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Evidence from numerous cancers suggests that increased aggres-
siveness is accompanied by up-regulation of signaling pathways
and acquisition of properties common to stem cells. It is unclear if
different subtypes of late-stage cancer vary in stemness properties
and whether or not these subtypes are transcriptionally similar to
normal tissue stem cells. We report a gene signature specific for
human prostate basal cells that is differentially enriched in various
phenotypes of late-stage metastatic prostate cancer. We FACS-
purified and transcriptionally profiled basal and luminal epithelial
populations from the benign and cancerous regions of primary
human prostates. High-throughput RNA sequencing showed the
basal population to be defined by genes associated with stem cell
signaling programs and invasiveness. Application of a 91-gene basal
signature to gene expression datasets from patients with organ-
confined or hormone-refractory metastatic prostate cancer revealed
that metastatic small cell neuroendocrine carcinoma was molecu-
larly more stem-like than either metastatic adenocarcinoma or
organ-confined adenocarcinoma. Bioinformatic analysis of the basal
cell and two human small cell gene signatures identified a set of E2F
target genes common between prostate small cell neuroendocrine
carcinoma and primary prostate basal cells. Taken together, our
data suggest that aggressive prostate cancer shares a conserved
transcriptional programwith normal adult prostate basal stem cells.
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Up to 90% of patients with metastasis will succumb to the
disease, yet our understanding of metastasis remains limited.

Metastasis is the result of cancer cells disseminating from a primary
lesion and colonizing a secondary site where they reinitiate mac-
roscopic tumor growth (1). To initiate secondary tumor growth,
disseminated cells must acquire attributes that are central to ma-
lignancy such as motility, invasiveness, self-renewal, and resistance
to apoptosis (2, 3). It is unlikely that every disseminated cell will
retain these traits, as some may be more differentiated or reach
replicative exhaustion (1). However, cancer stem cells can possess
these traits and have been identified in a number of different tissues
(4–8). Moreover, signaling networks and transcription factors (TFs)
central to stem cells can remain activated even once a macro-
metastasis has formed (9–12).
Cancer stem cells and normal stem cells often share similar mo-

lecular mechanisms and functional capabilities. In colorectal cancer,
primary tumor cells that give rise to metastases display many of the
same traits seen in normal stem cells including long-term self-
renewal (13). Genes specific for normal intestinal stem cells were
found to be up-regulated in aggressive colorectal cancer and were
predictive of disease relapse (14). Isolation and characterization of
human normal mammary stem cells identified a gene signature ca-
pable of distinguishing breast cancers according to tumor grade.
Moreover, markers for these normal stem cells enabled isolation of
cancer cells that were enriched in tumor-initiating properties upon
xenotransplanation (15). Breast cancer circulating tumor cells

(CTCs) expressing stem cell markers were capable of forming met-
astatic lesions in mice. The number of stem cell marker-expressing
CTCs, but not bulk CTCs, correlated with disease progression and
an overall worse prognosis (16). Stem cell signaling pathways have
also been found in aggressive variants of nonepithelial cancers.
Leukemic and hematopoietic stem cells share a core transcriptional
profile consisting of networks that regulate stemness. Gene signa-
tures specific for each population were able to predict survival of
acute myeloid leukemia (AML) patients, suggesting that acquisition
of stem cell-related genes influences clinical outcome (17).
Similarly to other cancers, it has been suggested that aggressive

prostate cancer acquires properties that are common to stem cells.
An 11-gene BMI-1–associated gene expression signature de-
veloped from common genes between BMI-1+/+ versus BMI-1−/−

neurospheres and a transgenic mouse model of prostate cancer was
enriched in metastatic samples and further associated with poor
prognosis in early-stage, organ-confined prostate cancer (12). Us-
ing curated signatures specific for embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), and the polycomb repres-
sive complex-2 (PRC2), Markert et al. showed that prostate cancer
patients enriched for the ESC signature had a poorer survival
compared with the iPSC-like tumors and PRC2-like tumors (10).
An in-depth genomic and transcriptomic analysis of 150 metastatic,
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castration-resistant prostate cancers (CRPCs) revealed that 18%
of patients had alterations in the developmental Wnt signal-
ing pathway (18). Murine models overexpressing key components
of developmental signaling pathways alone or with other genetic
alterations can drive a phenotype reminiscent of late-stage
prostate cancer (19–22). Although these studies provide evidence
of a relationship between stem-like qualities and an aggressive
phenotype, no studies to our knowledge have shown a molecular
relationship between aggressive prostate cancer and uncultured
stem-like cells from the human prostate.
The vast majority of prostate cancers have a glandular, ade-

nocarcinoma phenotype; however, a subset manifests a phenotype
with neuroendocrine differentiation termed neuroendocrine
prostate cancer (NEPC). These tumors display many of the same
markers found on neuroendocrine cells within the normal prostate
such as positivity for synaptophysin, chromogranin, neuron-spe-
cific enolase, and CD56 (23). De novo, these tumors make up less
than 1% of organ-confined prostate cancers; however, 20–25% of
patients with CRPC exhibit an NEPC phenotype. Many believe
that is an underestimate, as it is not common practice to biopsy
metastases. A morphological variant of NEPC termed small cell
neuroendocrine carcinoma (SCNC) is highly aggressive, has little
to no response to androgen deprivation therapy, metastasizes
readily, and has limited treatment options (24). Due to the relative
difficulty of obtaining human tissue containing NEPC, our mo-
lecular understanding of this disease is limited. A recent important
paper identified NEPC to have alterations in genes regulating cell
cycling, specifically a large number with AURKA and MYCN
amplifications (25). Two morphological variants of NEPC (SCNC
and prostate adenocarcinoma with neuroendocrine differentiation)
were grouped together in this study for bioinformatic analyses. Thus,
it is unclear how NEPC morphological subtypes are molecularly
different and how this compares to CRPC with an adenocarcinoma
phenotype.
We have previously identified a basal cell population within

the mouse and human prostate that has stem cell characteristics
(26, 27). This population can give rise to all three epithelial
populations and act as a tumor-initiating cell when modified to
express oncogenes commonly altered in prostate cancer. In this
study, we sought to molecularly characterize the Trop2+ CD49f
Hi human basal stem cell population and determine if aggressive
cancer reverts back to a stem cell state seen in the human
prostate. We show that the functionally identified Trop2+ CD49f
Hi human basal stem cell population is enriched for stem and
developmental pathways. We defined a basal stem cell gene
signature and showed that metastatic prostate cancer was
enriched for this signature. Using a dataset comprised of dif-
ferent metastatic prostate cancer phenotypes, we show that
metastatic small cell carcinoma was the most enriched for this
signature and shared a transcriptional program with the basal
stem cell population.

