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The prevailing view that the evolution of cells in a tumor is driven
by Darwinian selection has never been rigorously tested. Because
selection greatly affects the level of intratumor genetic diversity, it
is important to assess whether intratumor evolution follows the
Darwinian or the non-Darwinian mode of evolution. To provide
the statistical power, many regions in a single tumor need to be
sampled and analyzed much more extensively than has been
attempted in previous intratumor studies. Here, from a hepatocel-
lular carcinoma (HCC) tumor, we evaluated multiregional samples
from the tumor, using either whole-exome sequencing (WES) (n =
23 samples) or genotyping (n = 286) under both the infinite-site and
infinite-allele models of population genetics. In addition to the
many single-nucleotide variations (SNVs) present in all samples,
there were 35 “polymorphic” SNVs among samples. High genetic
diversity was evident as the 23 WES samples defined 20 unique cell
clones. With all 286 samples genotyped, clonal diversity agreed well
with the non-Darwinian model with no evidence of positive Dar-
winian selection. Under the non-Darwinian model, MALL (the num-
ber of coding region mutations in the entire tumor) was estimated
to be greater than 100 million in this tumor. DNA sequences reveal
local diversities in small patches of cells and validate the estimation.
In contrast, the genetic diversity under a Darwinian model would
generally be orders of magnitude smaller. Because the level of ge-
netic diversity will have implications on therapeutic resistance, non-
Darwinian evolution should be heeded in cancer treatments even
for microscopic tumors.
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The level of genetic diversity in a natural population is de-
termined by several evolutionary forces, including mutation,

genetic drift, migration, and natural selection (1–3). Tumors can be
regarded as asexual populations of cells, so they are subjected to
similar forces to those of natural populations (4–7). Therefore, the
genetic diversity in tumors of the same patient is informative about
how various forces drive their evolution. The level of diversity may
also influence how tumors respond to environmental perturbations,
either natural or medical (5–7). In the prevailing view, Darwinian
selection for and against new mutations is the main driving force of
intratumor diversity (4, 8–18). Because selection generally reduces
genetic diversity within populations (19–21), studies assuming
Darwinian evolution usually described MALL (the total number of
coding region mutations within the whole tumor) in the range of
tens to hundreds of coding mutations (22, 23).
Despite its wide acceptance, the Darwinian view has never been

subjected to hypothesis testing, by which the observed diversity
is compared with quantitative predictions. This study is to our
knowledge the first one that uses high-density sampling in a single
tumor and compares the observations with theoretical predictions.
In this test, we consider a null model of non-Darwinian evolution

in which MALL is a function of N (population size), u (mutation
rate per generation), and growth parameters. In tumors, N is
large, generally � 106, and u is the mutation rate of the entire
functional portion of the genome (at the level of 10−2 per cell
division) (18, 24). Hence, the expected genetic diversity of
tumors by non-Darwinian evolution would be large, probably
on the order of millions of mutations, most of which are present
at low frequencies (25).
We ask whether the observed intratumor genetic diversity can

be largely explained by non-Darwinian forces and we invoke
positive selection only when the null model of non-Darwinian
evolution is rejected. There was a controversy in molecular
evolution generally known as the neutralism–selectionism debate
(1, 26, 27). In the postdebate modern view, genetic polymor-
phisms in natural populations are largely consistent with the non-
Darwinian model (1–3, 26–28). There are further reasons to
question the efficacy of selection within populations of cells that
make up tumors (Discussion). For instance, although selection
against nonsynonymous mutations is nearly universal in natural
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species (1, 3, 27), selection against such mutations in tumors is
not apparently stronger than against synonymous ones (29).
In the recent literature, there has been increasingly more at-

tention on assessing the non-Darwinian model of tumor evolution
vs. the prevailing Darwinian view (30, 31). Tao et al. (31) studied
12 cases of multitumor hepatocellular carcinomas (HCCs) and
concluded that competition often occurs between tumors large
enough to be visible. In contrast, the genetic diversity contained
within the same tumor does not deviate from the predictions of
the non-Darwinian model. A caveat is that whereas the number of
population samples used in testing Darwinian selection in natural
populations is often in the hundreds, the sample number rarely
exceeds 10 in intratumor studies (12, 13, 15–18, 30, 31). Therefore,
the power to reject the null model in tumor studies might have
been too low. Clearly, there is a need to sample a large number of
regions in one single tumor. In this study we sampled close to 300
regions to examine the spatial distribution of single-nucleotide
variants and to estimate the amount of genetic diversity in the
tumor. We used these data to give a rigorous test of the null hy-
pothesis of non-Darwinian evolution.

