further investigate the relationship between R and
vigilance we therefore extended our analysis to a dataset of eight
healthy subjects where vigilance had been rigorously monitored
and controlled. There, scalp EEG had been recorded every 3 h
over a period of 40 h of sustained wakefulness (14, 27). During
this period of wakefulness we observed an increase of R that was
significantly correlated to the time awake (Fig. 4 C and D and
Fig. S4). In light of the ability of R to closely track excitability in
electrical stimulation and AED conditions, the results from in-
vasive and noninvasive scalp EEG recordings are in line with the
hypothesis of an increasing excitability as a function of time awake.

Discussion
In the present work we propose IEMs, that is, measures that
quantify cortical network excitability based on intrinsic ongoing

activity. The use of such IEMs is motivated by theoretical con-
siderations suggesting cortical networks reside near a synchro-
nization transition (19, 20) along with experimental studies
illustrating their sensitivity to changes in the E/I axis in cortical
in vitro preparations and rodents (21–23,). Our main finding is
that these measures correlate well with AED load in patients,
which suggests that they are viable markers of cortical excitability
in humans. This is further supported by their correlation with
stimulation-evoked responses—the current gold standard for
excitability measurements—in human subdural recordings. We
uncover a characteristic modulation over 24 h in line with the
hypothesis of a progressively increasing excitability during wake-
fulness that is rebalanced during sleep.
To date, reliable measures of cortical excitability based on on-

going activity have been difficult to obtain. In particular, classic
EEG markers found in epilepsy such as interictal spikes have been
shown not to reflect seizure propensity and thus excitability (28).
Instead, excitability is usually measured as the response to electrical
or magnetic stimulation. Such perturbational approaches allow
measurements to be well-controlled in space and time. However,
the invasiveness and relative technical complexity in setup and
analysis limit the practicability and its applicability for long-term
and continuous monitoring. Furthermore, individual responses to
perturbations will naturally exhibit a high variability due to the
dependence of the induced activity on initial conditions (29), which
requires a high number of trials to converge to a robust measure.
With respect to a potentially broad applicability in epilepsy pa-
tients perturbational approaches by electric pulses or TMS can be
problematic due to their ability to induce seizures. IEMs as pro-
posed in the present study naturally circumvent these problems.
One of the advantages of IEMs is their ability to passively

monitor excitability over long continuous time periods; in contrast,
perturbational approaches classically considered to measure ex-
citability are limited in this regard. Consequently, the investigation
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low synchrony. (A) Combined data from 10 patients and different frequency
bands. Left vertical axis: Variability (H) as a function of mean synchronization
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of changes in human cortical excitability during the sleep–wake
cycle has so far been limited to only a few measurements based on
TMS responses (13). There, increased responses as a function of
time awake were found and taken as indication of an increasing
cortical excitability. A TMS study on epilepsy patients, too, sug-
gested increased excitability during sleep deprivation (12). Simi-
larly, a recent study using an implantable brain stimulation and
sensing system in canines reported characteristic changes in excit-
ability following a circadian profile and a dependency on AEDs
(30). The continuous iEEG measurement of IEMs over combined
70 d of 10 subjects and in sleep deprivation data reported here
revealed changes in R including elevated levels in daytime hours
and an increase during wake which are in line with these studies
indicating an increase in excitability as a function of time awake.
The combined analysis from all 70 nights investigated here also ro-
bustly showed a decrease of R during nighttime even though one of
the two stimulation patients (patient 1) temporarily exhibited high
values of synchronization R and evoked potential amplitude A
during the night. A potential explanation for the increased stimu-
lation responses could be the intrinsic tendency of cortical neurons
to fall into a down state after a transient activation during non-rapid
eye movement sleep, as recently discussed in ref. 31. The overall
steady levels of cortical stimulation markers in the long term ob-
served here as well as in ref. 32 do not suggest stimulation itself to be
the cause for an increasing excitability, in our opinion. With more
datasets including both ongoing and stimulation activity becoming
available it will be important to further explore the relation between
A and R beyond the two patient datasets presented in this study.
The observed dependence of IEMs on time awake and sleep

could indicate a close relation to the homeostatic function of
sleep (33). A current hypothesis states that synaptic homeostasis
is underlying sleep homeostasis: Net synaptic strength increases
during waking due to plastic processes leading to a larger ex-
citability and decreases by means of synaptic downscaling during
sleep (34, 35). Observations of changes in synaptic strength in
Drosophila (36) support the hypothesis by providing evidence of
structural changes occurring during waking and their reorgani-
zation during sleep. Such changes could underlie an increase in
excitability during time awake and would be in line with the in-
terpretation of R as a measure of it. Besides a growth in net
synaptic strength other mechanisms are also conceivable to
govern an increase in network excitability. For example, a rela-
tive reduction of inhibition during time awake would similarly
lead to an increase in the E/I balance. On a neuronal network
level such structural wake-dependent alterations have been dis-
cussed to drive networks to states suboptimal for information
processing (14). Despite the possibility that increasing synchrony
R indicates an increase in excitability during wake, it is also
conceivable that mechanisms other than increasing excitability
are underlying the observed changes in R. For example, one
could speculate that the elevated likelihood of neurons to go
“offline” together, as observed in sleep-deprived rats (37), could
manifest itself in increased synchronization levels measured from
larger-scale data such as EEG.
Although perturbational approaches to measure excitability by