Results
Tissue Acquisition and RNA Sequencing Flow-Through. We acquired
prostate tissue from eight patients that had undergone radical
prostatectomy. These patients ranged in Gleason score from 6 to
9. A pathologist outlined the benign and malignant regions on an
H&E slide, and a trained technician separated the benign and
malignant regions of the tissue based on the outline. The tissues
were digested into single cell suspensions and sorted based on
Trop2 and CD49f staining as described previously (27). We
aimed to collect four populations for each patient; however, due
to low numbers of certain populations, we were not able to collect
all four populations for each patient. We were able to collect
all four populations in two patients. In total, we acquired five
samples for each of the four populations. Each sample was sub-
jected to paired-end RNA sequencing (RNA-seq) and averaged

1.0 × 108 paired reads that uniquely mapped to the human genome
(Table S1 and Dataset S1).

Benign and Cancer Gene Expression Profiles from the Same Epithelial
Population Are Very Similar. To explore the molecular differences
between the benign and cancer regions, we performed hierarchical
clustering on all 20 samples. To our surprise, the samples did not
cluster based on benign and cancer but rather clustered based on
their epithelial population (Fig. 1B). Within the cluster, samples
from the same epithelial population and same patient were more
closely clustered than cancer or benign samples from the same
population but different patients. Plotting the benign and cancer
expression values for all 20,500 genes further confirmed that the
benign and cancer samples from the same epithelial population
were extremely similar (Fig. 1C). When we performed differential
expression analysis on benign Trop2+ CD49f Hi and cancer Trop2+

CD49f Hi, there were only eight genes with greater than twofold
change with a P value cutoff less than 0.05. Differential expression
analysis on benign Trop2+ CD49f Lo and cancer Trop2+ CD49f Lo
provided 62 genes with greater than twofold change, which makes
up ∼0.3% of all genes. Genes up-regulated in the benign Trop2+

CD49f Lo population such as MSMB and ANPEP have been
shown to have higher expression in the benign prostate (28, 29).
Most of the genes up-regulated for the cancer portion have not
previously been associated with prostate cancer, except for CXCL5
and APOD (30, 31). Genes typically up-regulated in prostate
cancer such as AMACR and FASN were not differentially ex-
pressed between the benign and cancer regions for each epithelial

Fig. 1. Benign and cancer regions from the same epithelial population have
similar transcriptional profiles. (A) Experimental scheme for gene expression
analysis of human prostate Trop2+ CD49f Hi and Trop2+ CD49f Lo populations.
(B) Hierarchical clustering of benign and cancer Trop2+ epithelial populations.
(C) Scatter plots comparing the quantile-normalized log2 gene expression for
each gene from the benign and cancer regions for each epithelial population.
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population. We cannot rule out that the similarities in expression
profiles may be due to contaminating normal cells within the region
outlined as cancerous. The similarities in expression profiles could
be also attributed to field effects. This occurs when histologically
normal tissue adjacent to cancerous tissue acquires many of the
same genetic alterations seen in the malignant region. Field effects
have been seen in numerous epithelial cancers including head and
neck, stomach, lung, and prostate (32–35).

Trop2+ CD49f Hi and Trop2+ CD49f Lo Subpopulations Are Enriched
for Different Gene Sets/Pathways and Master Regulators. Because
the benign and cancer transcriptional profiles for each population
were extremely similar, we combined the samples from each sub-
population to increase the statistical power for our comparison.
Using linear models for microarray analysis (LIMMA), we

looked at differentially expressed genes between the CD49f Hi
and CD49f Lo populations (36). A total of 1,501 genes were
differentially expressed between the CD49f Hi and CD49f Lo
populations, with 527 genes up-regulated in the Hi population
and 923 genes up-regulated in the Lo population. The CD49f
Hi population overexpressed a number of genes found in the
NOTCH, FGFR, and WNT development pathways. Other up-
regulated genes have been shown to act as epigenetic modifiers
and transcriptional regulators, play important roles in neuronal
processes, regulate epithelial-to-mesenchymal transitions (EMTs),
and influence cell invasion and migration (Fig. 2A). The CD49f Lo
population overexpressed genes commonly associated with pros-
tate luminal cells or prostate cancer, including AR, KRT8, KLK3,
NKX3-1, TMPRSS2, and AMACR (Fig. 2A).
To gain more biological insight into gene networks specific for

each population, we ran gene set enrichment analysis (GSEA) on a
20,500-gene-dense signature that could accurately identify CD49f Hi
and CD49f Lo samples (37) (Dataset S2). In short, we first con-
structed a computational model to recognize CD49f Hi prostate
basal cells by formulating a dichotomy between the CD49f Hi and
CD49f Lo populations. Given this dichotomy, we trained a logistic
regression model with elastic net regularization (38). This method
produced a gene expression signature with 20,500 weights that could
identify CD49f Hi and CD49f Lo samples with 100% accuracy using
a leave in–leave out cross-validation scheme (Fig. S1). GSEA
showed that the CD49f Hi population was enriched in gene sets
associated with basal cells, translation, splicing, RNA processing,
MYC signaling, stem cell and development networks, and cell ad-
hesion (Fig. 2B). Functional studies showing that the Trop2+ CD49
Hi cell population has stem cell characteristics further supports the
identified gene sets (27). The Trop2+ CD49f Lo expression profile
was enriched for gene sets associated with luminal cells, prostate
cancer, immune response, AR signaling, metabolism, and so forth.
We also used signaling pathway impact analysis (SPIA), which is a
complementary pathway analysis that takes into account the fold
changes of genes along with the genes’ positions within a pathway to
identify pathways that are relevant to the condition under study (39).
SPIA identified a gene network associated with small cell lung
cancer as the only pathway significantly activated in the CD49f Hi
population (Fig. S2). No pathways were activated in the CD49f Lo
population that made the false discovery rate (FDR) cutoff.
To identify potential TFs that regulate each phenotype, we used

the master regulator interference algorithm (MARINa), which has
been used to identify master regulators for human high-grade
glioma, murine prostate cancer, and normal formation of germinal
centers (40–42). We created a network of TFs and their targets by
combining transcriptional and genomic data from multiple data-
bases (43–46). MARINa used this TF network to compute a score
for each TF’s relative activity between the CD49f Hi and CD49f
Lo populations. This activity score was derived from a combined
view of the expression levels of each TF and its transcriptional
targets. After filtering for the master regulators with P < 0.05 and
FDR < 0.10, the top TF in the CD49f Hi population was TCF4