Results
Sampling, Sequencing/Genotyping, andMutation Calling.The honeycomb-
like microdissections yielded 286 tumor samples on a plane of a
single HCC tumor (Materials and Methods, section 1), each sample
being a cylinder of 0.5 mm in diameter and 1 mm in height (Fig.
1A and Fig. S1). A sample contained, on average, 20,000 cells (Fig.
S2 and Materials and Methods, section 2) and permitted precise
delineation of clones. Fig. 1A displays the spatial distribution of the
286 tumor samples, which were evenly distributed among the four
quadrants of the tumor slice, labeled A–D clockwise. The 23 se-
quenced samples (red color in Fig. 1A) were also evenly distributed,
with 12 on the periphery of the tumor and 11 in the interior.
For sequencing, the average read depth was 74.4× per sample

(Dataset S1), yielding a total of >1,700× for the plane of Fig. 1A
(SI Materials and Methods). With the additional genotyping over
286 samples, the coverage is to our knowledge the highest ever
carried out on a single tumor. The average sample purity is 85%
as described in the legend of Fig. 1A (Materials and Methods,
section 3). In total, we found 269 single-nucleotide variations
(SNVs) in coding regions or at splice sites (Materials and Methods,

Fig. 1. Sampling scheme and clonal genealogy of HCC-15. (A) Samples were taken from a 1-mm-thick slice cut through the middle of a HCC tumor, 3.5 cm in
diameter. Of the 286 samples, 23 were subjected to whole-exome sequencing (red numbers) and the rest (black numbers) were used in genotyping for mutations
discovered in sequencing (Materials andMethods, sections 1–5). The numbers correspond with those of Fig. 2. Across the sequenced samples, the average read depth
was 74.4× (Dataset S1). On average, these samples contained 85% cancerous cells estimated by ABSOLUTE (52). This level of purity is consistent with previous reports
regarding hepatic tumor samples (12), especially when the sample volumes are small (∼20,000 cells). Pathology reports, when available for thematchedHCC samples,
generally agreed with the purity estimates. (B) All 35 polymorphic nonsynonymous mutations in the sequenced samples are shown in the heat map, which depicts
the observed frequencies (from 0 in white to 1 in yellow) with mutation names at the top of the map. Each row presents the mutations in a sequenced sample. Far
Right shows six fixed mutations that are potential drivers. Left shows the genealogy of the 24 samples. Only two clones, indicated by blue bars, are represented by
more than one sample. (C) The genealogy of clones arranged to reflect their spatial relationships. The ancestral clone, Ω, is in the middle and the descendant clones
radiate outward. These clones are arranged on six rings with each outer ring having one more nonsynonymous mutation (indicated) than its interior neighbor. Each
star symbol represents a singleton clone. (D) The expanded genealogy that includes all 286 samples. The blue stars designate the sequenced samples.
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sections 4 and 5 and Dataset S2). Due to the dense sampling, SNVs
found in multiple samples are unambiguous by the cross-validation
among samples, using whole-exome sequencing (WES) and/or
Sequenom. Singleton SNVs (i.e., occurring in only one sample) re-
quired additional validations. By Sequenom genotyping, and
sometimes Sanger sequencing, all singleton SNVs presented have
been confirmed to be true positives (Datasets S2 and S3 and Fig.
S3). Therefore, the final SNV calls for this study are considered
free of false positives. Furthermore, given the large number of
samples, false negatives would likely be negligible.
Copy number alterations (CNAs) are another common source

of somatic genomic aberration. We used the program package
CAScnv to call CNAs from our data (Materials and Methods,
section 3). On average, each sample contained 23.6 CNAs, dis-
tributed among 14 chromosomes (SI Materials and Methods and
Dataset S4). Because the mechanisms of CNA production are very
different from those for SNVs, and because the latter also are
much easier to ascertain, this study focused on SNVs (Discussion).

Fixed and Polymorphic Somatic Mutations. Somatic mutations dis-
covered in the sequenced samples were classified as either fixed or
polymorphic. In this study, the terminology of population genetics
is applied to facilitate theoretical analyses. Fixed mutations were
those present in the entire cancerous cell population but absent in
the noncancerous sample. These mutations must have already
occurred at the onset of tumorigenesis. Polymorphic mutations, on
the other hand, were present in some but not all cancerous sam-
ples (Materials and Methods, section 6).
Among the 269 SNVs observed in HCC-15, 209 and 35 mutations

were confirmed to be fixed and polymorphic, respectively (Datasets
S2 and S3 and Fig. S4). The remaining 25 mutations, divided into 22
possibly fixed and 3 possibly polymorphic SNVs, were not used in
the analysis. The 35 validated polymorphic SNVs would define clone
sizes and delineate clonal boundaries according to the genotypes of
the 286 samples (Materials and Methods, section 7 and Dataset S3).
The 209 fixed mutations are divided into 166 protein-altering

mutations (comprising 148 missense, 11 nonsense, and 7 splicing
mutations) and 43 synonymous changes. In Materials and Methods,
section 8, Fig. S5, and Dataset S5, a list of “driver” genes that are
significantly more commonly mutated in cancer samples, especially
in gastrointestinal and HCC tumors [Dataset S6; https://tcga-data.
nci.nih.gov/tcga/tcgaHome2.jsp; Schulze et al. (32)], was compiled
from published data. In reference to this list, we identified 6 pu-
tative driver genes among the fixed mutations, which were CCAR1,
CPXM2, DNAH7, TMPRSS13, TP53, and TSC1. In contrast,
none of the 35 polymorphic mutations is in the driver group.
The pathways represented by the fixed and polymorphic mu-
tations are also somewhat dissimilar, as shown in Dataset S7.

