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Topological mechanical metamaterials are artificial structures whose
unusual properties are protected very much like their electronic
and optical counterparts. Here, we present an experimental and
theoretical study of an active metamaterial—composed of cou-
pled gyroscopes on a lattice—that breaks time-reversal symme-
try. The vibrational spectrum displays a sonic gap populated by
topologically protected edge modes that propagate in only one
direction and are unaffected by disorder. We present a mathe-
matical model that explains how the edge mode chirality can be
switched via controlled distortions of the underlying lattice. This
effect allows the direction of the edge current to be determined
on demand. We demonstrate this functionality in experiment and
envision applications of these edge modes to the design of one-
way acoustic waveguides.
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Avast range of mechanical structures, including bridges, co-
valent glasses, and conventional metamaterials, can be ul-

timately modeled as networks of masses connected by springs (1–
6). Recent studies have revealed that despite its apparent sim-
plicity, this minimal setup is sufficient to construct topologically
protected mechanical states (7–11) that mimic the properties of
their quantum analogs (12). This follows from the fact that,
irrespective of its classic or quantum nature, a periodic material
with a gapped spectrum of excitations can display topological
behavior as a result of the nontrivial topology of its band struc-
ture (13–21).
All such mechanical systems, however, are invariant under

time reversal because their dynamics are governed by Newton’s
second law, which, unlike the Schrödinger equation, is second
order in time. If time-reversal symmetry is broken, as in re-
cently suggested acoustic structures containing circulating flu-
ids (16), theoretical work (13) has suggested that phononic
chiral topological edge states that act as unidirectional wave-
guides resistant to scattering off impurities could be supported.
In this paper, we show that by creating a coupled system of
gyroscopes, a “gyroscopic metamaterial,” we can produce an
effective material with intrinsic time-reversal symmetry break-
ing. As a result, our gyroscopic metamaterials support topo-
logical mechanical modes analogous to quantum Hall systems,
which have robust chiral edge states (22–24). We demonstrate
these effects by building a real system of gyroscopes coupled in
a honeycomb lattice. Our experiments show long-lived, unidi-
rectional transport along the edge, even in the presence of
significant defects. Moreover, our theoretical analysis indicates
that direction of edge propagation is controlled both by the
gyroscope spin and the geometry of the underlying lattice. As a
result, deforming the lattice of gyroscopes allows one to control
the edge mode direction, offering unique opportunities for en-
gineering novel materials.
Much of the counterintuitive behavior of rapidly spinning

objects originates from their large angular momentum, which
endows the axis of spin with a resistance to change. If we fix
one end of a gyroscope and apply a force, ~F, to the opposing free
end of the spinning axis, we produce a torque of ~τ=~ℓ×~F,
where~ℓ is the axis of the gyroscope, pointing from the fixed to

the free end. In the fast spinning limit, the response of the gyro-
scope’s axis is

_~ℓ=
ℓ2

Iω

�̂
ℓ×~F

�
, [1]

where ω is the gyroscope angular frequency and I is its rotational
inertia. The behavior of a gyroscope differs from that of a simple
mass in two important ways: (i) It moves perpendicular to ap-
plied forces and (ii) its response is first order in time. The ca-
nonical example of this unusual behavior is precession: A
spinning top does not simply fall over, but rather its free end
orbits around the contact point (precesses) with a constant pe-
riod, Ωg =mgℓcm=Iω, where ℓcm is the distance from the pivot
point to center of gravity.
What happens if we replace the masses in a conventional

mechanical metamaterial with gyroscopes? A first glimpse is
provided by a normal mode analysis of honeycomb lattices
composed of mass–spring and gyroscope–spring networks.
The density of states of these two systems (Fig. 1A) shows
qualitatively similar features: Each is characterized by two
bands, a lower “acoustic” band (where neighboring sites move
in phase) and an upper “optical” band (where neighboring
sites move out of phase). The connections between these two
bands, however, show key differences: In the mass–spring
system the two bands touch at a Dirac point, whereas in the
gyroscopic system a gap opens up between the bands. Cru-
cially, this gap is not empty, but populated by nearly equally
spaced modes and the number of these edge modes scales with
the length of the edge. Examination of these gap modes re-
veals them to be confined to the edge and to be chiral: The
phases always rotate in the same direction as one moves
around the lattice (Fig. 1B). As we show below, these edge
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modes are topologically robust and can therefore serve as
unidirectional waveguides.
It is far from obvious that in a real system the phonon spec-

trum would be resistant to the presence of both disorder (lattice
imperfections, gyroscopic nonuniformity, etc.) and mixed-order
dynamics (e.g., nutation). However, an appealing feature of to-
pological states is that they are often resistant to disorder, sug-
gesting that they may be useful for acoustic applications and
observable under a wide range of experimental conditions.