(Fig. 2C). TCF4 has been shown to be important for neuronal
development and EMT (47, 48). Moreover, a number of TFs as-
sociated with stem cells were also enriched in the CD49f Hi pop-
ulation, including SOX2, MYC, and ETS1 (Fig. 2C and Fig. S3).
Previous reports have shown SOX2 expression in normal prostate
basal cells and in a majority of patients with castration-resistant
and neuroendocrine metastatic prostate cancer (49, 50). A number
of TFs were enriched in the CD49f Lo population including
MYB, FOXA1, and AR, which have been previously identified
in luminal cells or cancers with a luminal phenotype (51–53)
(Fig. 2C and Fig. S3).

The CD49f Hi Population Resembles the Normal Human Mammary
Stem Cell and Uses MYC Signaling Networks. We compiled a list
of published gene signatures from different human stems cells or

Fig. 2. Trop2+ CD49f Hi and Lo populations are enriched for different gene
sets. (A) Heat map of gene expression for selected genes. (B) Significantly
enriched gene networks for CD49f Hi and CD49f Lo populations from GSEA.
(C) Top 5 TFs enriched in the CD49f Hi and CD49f Lo populations using MARINa.
TFs are arranged according to their P value and nominal enrichment score (NES).
The shaded boxes on the right show the inferred TF activity according to the NES
calculated by MARINa and the actual TF’s expression, with red indicating up-
regulation in the CD49f Hi population and blue indicating up-regulation in the
CD49f Lo population. The most enriched TF for the CD49f Hi population is the
top TF listed in the red, and the most enriched TF for the CD49f Lo population is
the last TF listed in the blue. Each row represents the MARINa results for the TF.
The vertical red and blue lines represent the target genes for the TF, with pos-
itive regulated target genes in red and negative regulated target genes in blue.
Increased activity of the CD49f Hi-enriched TFs is shown by enrichment of the
TF’s positive targets within the CD49f Hi up-regulated genes in the CD49f
MARINa signature and of its negative targets within the CD49f Lo up-regulated
genes in the CD49f MARINa signature. Increased activity of the CD49f Lo-
enriched TFs is shown by enrichment of the TF’s positive targets within the CD49f
Lo up-regulated genes in the CD49f MARINa signature and of its negative tar-
gets within the CD49f Hi up-regulated genes in the CD49f MARINa signature.
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signaling modules to determine if the CD49f Hi population re-
sembled stem cells from other human tissues (14, 15, 54–58). We
used GSEA to apply each stem cell signature against the CD49f
Hi 20,500-gene-dense signature. The CD49f Hi population was
most similar to normal mammary stem cell signatures from two
different datasets but not stem cells from any other tissue (Fig.
S4). The CD49f Hi population was also associated with a MYC
signaling network and a human ESC-like signature. Integration
of protein–protein and DNA–protein studies has shown that the
transcription factor MYC constitutes a signaling network that is
distinct from a core ESC transcriptional program, and this MYC
signaling is responsible for the similarities between ESCs and
cancer (57). Moreover, MYC can induce an ESC-like transcrip-
tional profile when transduced into keratinocytes expressing known
oncogenes (58). The CD49f Lo population was enriched for the
normal mammary luminal mature signature and PRC2 targets,
suggesting that this population is more differentiated. Interestingly,
the CD49f Lo population was also enriched for the normal mam-
mary luminal progenitor signature (Fig. S4). Using an organoid
culture system, it has been shown that a small subset of human

prostate luminal cells have progenitor-like capabilities (59). Gene
ontology analysis of the leading-edges genes from the mammary
luminal progenitor signature showed that these genes were associ-
ated with immune response, response to wounding, and defense
response, but none of the terms were associated with developmental
or stem cell gene networks. Although unable to form human pros-
tate glands in the in vivo regeneration assay (27), it is possible that a
subset of progenitor cells reside within the CD49f Lo population as
measured by a different functional assay.

Metastatic Prostate Cancer Is Enriched for the CD49f Hi Basal Stem
Cell 91-Gene Signature. We generated a CD49f Hi basal stem cell
sparse signature to investigate whether the CD49f Hi population is
associated with aggressive prostate cancer. The signature was
constructed using the same method as the dense signature, except
we selected for the top 91 non–zero-weighted genes most pre-
dictive for the CD49f Hi and CD49f Lo dichotomy. The sparse
signature contained a mixture of genes that were up-regulated in
the CD49f Hi population, which carried a positive weight in the
signature, and genes that were down-regulated in the CD49f Hi

Fig. 3. Genes and associated gene weights for all 91 genes in the CD49f Hi signature.
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population, which carried a negative weight (Fig. 3). A number of
genes carrying a positive weight have been associated with stem
cells including NOTCH4, WNT7A, and PDPN. The majority of the
genes carried a negative weight, and these genes were associated
with epithelial structure maintenance, response to extracellular
stimuli, and acute inflammatory responses.
We applied the signature to organ-confined prostate adeno-