Clonal Diversity and Genealogy.The 35 validated polymorphic SNVs
delineated 20 cell clones among the 23 sequenced samples. A
clone is defined as a cell population carrying a unique set of so-
matic mutations. We denoted Φi as the number of clones that
appeared i times in n samples. The vector of [Φi, i in 1 to n − 1] is
the allele frequency spectrum in population genetics (2, 3). In our
data, [Φi = 18, 1, 1, 0, 0, 0 . . .; i = 1–22] and n = 23 = 18 × 1 + 1 ×
2 + 1 × 3. In other words, 20 (= 18 + 1 + 1) clones consisted of
18 singletons, 1 doubleton, and 1 tripleton, which were, respec-
tively, cell clones represented by one, two, or three samples. The
small number of samples (3 of 23) yielding redundant informa-
tion was indicative of the extensive diversity in the coding re-
gions of the tumor. In particular, Simpson’s diversity index, H =
1 − Σ(Φi/n)

2, was 0.941, indicating that two random samples
would have a very high probability of being genetically different.
The genealogical relationship of the 20 clones is shown in Fig.

1B. The same genealogy with spatial information is given in Fig. 1C,
in which clones were shown to emanate from the ancestral Ω clone
in the center. For visual clarity, these clones were arranged on five
rings, denoting the number of mutations away from Ω. The 7 direct
descendants of Ω, labeled from α to η, all carried 1–2 mutations in
addition to that of the Ω clone. Their descendant clones, each
having additional mutations, were denoted with primes (δ′ and δ′′,
for example). Some clones at the end of a branch were marked by a
star symbol, which represented a singleton. On average, the number
of coding mutations (U) accrued since the tumor began to grow
from a single progenitor cell was 2.65 (Fig. 1C). As shown in Table
1, U is an important parameter in determining the genetic diversity
of the entire tumor and, at U = 2.65, the mutation rate in HCC-15
is unexceptional among studies of intratumor diversity (12, 13, 16–18,
31). The genealogy of Fig. 1Cwas further expanded to include all 286
samples as portrayed in Fig. 1D (Materials and Methods, section 7).

Sizes of the Mutation Clones in Relation to Darwinian Selection. To
delineate the size and spatial limit of each clone, the 286 samples
were genotyped. Although a cell clone is typically defined by a suite
of mutations (Fig. 1C), it may often be more informative to define a
“mutation clone” by the collection of clones that share that muta-
tion. For example, the MUC16 clone in Fig. 1C was composed of δ,
δ′, δ′′1, δ′′2, δ′′2′, and D62 clones, whereas the THRA clone,
which included δ′′2 and δ′′2′, was a subclone of the MUC16 clone.
Fig. 2 displays the sizes and spatial patterns of the mutation

clones observed, with the subclones shown in increasingly darker
shades. Genealogically, separate clones were observed to be seg-
regated, revealing limited cell movement within solid tumors. The
“sectoring” patterns of Fig. 2 suggested that clones grow out-
wardly, as the derived subclones were consistently observed on the
outer flank of the parental clone.

Table 1. Expected clonal diversity, HT, according to Eq. 3

NT = 103 NT = 104 NT = 105

Exponential growth:
dN/dt = r N and Nt = ert

r = ln(2) × 0.1 0.850 (u = 0.02, T = 100) 0.910 (u = 0.015, T = 133) 0.936 (u = 0.012, T = 167)
r = ln(2) × 0.01 0.586 (u = 0.002, T = 1,001) 0.772 (u = 0.0015, T = 1,335) 0.860 (u = 0.001, T = 1,668)

3D growth: dN/dt = r N2/3

and Nt = (1 + rt/3)3

r = (36π)1/3 × 0.1 0.944 (u = 0.036, T = 56) 0.968 (u = 0.016, T = 127) 0.976 (u = 0.007, T = 282)
r = (36π)1/3 × 0.01 0.776 (u = 0.0036, T = 558) 0.902 (u = 0.0016, T = 1,274) 0.952 (u = 0.0007, T = 2,817)

2D growth: dN/dt = r N1/2 and Nt = (1 + rt/2)2 (u = 0.03, r = 2π1/2 for all cases below)
Simulations under a well-mixed

population (calculation by Eq. 3)
0.667 ± 0.075 (0.643) 0.968 ± 0.01 (0.965) 0.9997 ± 0.0005 (0.9997)

Simulations under spatial rigidity 0.728 ± 0.096 0.978 ± 0.012 0.9999 ± 0.0001

T and u are also given. Three different growth models reaching different final cell numbers (NT) are used in the calculation. U = u × T = 2, which
corresponds to the number of coding region mutations acquired during tumor growth (main text and SI Materials and Methods). T is the number of
generations to reach NT and u is the mutation rate per generation. When cells double every generation with no cell death, r = ln(2). Hence, r = ln(2) ×
0.1 would mean 10% of the growth rate of the pure cell-doubling populations. In the 2D “simulations under a well-mixed population,” the results are
checked against the theoretical values given by Eq. 3. The simulated values match the theoretical calculations well.
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We now evaluate whether certain clones grew faster than others.
The null hypothesis of non-Darwinian evolution was that all clones
have the same (or neutral) growth rate, whereas the alternate hy-
pothesis of Darwinian selection posits faster growth of some clones.
To test the null hypothesis, we compared the sizes of the observed
mutation clones with the expected sizes, often referred to as the
mutation frequency spectrum and denoted as [ξi, i = 1 to n − 1]. ξi
is the number of sites where the mutant appears i times in
n samples in the infinite-site model of population genetics (2, 3). In
HCC-15, [ξi = 26, 7, 1, 1, 0, 0, . . .] for i = 1–22 (Fig. 2 legend and
Dataset S8), where Σiξi = 35 was the number of mutations in the
sequenced samples (Materials and Methods, section 9).
In a population with a constant effective size of NT, E(ξi) = θ/i,

where θ = 2NTu (2, 3). In exponentially growing populations, the
corresponding E(ξi) has been defined by Durrett (25) as