To explore the relevance of these effects, we have assembled
a prototype system of 54 interacting gyroscopes on a honeycomb
lattice (Fig. 2A and Fig. S2). Our gyroscopes consist of small dc
motors spinning cylindrical masses at ∼300 Hz (with ∼ 10%
variation in motor speed); each is suspended from a top plate by
a weak spring (Fig. 2B), producing an individual precession
frequency of Ωg ∼ 1 Hz. To couple these gyroscopes in a lattice,
a small neodymium magnet is placed in each spinning mass with
its moment aligned vertically, causing the gyroscopes to repel.
For small displacements, this creates a linear effective spring-
like force between gyroscopes that is comparable in strength to
the gravitational pinning force.
The magnetically coupled system is conceptually equivalent

to the system of gyrosocopes connected by springs discussed ear-
lier; the linearized magnetic coupling differs, however, in detail
from the coupling given by springs because the equilibrium results
from the cancellation of opposing forces instead of the absence of
forces. As detailed in Supporting Information, this results in a mode
spectrum that is shifted to lower frequencies (Fig. 2C), compared
with a spring-coupled gyroscope system (Fig. 1A). However, the
topological character of the band structure is not affected and
acoustic and optical bands are still apparent with chiral edge modes
in between.
To test the mechanical response of the gyroscopic meta-

material, we excite it with periodic bursts of air through a small
nozzle and follow the resulting disturbance. We probe the
normal modes by weakly exciting a single gyroscope at a fixed
frequency for many (>100) periods and recording the resulting
motion of the network. All excitations were kept to small
amplitudes (<10% of the lattice spacing) to avoid the non-
linearities associated with coupling the gyroscopes magnetically
(Figs. S3–S5).
The effect of disorder inherent to our experiment (e.g., vari-

ation in motor speed and gyroscope pivot position) can be clearly
seen in the comparison between the structure of bulk modes as
shown in Fig. 2 D and F for the idealized (Left) and experimental
system (Right). There is little overall agreement between calcu-
lated and measured modes, though acoustic modes show ap-
proximate in-phase oscillation of adjacent gyroscopes and optical
modes show approximate out-of-phase oscillation of adjacent
gyroscopes. This is characteristic of the effects of disorder (25),
which produces the same effect in numerically evaluated modes
with comparable disorder (Fig. S6).
Despite these experimental imperfections, exciting a mode in

the gap between the acoustic and optical bands produces clean
excitations along the edge (Fig. 2E). The orientations and rela-
tive orbit sizes of these modes closely match the modes numer-
ically computed for an idealized model. A comparison between
calculated and measured edge mode frequencies is shown in Fig.
S5. The robustness of these modes against disorder is charac-
teristic of their topological character.
To demonstrate that our experimental metamaterial func-

tions as a unidirectional waveguide, we excite a single edge gy-
roscope for five periods at a frequency in the gap. As shown in
Fig. 3A and Movie S1, the resulting excitation propagates in
only one direction around the edge of the lattice. The motion
of this wave packet around the edge is persistent, circum-
navigating the boundary several times. As expected, short ex-
citations at a frequency not in the band gap do not produce a
similar robust edge excitation (Movie S2). Crucially, this in-
dicates that the chiral edge modes are topologically protected
from coupling to the bulk modes, functioning as an efficient
one-directional waveguide.
We further demonstrate the robustness of these edge modes

by intentionally introducing disorder in the lattice, for example
by removing three gyroscopes. As shown in Movie S3 and Fig.
3B, even this significant disturbance does not destroy the chiral
edge modes. An excitation on the edge is seen to move around

A

B

Fig. 1. Gyroscopic metamaterials and edge states. (A) A comparison be-
tween the density of states of a mass–spring (Top) and gyroscopic meta-
material (Bottom) on a honeycomb lattice. In both networks neighboring
masses (gyroscopes) are coupled by springs and each mass(gyroscope) feels a
restoring force toward its equilibrium position. In the gyroscope network,
the spring interaction frequency is Ωk=Ωg. The acoustic and optical bands of
the network of masses connected by springs meet at a (Dirac) point. By
contrast, in the network of gyroscopes connected by springs, there is a gap
between acoustic and optical bands that is populated by chiral edge modes.
(B) A normal mode (evaluated numerically) between the acoustic and optical
bands in a lattice of 96 gyroscopes. The shape of each orbit in the normal
mode is indicated with ellipses and the phase at a fixed time is indicated via
color. The phase of the gyroscopes along the edge is indicated below,
showing the phase velocity is unidirectional. This combined with the absence
of a corresponding mode with opposite phase velocity is the key charac-
teristic of chiral edge states.
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this disturbance—in the same direction as before—and emerge
undisturbed on the other side. Remarkably, the excitation tra-
verses the defect region without scattering backward or into the
bulk. As before, the resilience of the edge modes suggests these
edge states are topological in character.
To analyze the origin of these effects, we return to an ideal