carcinomas from The Cancer Genome Atlas (TCGA) and to
hormone-refractory metastatic prostate cancer biopsies from the
Stand up to Cancer–Prostate Cancer Foundation West Coast
Dream Team (SU2C-PCF WCDT) dataset to determine if ag-
gressive prostate cancer is further enriched for the stem cell gene
signature. Plotting the CD49f Hi signature scores showed that
the TCGA organ-confined prostate cancer samples were similar
to the sorted CD49f Lo population (Fig. 4A). This supports the
GSEA findings that the CD49f Lo population is enriched for
prostate cancer genes found in organ-confined prostate cancer.
Moreover, as samples progressed from organ-confined to me-
tastasis, the samples increased in the 91-gene signature toward
the CD49f Hi basal stem cell population (Fig. 4A). Quantification
of the signature scores showed that the aggressive SU2C-PCF
WCDT samples had a significantly higher basal stem cell 91-gene
signature score compared with the TCGA prostate adenocarci-
nomas (Fig. S5A). To determine if a possible batch effect could
account for the observed differences in signature scores, we
generated 30 random 91-gene signatures using an empirical
phenotype-based permutation test procedure proposed in the
GSEA method (37). Plotting the mean signature score for all 30
random signatures showed that the samples from all three
datasets were very similar, suggesting that a batch effect was not
likely responsible for the differences we saw with the CD49f Hi
91-gene signature (Fig. S6). Within organ-confined prostate
adenocarcinomas, we found that samples with a Gleason score of
9 or 10 had a minor yet significantly higher CD49f Hi signature
score than samples with Gleason scores of 6, 7 (3 + 4), 7 (4 + 3),
or 8 (Fig. S7). We further constructed a 91-gene sparse signature
comparing only the benign CD49f Hi samples (n = 5) to the
CD49f Lo samples (n = 10). This benign CD49f Hi signature
classified the 15 samples with 100 accuracy and showed similar
results as the CD49f Hi 91-gene signature (Fig. S8). To de-
termine if the enrichment in signature score was due to castra-
tion resistance, we applied the signature to a gene expression
dataset comprised of 19 hormone-sensitive metastases and 131
organ-confined prostate cancer samples (60). The hormone-
sensitive metastatic samples were significantly more enriched for
the CD49f Hi gene signature compared with organ-confined
prostate adenocarcinoma samples (Fig. S5B). Taken together,
these results suggest that as prostate cancer progresses from an
organ-confined state to metastasis, it begins to revert back to a
state that resembles the normal prostate basal stem cell.

SCNC of the Prostate Is Enriched for the CD49f Hi Signature. The
SU2C-PCFWCDT dataset contains a mixture of metastatic CRPC
samples with a SCNC phenotype, an adenocarcinoma phenotype,
or an intermediate phenotype termed intermediate atypical carci-
noma (IAC). Because we identified a gene set associated with
small cell lung cancer enriched in the CD49f Hi population, we
wondered if SCNC of the prostate was also enriched for the stem
cell signature. When we applied the signature to the SU2C-PCF
WCDT dataset, the 91-gene signature was enriched in the SCNC
samples compared with the adenocarcinoma and IAC phenotypes
(Fig. 4B). We also applied the signature to a separate dataset that
contains gene expression data for seven prostate neuroendocrine/
small cell carcinoma samples and 30 prostate adenocarcinomas
(25). The neuroendocrine/small cell samples were also significantly
enriched for the CD49f Hi signature compared with the adeno-
carcinoma samples (Fig. 4C). Interestingly, when the neuroendocrine/
small cell samples were further subdivided into pure small cell or

adenocarcinoma with neuroendocrine differentiation, the pure
small cell samples had a higher signature score than the adeno-
carcinoma with neuroendocrine differentiation (Fig. 4D). This
result mimics what was seen in the SU2C-PCF WCDT dataset.
Taken together, these data suggest that SCNC of the prostate is
more stem-like than other histological subtypes of metastatic and
organ-confined prostate cancer.

The CD49f Hi Population and Prostate SCNC Share a Gene Network
Associated with E2F Targets. To identify common gene networks be-
tween the CD49f Hi population and prostate SCNC, we ran GSEA
using the MSigDB Hallmark gene category on three separate dense

Fig. 4. Prostate SCNC is enriched for the prostate basal stem cell signature.
(A) Dot plot of CD49f Hi 91-gene signature scores for TCGA organ-confined
prostate cancer (n = 498), SU2C-PCF WCDT metastatic CRPC (n = 61),
Trop2+ CD49f Hi prostate basal cells (n = 10), and Trop2+ CD49f Lo prostate
luminal cells (n = 10). (B) Plot of CD49f Hi signature scores of pathologist-
identified pure adenocarcinoma (Adeno, n = 22), pure IAC (n = 11),
and pure SCNC (Small Cell, n = 6) from the SU2C-PCF WCDT dataset and
organ-confined prostate cancer samples from the TCGA dataset. (C ) Plot
of CD49f Hi signature scores for prostate adenocarcinoma (n = 30) and
neuroendocrine/small cell (n = 7) from the Beltran et al. dataset (25). (D)
Plot of CD49f Hi signature scores from the Beltran et al. dataset with the
neuroendocrine/small cell samples further divided into adenocarcinoma
with neuroendocrine differentiation (n = 2) and small cell (n = 5). Errors
bars represent the SD. A Student t test was used to calculate the statis-
tical significance. The distribution of scores was approximately normal
(Anderson–Darling test, P > 0.05) for all categories except SU2C-PCF WCDT
small cell, Beltran et al. small cell, and Beltran et al. adenocarcinoma with
neuroendocrine differentiation. These phenotypes did not have enough
samples to apply the Anderson–Darling test.
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gene signatures: (i) CD49f Hi versus CD49f Lo, (ii) SU2C-PCF
WCDT pathologist called SCNC versus non-SCNC, and (iii)
Beltran et al. NEPC/SCNC versus prostate adenocarcinoma. After
filtering for Hallmark gene sets that met the P value and FDR
cutoff, we found that all three signatures were enriched for a gene
network associated with E2F targets (Fig. 5A). We further per-
formed leading-edge gene analysis on the E2F targets gene set and
identified 34 genes common to all three signatures (Fig. 5B and
Table S2). To gain further insight into the biological processes in
which these genes may be involved, we used the database for an-
notation, visualization, and integrated discovery (DAVID) (61). We
found that these 34 genes were associated with biological processes
such as DNA replication, DNA repair, and cell cycling (Fig. 5C).