E
�
ξn,i ≅

u
r

n
iði− 1Þ

�
2≤ i< n, [1]

where r is the rate of population growth, the difference between cell
birth and death rates (see below). In addition, u is the mutation rate
per cell generation, and n is the sample size (Materials and Methods,
section 10). Because Σi>1ξi = (7 + 1 + 1) = 9 = 23 × u/r × Σi>11/i(i −
1) = 23 × u/r × 0.95, we obtained u/r = 0.41 by Eq. 1. For the total of
35 sites, [E(ξi) = 26.0, 4.72, 1.57, 0.79, 0.47, 0.31, . . .], which was very

close to the observed spectrum of [ξi = 26, 7, 1, 1, 0, 0, . . .] (χ2 =
2.53 and P = 0.865 for ξi>1s). Hence, the size distribution of the
mutation clones (Fig. 2) was as expected under the neutral model,
and no clones were of unusually large proportion.
The next question is whether the analysis would have the power

to reject the non-Darwinian model if selection was indeed in op-
eration. A key feature of the neutral spectrum is that it has very few
high-frequency mutations. In our samples, only ∼0.5 site is expected
to have a frequency greater than 50%. Thus, even a very small
number of mutations that have been driven to a high frequency by
selection would stand out, as noted before (19). For example, if only
one of the 35 mutations in our samples was driven to a high fre-
quency of 90%, or 3 of the 35 were driven to the medium frequency
of 50%, the new spectra would be rejected as neutral with P < 0.05.
This can be seen in the simulations based on Eq. 1 and presented in
Materials and Methods, section 11 and Fig. S6. Of course, a true
comparison between the non-Darwinian and Darwinian models is
possible only when the mode and strength of selection are specified
in the Darwinian model. It may hence be more appropriate for in-
vestigators with a defined selection scheme to carry out such a test.
The simplest form of selection does make a qualitative prediction

in which larger clones, driven by selection, may have taken less time
to become larger than the smaller clones. When time is measured
by mutation accumulation, the larger clones may be younger,
whereas in the non-Darwinian model the larger clones would be

A

B

Fig. 2. Map of the mutation clones of HCC-15. A mutation clone is the aggregate of all samples carrying that mutation (main text). Hence, subclones (with in-
creasingly darker hues) are nested within their parent clones. (A) Each star symbol indicates a singleton clone, represented by one sample. The clonal boundaries are
delineated by the genotypes of all 286 samples. Many samples straddle two clones (including A3, B17, B19, B20, C78, D6, D9, and Z1). In this “sectoring” pattern of
growth, δ′ grew outward from δ and, subsequently, δ′′s (−1, −2) grew outward from δ′. Note that tumors grew in three-dimensional (3D) space but the observations
made were on a two-dimensional (2D) plane. This was apparent in the “northeast” direction, along which both the α and β clones were extending from the interior
toward the periphery. It appears that α grew above or below β in their expansion toward the periphery. (B) The δ lineage clones are pulled out to display the
overlaying pattern of mutation clones. The clonal map was also used to compute the mutation frequency spectrum, ξi, which is the number of sites where the
frequency of the mutation was between (i − 1)/23 and i/23 from the 286 samples. We kept the number of frequency bins at 23 because the mutations discovered
remained based on the initial 23 samples. The spectrum, as given in the text, is [ξi = 26, 7, 1, 1, 0, 0, . . .] for i = 1–22 (Materials andMethods, section 9 and Dataset S8).
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older (2, 3). In a previous study, Tao et al. (31) showed that,
among physically separated HCC tumors, younger but larger tu-
mors appeared to have been driven by Darwinian selection. The
authors also detected many small and visible tumors, presumably
neutrally growing, by molecular means. Within the same tumors,
Tao et al. (31) found the expected non-Darwinian pattern in which
the younger clones are smaller than the older (parental) ones. The
trend is also observable in HCC-15. For example, γ→γ′→Z1,
β→β′→B33, and e→e′→C2, where A→B means the B clone is
derived from and is smaller than the A clone. Taken together, in
this first study with the necessary empirical data that were ana-
lyzed by modern population genetics theory, the evolution within
this single tumor appears largely non-Darwinian.

The Genetic Diversity of the Entire HCC-15 Tumor. The ability of a
tumor to respond/adapt to challenges may depend on MALL (the
total number of coding mutations in the entire tumor).MALL has
not been estimated before because under a Darwinian model it
would vary greatly, depending on how selection operates. Esti-
mation is feasible under non-Darwinian evolution as shown by
the four methods used to estimate MALL in HCC-15. The most
conservative estimate isMmin. When a tumor grows from one cell
to NT cells, the minimal number of cell divisions and mutations
should be NT − 1 and Mmin = NT × u, respectively. The highest
estimate of diversity was obtained from exponentially growing
populations (Mexp) in which the number of mutations with fre-
quency >x in the entire population is given by Durrett (25) as

MexpðxÞ= u
r
1
x
. [2]