coupled gyroscope model. For simplicity, we represent the dis-
placement of the tip of the gyroscope from equilibrium as
ψ → δx + iδy. In this form, the linearized version of Eq. 1 is
iðdψ=dtÞ= ðℓ2=IωÞF, where F→Fx + iFy is the complex repre-
sentation of the interaction force and the complex phase, i, arises
from the cross-product. Accordingly, the linearized equation of
motion for each site in the gyroscopic metamaterial is

i
dψp

dt
=Ωgψp +

1
2

X
q∈n.n.ðpÞ

h�
Ω+

ppψp +Ω+
pqψq

�

+ e2iθpq
�
Ω−

ppψp*+Ω−
pqψq*

�i
,

[2]

where p is the site label, q the neighboring sites, θpq is the spring
bond angle, and Ω±

pj =− ℓ2
Iω ð∂Fpk=∂xjk ± ∂Fp⊥=∂xj⊥Þ are determined

from gradients of the force on p, Fp, parallel and perpendicular

to the line connecting the equilibrium positions of the gyroscopes.
In the case of the interactions being provided by springs, Ω±

pq =
kℓ2=Iω=Ωk, where k is the spring constant.
Symmetries often play a fundamental role in characterizing a

system’s topological behavior; in the case of the gyroscopic ma-
terials, broken time-reversal symmetry is a natural starting point.
We note that the linearized equation of motion bears remarkable
similarity to the Schrödinger equation for the wavefunction of an
electron in a tight-binding model. Thus, by analogy, we may
analyze the breaking of temporal symmetry using the “time-
reversal” operation in quantum mechanics: t→ − t, ψ →ψp. For
gyroscopes, conjugating ψ mirrors their displacement in the y
axis; applying the complete time-reversal operation to a single
gyroscope leaves the equation of motion unchanged. Similarly,
for a network of gyroscopes Eq. 2 is invariant under this oper-
ation only if the coefficient e2iθpq is real (up to a global rotation),
and breaks the symmetry otherwise. Thus, crucially, we see that
the breaking of time-reversal symmetry depends on distribution
of bond angles in the lattice, and not simply the response of
individual gyroscopes.
The geometric origin of the time-reversal symmetry breaking

can also be seen in the case of gyroscopes connected by springs,

F

A

B C

D

E

Fig. 2. Demonstration of robustness of edge modes in experiment. (A) A picture of the experimental system as viewed from below. (B) The edge of the
experimental lattice from the side, showing the construction of the individual gyroscopes as well as the fixed magnets around the edge that provide the
lateral confinement. (C) The calculated histogram of normal mode frequencies for an array of 54 gyroscopes arranged in a honeycomb lattice (no disorder) is
shown. The frequencies range from 0.7 to 2.5 Hz. (D–F) A comparison of calculated normal modes in an ideal magnetic-gyroscope network (Left) as measured
in an experimental system (Right). For each system a mode is shown in (D) the optical band, (E) the band gap, and (F) the acoustic band. Disorder has a strong
effect on bulk mode profiles. However, the gap mode profiles correspond much more closely to the ideal modes in shape, orientation, and phase of the
gyroscope orbits.
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by considering the energy of two connected gyroscopes. In the
linearized limit, the stretching/compression of the spring is
given by Δ∝ ðrx1 − rx2Þcos θ12 + ðry1 − ry2Þsin θ12. If we mirror
each gyroscope in the y axis (ψ →ψp or ry → − ry), in general the
spring length will be unchanged only if sin θ12 = 0 (i.e., if the
mirror axis aligns with the equilibrium bond angle). However,
if cos θ12 = 0, or the mirroring axis is perpendicular to the bond,
then the spring energy, Ek ∝Δ2, is conserved by converting
stretching to compression (Fig. 4A). When considering an
entire lattice, we see that for arbitrary displacements the bond
energy will be conserved under time reversal if (and only if) we
are able to choose a global mirror axis to which all bonds are
either perpendicular or parallel. As a result, time-reversal in-
variance is only guaranteed for lattices composed of square or
rectangular building blocks.
It is instructive to note that, in the limit that gyroscopes