Discussion
In this study, we transcriptionally profiled sorted human prostate
epithelial populations using high-throughput RNA-seq to show
that subtypes of metastatic CRPC vary in their stemness prop-
erties, with metastatic SCNC being the most stem-like. Although
previous studies have used curated stem cell signatures to com-
pare stemness between organ-confined and metastatic disease,
this is the first study to our knowledge that (i) has developed a
prostate stem cell weighted gene signature from sorted, un-
cultured, human prostate basal, and luminal cells; (ii) showed
that an increase in neuroendocrine differentiation within late-
stage, metastatic human prostate cancer leads to an increase of a
stem-like transcriptional state; and (iii) has shown that SCNC
and the Trop2+ CD49f Hi prostate basal stem cell share a
transcriptional program associated with E2F targets.
The acquisition of stemness properties and increased activation

of developmental signaling networks in aggressive cancer pheno-
types has been well documented. Studies using breast and intestinal

tissues have mapped the transcriptional profiles of the poorly dif-
ferentiated, aggressive subtypes back to stem cell-like populations
found within normal human tissue (14, 15). Our work using a
CD49f Hi basal stem cell gene signature derived from freshly iso-
lated human prostate epithelial cells supports previous reports that
prostate cancer increases in a stem-like transcriptional state as it
progresses from organ-confined to metastatic disease (10, 12).
These previous studies used gene signatures derived from ESCs or
common genes between murine metastatic prostate cancer tissue
and cultured neurospheres. Interestingly, our basal stem cell gene
signature had little to no overlap with either of the signatures. It is
possible that all three signatures are examining the same tran-
scriptional profile from different, narrow perspectives, enabling
them to reach similar conclusions.
We found that even within CRPC metastasis, there is a differ-

ence in their degree of stemness. Metastatic samples with a SCNC
phenotype were more stem-like than either metastasis with ade-
nocarcinoma or an intermediate IAC phenotype. This is likely a
general phenomenon in prostate cancer metastasis, as two different
datasets containing samples that varied in their treatment regimen
showed that SCNC had higher CD49f Hi signature scores than the
other phenotypes within their respective studies. One question still
unanswered is whether organ-confined prostate SCNC and its
metastatic counterpart use different stem cell gene networks. The
infrequency of organ-confined prostate SCNC (<1%) has delayed
in-depth transcriptional profiling of this disease; however, these
studies would be highly informative to understanding the core
stem-like transcriptional component of SCNC.
Small cell carcinoma is not only found in the prostate but can

present itself in a number of other anatomical sites. Little is known
about the molecular underpinnings of this disease or if small cell
carcinomas in different tissues share common molecular traits.

Fig. 5. The prostate basal stem cell population and prostate SCNC share a gene network associated with E2F targets. (A) GSEA plots for the E2F targets gene
set significantly enriched in the CD49f Hi, SU2C-PCF WCDT SCNC, and Beltran NEPC/SCNC gene signatures. (B) Venn diagram of leading-edge genes from the
E2F targets gene set found between the CD49f Hi stem cell signature, the SU2C-PCF WCDT SCNC, and the Beltran NEPC/SCNC gene signatures. (C) The 10 most
statistically enriched gene ontology biological processes identified from the 34 common leading-edge genes.
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Molecular profiling of the most common small cell carcinoma, small
cell lung cancer, suggests that there is a stem cell component to the
disease. Small cell lung cancer exhibits SOX2 amplification in 34%
of patients and activation of hedgehog signaling (62, 63). Similarly,
immunohistochemistry has identified SOX2 expression in a majority
of patients with metastatic NEPC (50). Deregulation of the E2F-Rb
pathway, which is commonly altered in small cell carcinoma, can
lead to overexpression of PRC2 genes (64, 65). These genes are
vital for maintaining self-renewal capacity in embryonic and adult
stem cells (66). Recent evidence has also shown Rb alterations
can facilitate reprogramming of fibroblasts to a pluripotent state
through derepression of pluripotency factors such as SOX2 (67). In
the CD49f Hi population, we found enrichment of both E2F and
SOX2 targets, further supporting that these networks may be part
of a stem-like component common to small cell carcinomas.
Cellular plasticity is another hallmark characteristic of stem cells

that is also seen in small cell carcinomas. Studies in the lung,
bladder, and prostate have shown that small cell carcinomas can
share genetic alterations with a different coexisting carcinoma (68–
70). These results can be explained by transdifferentiation, de-dif-
ferentiation, or outgrowth of both phenotypes from a common stem-
like clone. Our laboratory has shown that lentiviral introduction of
NMYC and myristoylated AKT into human benign prostate CD49f
Hi cells can initiate the formation of biphenotypic tumors that have
an adenocarcinoma and SCNC component. This supports the idea
that a tissue stem cell may be predisposed to forming biphenotypic
tumors when challenged with the correct combination of oncogenic
insults. In vitro, the prostate adenocarcinoma cell line LNCaP can
display neuroendocrine differentiation when exposed to numerous
stimuli including hormone-depleted media (71). This observation
along with the increased incidence of SCNC in metastatic CRPC has
led many to believe that the appearance of neuroendocrine differ-
entiation or SCNC may be a resistance mechanism to androgen
deprivation therapy and AR-targeted drugs. It is possible that
multiple mechanisms may lead to the appearance of SCNC, and
future work is needed to elucidate the pathways or gene networks
responsible for this observed phenotypic plasticity. Moreover, fur-
ther investigation is needed into the therapeutic targeting of these
molecular programs that govern the stem-like component of SCNC.

Experimental Procedures
Tissue Procurement. The acquisition of primary human prostate tissue from
radical prostatectomy, dissociation into single cells, and FACS purification has
previously been described (27).

Library Construction and RNA-seq of Epithelial Populations. RNA was isolated
using RNeasy Mini Kit (QIAGEN), and RNA quality was tested using an Agilent
Bioanalyzer 2100 Eukaryote Total RNA Pico assay. Samples with a RNA in-
tegrity number (RIN) > 8 were used for construction of RNA-seq libraries.
RNA-seq libraries were constructed using the Nugen kit. The RNA-seq li-
braries, after a final purification and after adapter ligation, were quanti-
tated using both the Agilent 2100 Bioanalyzer High Sensitivity DNA assay
and Qubit dsDNA HS assay (Thermo Fisher), per the manufacturer’s recom-
mended protocols. The pooled multiplexed libraries were sequenced to gen-
erate 100-bp paired-end reads on an Illumina HiSEq 2000 platform. Raw RNA-
seq files were mapped to the hg19 human genome using MapSplice, and
transcripts were quantified using RNA-seq by expectation-maximization (RSEM).

Unsupervised Clustering, Differential Expression Analysis, and SPIA. Samples
were clustered based on genes that had expression values greater or equal to
1 SD from the mean expression value for all samples. Unsupervised hierarchical
clustering was performed using Cluster 3.0 with Pearson correlation and com-
plete linkage analysis and visualized using Jave TreeView. Differentially ex-
pression analysis was performed using the LIMMA R/Bioconductor package (72,
73). We kept genes with greater than or equal to twofold differential expres-
sion between the CD49f Hi and CD49f Lo populations with a P value greater
than or equal to 0.05. SPIA was performed using the Graphite Web interface
with an input of genes with twofold differential expression between the CD49f
Hi and CD49f Lo populations and the KEGG pathway database (74). We filtered
for pathways with a FDR lower than 0.05.