In between these two estimates areMeq andM3D. The estimates of
MALL are given in the Fig. 3 legend, which explains the four meth-
ods, with the details given inMaterials and Methods, sections 12–14.
When HCC-15 had only 106 cells (∼1.0 mm in diameter), less

than 0.1% of its final size, all four estimates are within an order of
magnitude of 105 coding mutations. IfMALL is extrapolated to the

final tumor size of >109 cells, it would be greater than 100 million.
In comparison, under the specific model of Darwinian evolution
of Tao et al. (31), MALL would be orders of magnitude smaller
(Materials and Methods, section 15 and Dataset S9).
The estimated large diversity of HCC-15 consisted mostly of low-

frequency mutations. Small local regions of the tumor are each
expected to harbor some levels of diversity, which are the building
blocks of the total diversity. In Fig. 4, using the rules of clonal
growth and mutation accumulation for HCC-15, we simulated the
total diversity. The clonal diversity of the plane through the middle
of the tumor is illustrated in Fig. 4A (clones >50,000 cells were
shown). Importantly, the observation in Fig. 2 and the simulation in
Fig. 4A provided visual confirmation of the statistical test based on
[ξis]. The size distribution, the growth dynamics, and the geography
of the clones of HCC-15 therefore agreed well with the non-
Darwinian growth model. When the simulations of Fig. 4Amagnify
into smaller areas, the diversity continues to increase as shown by
Fig. 4B (resolution >4,000 cells) and Fig. 4C (resolution >100
cells). If we randomly sample and sequence ∼50 cells from a local
area at the scale of Fig. 4C, the observed genetic diversity should
match the simulations. Using the 23 WES samples, we indeed
verify the simulated high local diversity in the Fig. 4D legend.

Intratumor Genetic Diversity—A General Theory. This high-density
study suggests that previous reports on intratumor diversity should
be reevaluated in light of the non-Darwinian model (8, 11–18).
Under this simpler model, the diversity estimates of Figs. 3 and 4
can be generalized because a tumor’s diversity depends only on
how much time (measured by mutation accumulation) it has taken
the tumor to grow to a given size (Materials and Methods, sections
16 and 17). The expected genetic diversity at generation T (HT, the
probability that two randomly chosen cells are genetically different
in the coding region) can be expressed as

HT = 1−
e−2u

NT−1
−

Xt

j=2

(
e−2uj

NT−j

Yj=1
i=1

�
1−

1
NT−i

�)
, [3]

where Ni is the population size at generation i, T is the time
(measured in generations) of tumor growth from a single progenitor
cell, and u is the mutation rate in the coding region (Materials and
Methods, section 16). A generation is the time between cell divi-
sions. An alternative formulation based on the birth-and-death pro-
cess yields nearly identical results (Eq. 6 in Materials and Methods,
section 16). Although T and u in Eq. 3 are not known, their product
(U = uT) is observable. U, the number of somatic mutations ac-
crued during tumor growth, has been well documented (12, 13, 16,
17). When a population of cells grows from a single progenitor to
NT in a duration measured by U, NT and U will largely determine
the level of genetic heterogeneity (Materials and Methods, section
17). Eq. 2 shows the diversity to be the product of NT and U.
In Table 1, we computed the clonal diversity by setting low

NTs, between 103 and 105 cells, under three different growth
models (Materials and Methods, section 17). A tumor with fewer
than 106 cells is not detectable by current imaging technologies
and U = 2 corresponds to two coding region mutations during
tumor growth, which is also conservative (12, 13, 16, 17). Even
given these parameter values, the neutral clonal diversity is still
very high, in the range of 0.6–0.99. For NT > 105 cells, two random
cells should almost always be genetically different. Importantly, H
is not greatly affected by the assumed model (exponential, 3D, or
2D growth) of tumor growth because T and u would vary in op-
posite directions to yield similar H values (Table 1). The conclu-
sion of high diversity should therefore be generally applicable.

Discussion
Darwinian selection is undoubtedly the driving force of bi-
ological evolution but even Darwin himself was puzzled by the
amount of genetic diversity within a species. As pointed out by
Fisher (20), the better genotypes should have taken over the

Fig. 3. Estimated mutation frequency spectrum in the entire HCC-15 tumor.
Four estimates assuming different modes of population growth to NT = 106

cells are given (Materials and Methods, sections 10 and 12–14), all within the
same order of magnitude of 105 mutations. (i) Mmin, the lowest possible
estimate of MALL, is (NT – 1)u (Materials and Methods, section 12). It is here
simulated in populations that grow on the periphery, but the interior cells
neither divide nor die. (ii) Meq is the estimate of the total diversity assuming
that the population has remained at a constant size, equivalent to the
long-term average of nonconstant populations. Based on the standard
population genetic formulas for constant populations (2, 3), the higher-
frequency bins tend to be overestimated and lower-frequency ones
underestimated. Overall, Meq would be an underestimation (details in Ma-
terials andMethods, sections 12–14). (iii)Mexp is obtained for populations that
have grown exponentially from a single cell with the cell birth rate being
larger than the death rate (Eq. 2 and Materials and Methods, section 12).
(iv) M3D is for the 3D cell population that grows on the periphery with
frequent cell turnover in the interior (Materials and Methods, section 14).
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populations, leaving little room for within-population diversity
(19, 21). In the modern Darwinian view (26, 27), complex forms
of selection might be able to maintain high intratumor diversity
but quantitative predictions, against which observations can be
compared, need to be generated first (4, 6, 33, 34).
We propose that non-Darwinian evolution be considered the null