electrical or transcranial magnetic stimulation have proven to be
a valuable research tool, they are currently unsuitable for regular
clinical monitoring. It has been shown that long-term continuous
monitoring can reveal important insights into seizure dynamics
and its predictions (38). For these kinds of clinical settings pas-
sive measures of excitability by IEMs are preferable. Quantita-
tive markers of excitability can potentially guide more objective
and individualized treatment approaches in epilepsy patients.
Although IEMs cannot directly show changes in neuronal ex-
citability, their change as a function of AED load reported here
is consistent with the hypothesis of an effective reduction of
cortical excitability by AEDs and provides a further indirect
validation for IEMs besides their correlation with more direct

measurements of excitability by stimulation. Synchronization R
changed similarly as a function of AED load across all frequency
bands investigated from 50 to 400 Hz. It is possible that these
changes are to some extent correlated with the appearance of
ripples or fast ripples in epilepsy patients. The similar trajecto-
ries observed within and outside the seizure onset zone as well as
across frequencies, however, make a sole dependence of mea-
sure R on fast ripples less likely. A reliable biomarker of excit-
ability stands the chance to monitor the therapeutic effectiveness
of newly given AEDs. The observation of a robust value of
R ’ 0.5 in iEEG characterizing physiological network synchro-
nization levels without AEDs could, if further validated, provide
an absolute reference point with which drug effects on network
dynamics could be compared. In scalp EEG recording analyzed
here, we observed overall higher values of R (Fig. 4), which
might be due to higher volume conduction compared with
ECoG. In such a case, relative changes in R within a subject
could be used to monitor excitability under different conditions
and time. Regarding a potential reference point of R ’ 0.5, one
should also keep in mind the possibility that epilepsy patients
could present a slightly different R value, either a bit higher or
lower than healthy subjects, even when untreated.
The moderate and similar levels of R across patients and fre-

quency bands observed here under normal, no-AED conditions
posits cortical networks to spend most of the time at the transition
from low to high synchronization. Previous theoretical work has
shown that self-organization to such a synchronization transition is
conceivable under realistic assumptions (19, 20) and that, more
generally, being positioned near a transition can support optimal
information processing capabilities (39). With respect to the use of
AEDs, the markers proposed here can potentially provide a com-
plementary tool in adjusting AED dosages to optimal levels for a
successful treatment on one side and controlling adverse drug effects
on the other side. This is particularly important in light of common
side effects of AEDs on cognition such as cognitive slowing, seda-
tion, somnolence, and distractibility (40). Although it may be good
for epilepsy patients to have a lower R value corresponding to a
lower excitability to prevent the likelihood of seizures, the concom-
itant decrease in the variability of synchronization might be disad-
vantageous for optimal brain network functioning. Previous studies
using in vitro preparations have shown that the IEMs similar to the
ones used here are closely related to certain capabilities in in-
formation processing (41–44). IEMs could therefore be potential
candidates to quantify the neural correlates of such cognitive deficits
in humans.

Materials and Methods
Preprocessing of ECoG Data. We analyzed two datasets of ECoG data: (i) data
from n = 2 patients where regularly recurring electrical stimuli had been ap-
plied over at least a day while stimulation responses as well as unperturbed
activity in between stimulations had been recorded and (ii) multiday recordings
of ongoing activity (i.e., without electrical stimulation) from n = 10 patients
under varying levels of AEDs (see Supporting Information for details). Patients
gave informed consent. Ethics approval for dataset (i) was obtained from St.
Vincent’s Human Research Ethics Committee.

EEG Recordings During Prolonged Wakefulness. We analyzed waking EEG
recordings of eight healthy, young, right-handed males (23.0 ± 0.46 y;
mean ± SEM) during 40 h of sustained wakefulness (data from a previous
study; for details see ref. 27). During this time, participants were under con-
stant surveillance. The waking EEG was recorded in 14 sessions at 3-h intervals
starting at 0700 hours. Sessions consisted of a first 5-min eyes-open period,
followed by a 4- to 5-min eyes-closed period, and a second 5-min eyes-open
period. Twenty-seven EEG derivations (extended 10–20 system; n = 27 elec-
trodes; reference electrode 5% rostral to Cz) were sampled with 256 Hz (high-
pass filter at 0.16 Hz; anti-aliasing low-pass filter at 70 Hz). Artifacts including
eye blinks were marked by visual inspection. We analyzed artifact-free seg-
ments of 4-s duration during the eyes-open condition. Each 4-s segment
was filtered in the frequency band of interest (phase neutral filter by applying a
second-order Butterworth filter in both directions) to derive synchrony measures.
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