MARINa Analysis. We created a compendium of TFs and their targets (TF
regulons) by combining information from four databases: SuperPathway (43),
Literome (44), Multinet (45), and ChEA (46). We ran MARINa master regu-
lator analysis using the previously described TF compendium. MARINa TF
scores capture each TF’s relative activity between two cohorts of interest.
The activity score is derived from a combined view of the expression levels of
each TF’s regulon, based on the following steps: (i) The TF regulon is split
into positively and negatively regulated sets by measuring the Spearman
correlation between the expression of the TF and that of each of its targets.
(ii) A t statistic derived from the difference in gene expression between the
two classes of interest is computed for each gene. All genes are ranked
based on their t statistics to produce a CD49f MARINa gene signature.
(iii) Each TF’s activation and inhibition regulons are examined for enrich-
ment in the high or low end of the ranked gene list. The rankings of the
positively and negatively regulated genes are then combined and examined
simultaneously. A TF whose two target sets show consistent enrichment (i.e.,
the activated set is enriched for highly ranked genes and the inhibited set is
enriched for lowly ranked ones, or vice versa) receives the highest/lowest
activity scores, respectively. MARINa activity scores are therefore more ro-
bust measures of activity than differences in the individual expression of the
TF or its targets. We compared relative TF activity between the CD49f Hi (n =
10) and CD49 Lo (n = 10) samples. We ran MARINa with its default settings,
which scored TFs with a minimum of 25 targets.

Development of CD49f Hi Basal Stem Cell Gene Signatures. We constructed a
computational model to recognize CD49f Hi prostate basal stem cells by
formulating a dichotomy between CD49f Hi and CD49f Lo cells. Given this
dichotomy, we trained a logistic regressionmodelwith elastic net regularization
(38). The elastic net regularization is characterized by two parameters: one for
the ridge regression term, and one for the LASSO term. For the 20,500-gene-
dense signature, we set the LASSO term penalty coefficient to 0.0 and leaving
the ridge regression term coefficient at 1.0. For the 91-gene-sparse signature,
we fixed the ridge regression term coefficient at 1.0 and the LASSO term pa-
rameter at 0.1. We validated our model in silico through leave-pair-out cross-
validation. This cross-validation scheme iterates over all possible pairs of one
CD49f Hi sample and one CD49f Lo sample, withholding each pair in turn from
training. The model is then trained using all other samples and applied back to
the withheld pair for evaluation. In our experiments, we found that the model
was able to identify CD49f Hi and CD49f Lo samples with 100% accuracy. GSEA
was performed on the 20,500-dense weighted gene signature using GSEA v2.2
with 1,000 gene set permutations. A gene set was considered to be significantly
enriched in one of the two groups when the P value was lower than 0.05 and
the FDR was lower than 0.25 for the corresponding gene set.

Comparing CD49f Hi Gene Signature to Other Stem Cell Signatures. We
obtained human stem cell signatures and stem cell-associate gene modules
from Merlos-Suárez et al. (14), Pece et al. (15), Ben-Porath et al. (54), Creighton
et al. (55), Lim et al. (56), Kim et al. (57), and Wong et al. (58). For each curated
signature, we selected genes that were up-regulated for the signature in-
dicated and had an associated Human Genome Organization (HUGO) ID. The
name of the signature and the number of genes associated with each stem cell
signature are as follows: Lim Mammary Stem Cell (899 genes), Lim Mammary
Luminal Progenitor (342 genes), Lim Mammary Luminal Mature (534
genes), Kim Myc Module (355 genes), Kim Core Module (75 genes), Wong
ESC-like (1,242 genes), Pece Mammary Stem Cell (818 genes), Creighton Breast
Cancer Stem Cell (111 genes), Ben-Porath NOS Targets (179 genes), Ben-Porath
Myc Targets 1 (228 genes), Ben-PorathMyc Targets 2 (774 genes), Ben-Porath ES
Exp 1 (380 genes), Ben-Porath ES Exp 2 (40 genes), Ben-Porath PRC2 Targets
(642 genes), Merlos-Suarez Intestinal Stem Cell (52 genes), Eppert Leukemic
Stem Cell (41 genes), and Eppert Hematopoietic Stem Cell (125 genes). To
compare the CD49f Hi signature to curated stem cell signatures, we ran GSEA
using 1,000 permutations.

CD49f Hi Signature Scores for Prostate Cancer Phenotypes. We downloaded
the level 3 TCGA prostate adenocarcinoma RNA-seq from the TCGA Data
portal (June 2015 data freeze). The gene expression data for hormone-
sensitive organ-confined and metastatic prostate cancer was downloaded
from GSE20134. CD49f Hi signature scores were computed for each sample
within the sorted epithelial populations and prostate cancer subtypes by
multiplying the weight for each gene in the signature by the normalized log2
expression value for that gene within the sample and summing the values for
all 91 genes from the signature. All samples including the Trop2+ CD49f Hi
samples, Trop2+ CD49f Lo samples, SU2C-PCF WCDT metastatic samples, and
the TCGA prostate adenocarcinoma samples went through the same map-
ping and expression pipeline. A scaling value was added to the sum for all of
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the samples. To assess the robustness of signature scores and investigate the
presence of a batch effect, we generated 30 random 91-gene signatures using
an empirical phenotype-based permutation test procedure proposed in the
GSEAmethod (37). Specifically, we randomly permuted the CD49f Hi and CD49f
Lo labels and reran our method using this new permutation to produce a
background weighted gene signature. The random 91-gene signature scores
for each sample were computed using the same method as the CD49f Hi 91-
gene signature. A Student t test was used to calculate the statistical significance
when comparing two prostate cancer phenotypes.