model, under which one can generate testable predictions. If the
non-Darwinian predictions are rejected, it will then be necessary to
incorporate some forms of selection into the model (1, 3). In this
study, we test the evolution of SNV. The non-Darwinian prediction
is consistent with the high Ka/Ks ratios (nonsynonymous/synony-
mous SNVs per site) observed in 400 cancer genomes (29) and in
The Cancer Genome Atlas (TCGA) data (35). The ratio is statis-
tically indistinguishable from 1 in most studies (36), thus indicating
ineffective selection against protein sequence changes in tumors.
Cases of Ka/Ks ∼ 1 are rarely seen in nature; for example, Ka/Ks <
0.3 between humans and other primates (1).
The level of intratumor diversity is very different between

Darwinian and non-Darwinian evolution. Under non-Darwinian
evolution, HCC-15 may have 100 million coding mutations and
those in the very low-frequency range account for the bulk of the
diversity. Fig. 4D based on the polymorphisms within the 23
sequenced samples corroborates this estimate. Under the selec-
tion model of Tao et al. (31), the high diversity could be realized
only when the selective coefficients are small, i.e., when Darwinian
evolution converges with non-Darwinian evolution.
In view of our estimate of the presence of hundreds of millions of

SNPs in a tumor the question then arises, “Why is there little
Darwinian selection?”. One reason is that the bulk of the mutations
are in very low frequencies. The frequency spectrum in a rapidly
growing population approaches θ/x2, where x is the mutation fre-

quency. In fact, ∼99% of the mutations are found in fewer than 100
cells. Given the strong random drift on low-frequency mutations, it is
not surprising that the bulk of mutations appear to be subject to no
selection. However, a more important reason may be that in a solid
tumor cells stay together and do not migrate, so that when an ad-
vantageous mutation indeed emerges, cells carrying it are competing
mostly with themselves. These mutations may confer advantages in
fighting for space or extracting nutrients but they are stifled by their
own advantages. In a nonsolid tumor such as leukemia, cells are not
spatially constrained and a selection sweep may indeed occur.
In a physiological sense, good mutations may emerge now and

then but in solid tumors the cell populations are so structured that
selection may often be blunted. The physiological effect has to be
very strong to overcome those constraints. That may be what a
drug treatment does—it “loosens up” the population for ef-
fective competition to occur.
It is important to note that several types of genetic changes,

including synonymous and nonsynonymous SNVs, CNAs, and
epigenetic changes, are evolving in the same genomes. Although
the constraints on selection discussed above may apply to all
mutations, different types of changes, even synonymous and
nonsynonymous SNVs in the same genes, may nevertheless ex-
perience different selective pressures and exhibit different evolu-
tionary dynamics. The conclusion of this study applies to SNVs.
Whether CNAs or other changes may evolve in the Darwinian
mode cannot be tested at present because the underlying forces
such as mutation rate are largely unknown.
Patient survival has been shown to be negatively correlated with

the level of genetic diversity within tumors (5, 7–9). When muta-
tions can be found in nearly all possible coding regions within a
tumor, resistance to most drugs seems highly likely. Read et al. (37)

Fig. 4. Simulated vs. observed fine-scale diversity
in HCC-15. (A–C) Simulated clonal diversity at three
levels of resolution. Adjacent clones are differenti-
ated by different colors but nonneighbors often
have to be depicted by the same color. Neighboring
clones usually differ by one to two coding muta-
tions. The three panels zoom in with finer resolu-
tion. The axis labels are the numbers of cells. The
minimal clone sizes to be displayed are 50,000, 4,000,
and 100 cells in A–C. The mutation rate is u = 0.03 in
coding regions and NT = 1.15 × 109. The simulations
are done in the 3D space (Materials and Methods,
section 14) and samples are taken from a 2D plane
cut through the middle as in the actual sampling.
Note that clones sometimes go around one another
in the third dimension. The simulated A and the ob-
served Fig. 2 are roughly in the same scale. (D) Ob-
served local diversity. From each of the 23 WES
samples with an average read depth of ∼75×, the
equivalents of 37–38 random cells are sequenced. The
mean numbers of mutations in each size bin (ranging
from 1 to 40 cells in increments of 5) as well as the
SDs across the 23 samples are given. The simulated
numbers when 40 cells are sampled from the equiv-
alents of C are also shown. The agreements between
the observed and simulated mutation numbers are
generally good, except in the smallest-size bin of one
to five reads where sequencing errors are high.
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pointed out that aggressive strategies against cancerous cells are
effective only in the absence of resistance at treatment and various
strategies for administering drugs in the face of resistant clones have
been proposed (38–42). Finally, a key feature of the non-Darwinian
model is the rapidity with which mutations accrue. Even micro-
scopic tumors with fewer than 105 cells, which are often targets of
postsurgery adjuvant therapy, would be genetically diverse (Table
1). The possibility of high intratumor diversity even in small tumors
suggests a need to reevaluate treatment strategies.

Materials and Methods
The following sections present essential technical information that is referred
to asMaterials and Methods, sections 1–17 in the text. Additional details can
be found in Supporting Information).