are coupled by weak springs, Ωk � Ωg our gyroscopic meta-
material has a well-known quantum-mechanical analog: the
Haldane model of an electronic system in a honeycomb lattice
(see Supporting Information and Figs. S7 and S8 for details)
(26). In the Haldane model, time-reversal symmetry is broken
by a staggered magnetic field. This field can be varied,
resulting in a change in the topological character of the modes

as quantified by the Chern number (12, 27, 28). Accordingly,
depending on the strength of the field and asymmetry between
the two sites in the unit cell, the Chern number of the bottom
band is C− = 0, ± 1, and C+ =−C− in the top band. A Chern
number of zero indicates a trivial topology (a normal in-
sulator), whereas a nonzero Chern number indicates a non-
trivial topology. Whenever C± ≠ 0, topological edge modes
appear in the gap between the two bands; the chirality and
direction of propagation of these modes depends on the sign
of the Chern number for lower band.
In gyroscopic metamaterials, the analog to changing the mag-

netic field is to geometrically distort the lattice. In either case, the
relevant operation produces a phase shift in the hopping between
neighboring sites; in the gyroscope system this phase shift is de-
termined by the bond angles, θpq. In the case of an undistorted
honeycomb lattice, the modes have a Chern number of C± =±1,
in agreement with the Haldane model.
In a honeycomb lattice, it is possible to distort the constituent

hexagons without changing the bond length (Fig. 4 B–D),
allowing us to change the gyroscopic phase between neighboring
sites without changing the network connectivity. As predicted by
the time-reversal analysis above, the band-gap and chiral edge
modes disappear when the bonds fall on a rectangular grid (in

A

B

Fig. 3. Unidirectional waveguide modes in experiment. (A) A single edge gyroscope is excited for five periods; subsequent images show the excitation
propagation clockwise around the edge. The bottom graph indicates the displacement of one gyroscope (indicated with a triangle) in the y direction; the
excitation is seen to persist for many cycles around the edge. (B) The same experiment as in A, but with three gyroscopes removed from the bottom edge and
replaced with fixed magnets (to keep the system in equilibrium). Owing to the topological nature of the edge modes, the excitation propagates around the
disturbance.
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which case e2iθpq =±1). Furthermore, the dispersion relationship
of an infinite gyroscopic lattice in this configuration has Dirac

points at the corners of the Brillouin zone (Fig. 4C); this is
topologically equivalent to the dispersion relationship of a hon-
eycomb network of springs and masses. Continuing to distort the
lattice past this point restores the band gap, but the edge modes
now have opposite chirality, as reflected in an inversion of the
bands and hence of the Chern number; C± =∓1. As a result,
excitations along the edge now move in the other direction,
opposite to the precession of individual gyroscopes. These effects
can all be seen in Movies S4 and S5. Movie S4 shows the sim-
ulated dynamics of an edge mode in a spring coupled gyroscopic
metamaterial as it is being distorted. Remarkably, this indicates
the direction of the edge waveguide can be controlled purely
through geometric distortions of the lattice, analogous to an
effect recently observed in 1D acoustic phononic crystals (29).
We have presented an experimental proof of concept and

theoretical analysis of a topologically protected unidirectional
waveguide in a real mechanical metamaterial. The origin of
our topological edge modes is due to time-reversal symmetry
breaking; our analysis indicates this arises from the combination
of the chiral nature of the gyroscopes and the geometry of the
underlying lattice. Because the direction of the edge modes can
be changed discontinuously with geometric distortions, in prin-
ciple small displacements should be capable of inverting the edge
mode direction. This mechanism may have practical applications
for creating direction-tunable materials, but it also suggests in-
teresting nonlinear effects should occur in the regime near the
mechanically induced topological phase transition.
The prototypical gyroscopic solids we have developed here are

examples of active metamaterials: Their design relies on the
presence of internal motors that keep each gyroscope in a fast
spinning state. An open challenge is to construct scalable gyro-
scopic metamaterials using nanofabrication techniques (e.g.,
microelectromechanical systems) or active molecules that con-
vert chemical energy into rotation very much like the motors
powering each gyroscope (30, 31). Such an implementation
would pave the way toward realizing materials that support, at a
microscopic scale, robust topological acoustic modes.

Note Added in Proof. In the concluding stages of the present work,
we became aware of a parallel independent effort in which a
class of topological gyroscopic metamaterials was theoretically
analyzed (32).
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