Identification of Common Stem Cell and SCNC Gene Networks. Dense gene
signatures were constructed for pathologist-identified small cell (SCNC)
versus non-small cell (non-SCNC) samples from the SU2C-PCF WCDT dataset
and NEPC/SCNC versus prostate adenocarcinoma from Beltran et al. using the
same method described for the CD49f Hi 20,500-gene-dense signature. This
gave an 18,935-gene SU2C-PCF SCNC versus non-SCNC weighted signature
and a 20,500-gene Beltran NEPC/SCNC versus prostate adenocarcinoma gene
signature. GSEA was run on the 20,500-gene CD49f Hi versus CD49f Lo,
18,935-gene SU2C-PCF SCNC versus non-SCNC, and 20,500-gene Beltran NEPC/
SCNC versus prostate adenocarcinoma gene signatures using the Hallmarks
category in MSigDB. A cutoff of P ≤ 0.05 and FDR ≤ 0.25 was applied to

identify statistically enriched gene sets. Leading-edge genes analysis was
used to identify genes that drove a signature’s enrichment for each specific
gene network. The common leading-edge genes found within all three
signatures were uploaded to the DAVID website (david.abcc.ncifcrf.gov/).
Gene Ontology terms for biological processes were then identified.

ACKNOWLEDGMENTS. We thank members of the O.N.W. and J.M.S. labo-
ratories for helpful comments and discussion on the manuscript. We thank
the Tissue Procurement Core Laboratory at University of California, Los
Angeles (UCLA) for assistance on tissue processing and H&E staining, UCLA
Clinical Microarray Core for construction of the RNA-seq barcoded libraries,
and the High Throughput Sequencing Core at the Eli and Edythe Broad Stem
Cell Research Center for performing RNA-seq. This work was supported by
UCLA Tumor Immunology Training Program T32 CA009120 (to B.A.S.). J.M.S.
is supported by NIH Grant U24-CA143858. O.N.W. is an investigator of
the Howard Hughes Medical Institute and partially supported by the Eli
and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.
O.N.W. and J.M.S. are supported by Stand up to Cancer/American Associa-
tion for Cancer Research/Prostate Cancer Foundation Grant SU2C-AACR-
DT0812 (O.N.W. co-principal investigator). This research grant is made pos-
sible by the generous support of the Movember Foundation. Stand up to
Cancer is a program of the Entertainment Industry Foundation administered
by the American Association for Cancer Research.

1. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: Sources, niches, and
vital pathways. Cell Stem Cell 14(3):306–321.

2. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science
331(6024):1559–1564.

3. Vanharanta S, Massagué J (2013) Origins of metastatic traits. Cancer Cell 24(4):
410–421.

4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy
that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737.

5. Chen J, et al. (2012) A restricted cell population propagates glioblastoma growth
after chemotherapy. Nature 488(7412):522–526.

6. Mani SA, et al. (2008) The epithelial-mesenchymal transition generates cells with
properties of stem cells. Cell 133(4):704–715.

7. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the mode of
tumour growth by clonal analysis. Nature 488(7412):527–530.

8. Hermann PC, et al. (2007) Distinct populations of cancer stem cells determine tumor
growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):
313–323.

9. Santagata S, Ligon KL, Hornick JL (2007) Embryonic stem cell transcription factor
signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg
Pathol 31(6):836–845.

10. Markert EK, Mizuno H, Vazquez A, Levine AJ (2011) Molecular classification of
prostate cancer using curated expression signatures. Proc Natl Acad Sci USA 108(52):
21276–21281.

11. Shats I, et al. (2011) Using a stem cell-based signature to guide therapeutic selection
in cancer. Cancer Res 71(5):1772–1780.

12. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-
from-cancer signature predicting therapy failure in patients with multiple types of
cancer. J Clin Invest 115(6):1503–1521.

13. Dieter SM, et al. (2011) Distinct types of tumor-initiating cells form human colon
cancer tumors and metastases. Cell Stem Cell 9(4):357–365.

14. Merlos-Suárez A, et al. (2011) The intestinal stem cell signature identifies colorectal
cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524.

15. Pece S, et al. (2010) Biological and molecular heterogeneity of breast cancers corre-
lates with their cancer stem cell content. Cell 140(1):62–73.

16. Baccelli I, et al. (2013) Identification of a population of blood circulating tumor cells
from breast cancer patients that initiates metastasis in a xenograft assay. Nat
Biotechnol 31(6):539–544.

17. Eppert K, et al. (2011) Stem cell gene expression programs influence clinical outcome
in human leukemia. Nat Med 17(9):1086–1093.

18. Robinson D, et al. (2015) Integrative clinical genomics of advanced prostate cancer.
Cell 161(5):1215–1228.

19. Karhadkar SS, et al. (2004) Hedgehog signalling in prostate regeneration, neoplasia
and metastasis. Nature 431(7009):707–712.

20. Acevedo VD, et al. (2007) Inducible FGFR-1 activation leads to irreversible prostate
adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12(6):
559–571.

21. Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ (2011) Wnt/β-catenin activation
promotes prostate tumor progression in a mouse model. Oncogene 30(16):
1868–1879.

22. Stoyanova T, et al. (2013) Prostate cancer originating in basal cells progresses to
adenocarcinoma propagated by luminal-like cells. Proc Natl Acad Sci USA 110(50):
20111–20116.

23. Terry S, Beltran H (2014) The many faces of neuroendocrine differentiation in pros-
tate cancer progression. Front Oncol 4(60):60.

24. Nadal R, Schweizer M, Kryvenko ON, Epstein JI, Eisenberger MA (2014) Small cell
carcinoma of the prostate. Nat Rev Urol 11(4):213–219.

25. Beltran H, et al. (2011) Molecular characterization of neuroendocrine prostate cancer
and identification of new drug targets. Cancer Discov 1(6):487–495.

26. Goldstein AS, et al. (2008) Trop2 identifies a subpopulation of murine and human
prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105(52):
20882–20887.

27. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of
origin for human prostate cancer. Science 329(5991):568–571.

28. Whitaker HC, Warren AY, Eeles R, Kote-Jarai Z, Neal DE (2010) The potential value of
microseminoprotein-beta as a prostate cancer biomarker and therapeutic target.
Prostate 70(3):333–340.

29. Sørensen KD, et al. (2013) Prognostic significance of aberrantly silenced ANPEP ex-
pression in prostate cancer. Br J Cancer 108(2):420–428.

30. Rodríguez JC, et al. (2000) Apolipoprotein D expression in benign and malignant
prostate tissues. Int J Surg Investig 2(4):319–326.

31. Begley LA, et al. (2008) CXCL5 promotes prostate cancer progression. Neoplasia 10(3):
244–254.

32. Chai H, Brown RE (2009) Field effect in cancer-an update. Ann Clin Lab Sci 39(4):
331–337.

33. Yu YP, et al. (2004) Gene expression alterations in prostate cancer predicting tumor
aggression and preceding development of malignancy. J Clin Oncol 22(14):2790–2799.