1) Clinical Information. The patient was a 75-y-old man with chronic Hepatitis
B Virus (HBV) infection and liver cirrhosis. The tumor, ∼35 mm in diameter,
was on the left lobe of the liver and well encapsulated. It was a histopath-
ological grade III hepatocellular carcinoma (HCC) diagnosed at Peking Uni-
versity Cancer Hospital. The pathology report indicated that the tumor
sections contain ∼90% hepatoma cells. Two sections of 35 × 35 × 10 mm
from the tumor and an adjacent nontumor sample were obtained. This study
was approved by the Ethics Review Committee of Peking University
Cancer Hospital. Informed consent was signed according to the regulations
of the institutional ethics review boards.

2) Number, Volume, and Geographical Distribution of Samples. The honey-
comb-like sampling is further described in Fig. S1. One 1-mm-thick slice of the
tumor sample was subjected to high-density microdissection, using the
Harris Micropunch with 0.5 mm inner diameter. In total, 286 microsections
were obtained, equally distributed in the four quadrants (labeled A–D; Fig.
S1). An adjacent nontumor sample was used as the control. Genomic DNA
was extracted using the TIANampMicro DNA Kit (Tiangen) and quantified
using a Qubit 2.0 fluorometer according to the manufacturer’s instructions.

Special attention was paid to minimizing the sample volume (number of cells
per sample) as genealogical information is better preserved in samples of smaller
volume. Given that the diameter of aHCC cell is about 25 μm(20–30 μm), and the
volume of a microsection is ∼0.2 mm3, the number of cells in a microsection was
estimated to be ∼24,000. DNAwas extracted and quantified from 10,000 tumor
cells that were precisely collected by laser capture microdissection (LCM). The
cell number in each of the microsections was estimated based on the reference
quantity. For the 286 microsections, the median number of cells per sample was
∼20,000, which approximates the number estimated by volume (Fig. S2).

3) Detection of Copy Number Alterations and Estimation of Tumor Purity.
CAScnv (an in-house software) was used to detect the somatic copy num-
ber alterations (Supporting Information). We used ABSOLUTE (49) (www.
broadinstitute.org/cancer/cga/ABSOLUTE) to infer the purity and ploidy for
our samples. The copy number alterations called from whole-exome se-
quencing reads using CAScnv were input into the ABSOLUTE program (49). Based
on precomputed models of recurrent cancer karyotypes, the ABSOLUTE al-
gorithm examined possible mappings from relative to integer copy numbers
by jointly optimizing two parameters, α  (purity) and τ (ploidy). The inferred
tumor purity and ploidy of all 23 tumor samples are shown in Dataset S1,
which are consistent with the estimates in the pathology report.

4) Detection of Somatic SNV. Tagmentation-based library preparation (Fig. S7),
WES, and sequence alignment are described in Supporting Information. Somatic
SNV calling was performed using the in-house software, CASpoint, which has
been extensively tested in the public domain (Dataset S10; also see the result in
the International Cancer Genome Consortium-TCGA DREAM Somatic Mutation
Challenge (SMC): https://www.synapse.org/#!Synapse:syn312572/wiki/70726).
We compared the false positive and negative rates, sensitivity, and accuracy of
CASpoint in SNV calling with the performances of other published software
installed in the Beijing Institute of Genomics (BIG) computational center and
bioinformatics facility, including Mutect (43), SomaticSniper (44), JoinSNVmix
(45), Varscan2 (46), and Samtools (47). Simulated sequencing reads in the SMC
and a large set of whole-genome or -exome sequencing reads produced from
various genomics projects in solid tumors (31) and leukemia (48) in Beijing In-
stitute of Genomics were used to evaluate the performance of CASpoint. The
overall accuracy of CASpoint is comparable to the others for the SMC simulated
reads. Because CASpoint showed better performance in reducing false positive
rates than other programs for real sequencing data according to validation

results using Sequenom and Sanger sequencing, the in-house program was
used in this study to minimize the false positive rate.

As described in Zhu et al. (48), two statistical tests are introduced in the
program. One-sided Fisher testing calculates the statistical significance of
tumor mutant allele frequency (MAF) that is higher in the tumor population
than in the normal cell population. Binomial testing calculates the signifi-
cance of tumor mutant allele number observed from the aligned tumor
sequencing data that meet a binomial distribution. In addition, 10 filtering
criteria were applied to detect somatic SNVs as described in Supporting In-
formation. All somatic mutations are shown in Dataset S2.

5) Validation of the Observed SNVs Across the 286 Samples. SNVs discovered by
WES were validated by Sequenom genotyping on the 286 samples. These dis-
covered SNVs fall into three classes: (i) The ALL class has 178 SNVs that were dis-
covered in all 23 WES samples (all red dots in Fig. 1A), (ii) the MOST class has 53
SNVs that were present in most samples and missing in only a few (usually 1–4
where read depthwas low), and (iii) the SOME class has 38 SNVs thatwere present
in some (≤6 samples; Fig. 1B) but missing in all other samples. These partitions are
shown in Fig. S4 and the mutant allele frequencies are shown in Dataset S2.