34. Cooper CS, et al.; ICGC Prostate Group (2015) Analysis of the genetic phylogeny of
multifocal prostate cancer identifies multiple independent clonal expansions in
neoplastic and morphologically normal prostate tissue. Nat Genet 47(4):367–372.

35. Risk MC, et al. (2010) Differential gene expression in benign prostate epithelium of
men with and without prostate cancer: Evidence for a prostate cancer field effect.
Clin Cancer Res 16(22):5414–5423.

36. Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for de-
tecting differential expression in RNA-seq studies. Brief Bioinform 16(1):59–70.

37. Subramanian A, et al. (2005) Gene set enrichment analysis: A knowledge-based ap-
proach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA
102(43):15545–15550.

38. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear
models via coordinate descent. J Stat Softw 33(1):1–22.

39. Tarca AL, et al. (2009) A novel signaling pathway impact analysis. Bioinformatics
25(1):75–82.

40. Carro MS, et al. (2010) The transcriptional network for mesenchymal transformation
of brain tumours. Nature 463(7279):318–325.

41. Aytes A, et al. (2014) Cross-species regulatory network analysis identifies a synergistic
interaction between FOXM1 and CENPF that drives prostate cancer malignancy.
Cancer Cell 25(5):638–651.

42. Lefebvre C, et al. (2010) A human B-cell interactome identifies MYB and FOXM1 as
master regulators of proliferation in germinal centers. Mol Syst Biol 6(377):377.

43. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization
of papillary thyroid carcinoma. Cell 159(3):676–690.

44. Poon H, Quirk C, DeZiel C, Heckerman D (2014) Literome: PubMed-scale genomic
knowledge base in the cloud. Bioinformatics 30(19):2840–2842.

45. Khurana E, Fu Y, Chen J, Gerstein M (2013) Interpretation of genomic variants using a
unified biological network approach. PLOS Comput Biol 9(3):e1002886.

46. Lachmann A, et al. (2010) ChEA: Transcription factor regulation inferred from in-
tegrating genome-wide ChIP-X experiments. Bioinformatics 26(19):2438–2444.

47. Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ (2013) Knockdown of human TCF4
affects multiple signaling pathways involved in cell survival, epithelial to mesenchy-
mal transition and neuronal differentiation. PLoS One 8(8):e73169.

48. Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1
to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl
Acad Sci USA 104(39):15382–15387.

49. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ (2011) Expression analysis of putative stem
cell markers in human benign and malignant prostate. Prostate 71(1):18–25.

50. Yu X, et al. (2014) SOX2 expression in the developing, adult, as well as, diseased
prostate. Prostate Cancer Prostatic Dis 17(4):301–309.

Smith et al. PNAS | Published online October 12, 2015 | E6551

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S

SE
E
CO

M
M
EN

TA
RY

http://david.abcc.ncifcrf.gov/


51. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human
breast tumours. Nature 490(7418):61–70.

52. Badve S, et al. (2007) FOXA1 expression in breast cancer–Correlation with luminal
subtype A and survival. Clin Cancer Res 13(15 Pt 1):4415–4421.

53. Bernardo GM, et al. (2013) FOXA1 represses the molecular phenotype of basal breast
cancer cells. Oncogene 32(5):554–563.

54. Ben-Porath I, et al. (2008) An embryonic stem cell-like gene expression signature in
poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507.

55. Creighton CJ, et al. (2009) Residual breast cancers after conventional therapy display
mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):
13820–13825.

56. Lim E, et al.; kConFab (2009) Aberrant luminal progenitors as the candidate target
population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):
907–913.

57. Kim J, et al. (2010) A Myc network accounts for similarities between embryonic stem
and cancer cell transcription programs. Cell 143(2):313–324.

58. Wong DJ, et al. (2008) Module map of stem cell genes guides creation of epithelial
cancer stem cells. Cell Stem Cell 2(4):333–344.

59. Karthaus WR, et al. (2014) Identification of multipotent luminal progenitor cells in
human prostate organoid cultures. Cell 159(1):163–175.

60. Taylor BS, et al. (2010) Integrative genomsic profiling of human prostate cancer.
Cancer Cell 18(1):11–22.

61. Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57.

62. Rudin CM, et al. (2012) Comprehensive genomic analysis identifies SOX2 as a fre-
quently amplified gene in small-cell lung cancer. Nat Genet 44(10):1111–1116.

63. Park KS, et al. (2011) A crucial requirement for Hedgehog signaling in small cell lung
cancer. Nat Med 17(11):1504–1508.

64. Coe BP, et al. (2013) Genomic deregulation of the E2F/Rb pathway leads to activation
of the oncogene EZH2 in small cell lung cancer. PLoS One 8(8):e71670.

65. Bracken AP, et al. (2003) EZH2 is downstream of the pRB-E2F pathway, essential for
proliferation and amplified in cancer. EMBO J 22(20):5323–5335.

66. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, develop-
ment and cancer. Nat Rev Cancer 6(11):846–856.

67. Kareta MS, et al. (2015) Inhibition of pluripotency networks by the Rb tumor sup-
pressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16(1):39–50.

68. Sequist LV, et al. (2011) Genotypic and histological evolution of lung cancers ac-
quiring resistance to EGFR inhibitors. Sci Transl Med 3(75):75ra26.

69. Cheng L, et al. (2005) Molecular genetic evidence for a common clonal origin of
urinary bladder small cell carcinoma and coexisting urothelial carcinoma. Am J Pathol
166(5):1533–1539.

70. Williamson SR, et al. (2011) ERG-TMPRSS2 rearrangement is shared by concurrent
prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell
carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod
Pathol 24(8):1120–1127.

71. Shen R, et al. (1997) Transdifferentiation of cultured human prostate cancer cells to a
neuroendocrine cell phenotype in a hormone-depleted medium. Urol Oncol 3(2):
67–75.

72. Smith GK (2004) Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):Article 3.

73. Ritchie ME, et al. (2015) limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res 43(7):e47.

74. Sales G, Calura E, Martini P, Romualdi C (2013) Graphite Web: Web tool for gene set
analysis exploiting pathway topology. Nucleic Acids Res 41(Web Server Issue, W1):
W89–W97.

E6552 | www.pnas.org/cgi/doi/10.1073/pnas.1518007112 Smith et al.

www.pnas.org/cgi/doi/10.1073/pnas.1518007112