The three classes ofmutations (ALL, MOST, and SOME) require different levels
of efforts of validation by Sequenomgenotyping: (i) For the 178mutations in the
ALL class, their ubiquity is certain. We chose 3 of these mutations for validation
in the 286 samples and confirmed their ubiquity. (ii) The 53 mutations in the
MOST class were validated in the few WES samples where they were found
missing. In samples where the mutant was missing due to low read depth,
Sequenom confirmed the presence of these 31 mutations (Dataset S2). There are
22 ambiguous cases where the mutant is missing in 1–3 samples that have copy
number alterations in the regions of the mutations. These are likely cases of loss
of heterozygosity (LOH). Although we suspect the mutations to be “possibly
fixed” with a few LOH samples, these 22 mutations are not included in sub-
sequent analyses. (iii) The 38mutations in the SOME class were validated in all or
most of the 286 samples. The results are shown in Dataset S3. Of the 38 mu-
tations, 3 could not be reliably detected across samples due to PCR difficulties.
Hence, we analyzed only the remaining 35 mutations as true polymorphisms.

We used the SequenomMassARRAY Assay Design 3.1 software to design the
PCR andMassEXTEND primers (Dataset S11) for multiplexed assays. MassEXTEND
reactions and iPLEX Gold assays were subsequently used for primer extension
and allele frequency measurement. The allele-specific extension products for
different allelic types were quantitatively analyzed, using the MALDI-TOF mass
spectrometer. Using the mutant signal of nontumor as a negative control, mu-
tation calling and allele frequencies for each SNV site were determined using the
MassArrayTyper 4.0 Analyzer according to the manufacturer’s specifications. To
estimate mutant allele frequency and degree of heterozygosity, the peak areas
of the mutant and the wild-type allele were quantified and the mutant allele
frequencies were determined as the average of (mutant peak)/(mutant peak +
wild-type peak). We wrote scripts to extract mutation frequencies from Seque-
nom Typer 4.0 software. Genomic positions for all validation SNVs were re-
trieved using the HG19 as reference. Some SNVs found in only one sample were
further validated by PCR and Sanger sequencing (Supporting Information).

6) Identification of Fixed and Polymorphic Somatic Mutations. Based on the
descriptions inMaterials and Methods, section 4 and the results of Datasets S2
and S3 and Fig. S4, the 269 SNVs are classified as 209 confirmed fixed SNVs, 35
confirmed polymorphic SNVs, and 25 less certain mutations. These 25 muta-
tions, including respectively 22 possible fixed and 3 possible polymorphic
mutations, were not used in the analyses. The partition of these 269 SNVs
summarized in Fig. S4 is as follows:

i) The confirmed 209 fixed mutations include 178 from the ALL class and 31
from the MOST class described inMaterials and Methods, section 4 above.
The 178 SNVs were observed in all 23 WES samples (Dataset S2) and the
limited validation among unsequenced samples indeed confirmed their
ubiquitous presence. The 31 MOST class mutations were present in all but
a few (1–4) WES samples, due to low depth coverage of such sites in these
samples. Sequenom results validated their presence in these samples.

ii) The 35 confirmed polymorphic mutations are listed in Dataset S2 among
WES samples. They were further validated across the 286 samples by
Sequenom (and occasionally by Sanger sequencing) as shown in Dataset
S3, which is the basis of the spatial distribution of these mutations
shown in Figs. 1 and 2 of the main text.

iii) For the remaining 25 SNVs, 22 mutations are missing in 1–4 samples
(Dataset S2, under “SNV in CNA regions”). These mutations occurred
in regions of frequent CNAs, which would result in LOH. LOH could be
inferred directly from these data when AB (mutations A and B occurred
in 20 samples), A+ (mutation A but not B occurred in 2 samples), and +B
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(mutation B but not A occurred in 1 sample) were all observed. In this
pattern, B is lost twice and/or A is lost once. From the pattern shown in
Dataset S2, it is likely that all of the 22 mutations are fixed but it is
prudent to exclude them from subsequent analyses, as was done here.

iv) The 3 possibly polymorphic mutations were detected in someWES samples
but could not be reliably genotyped across the 286 samples by Sequenom.
They are almost certainly polymorphic mutations but could not be used in
this study to delineate the spatial boundaries of clones or their sizes.

7) Clone Map Delineation and Phylogenetic Analysis. The 35 polymorphic SNVs
unaffected by CNAs were validated in the 286 tumor samples, using Sequenom
and/or Sanger sequencing (Dataset S3). The neighbor-joining method of Saitou
and Nei (50) was used to construct the phylogenetic tree (Fig.1 B and D). A
consolidated matrix was created, containing the mutations of all samples with
“1” and “0” representing the presence and absence of a mutation based on
genotyping results of the 35 SNVs. We used the “APE” R package (51) and iTOL
(itol.embl.de) for constructing and plotting the phylogenetic trees (Fig. 1 B and
D). The positions of eight samples (A3, B17, B19, B20, C78, D6, D9, and Z1) that
carried mutations of two neighboring clones were marked with blue stars in
the phylogenic tree in Fig. 1D. The boundaries and space of the subclones in
HCC-15 were delineated in the two-dimensional clonal map based on both the
presence of the polymorphic SNVs and the phylogenic relationship (Fig. 2).

8) Identification of Putative “Driver” Genes. We attempted to identify driver
genes from among the 269 mutated genes in our study. As in common
practice, driver genes are defined as those that are significantly over-
represented in the cancer databases. The data we used here comprise 460,967
somatic mutations (402,716 SNVs, 42,886 small deletions, and 12,249 small
insertions) detected in whole-exome sequencing data of 1,363 patients with
gastrointestinal cancer (Dataset S6), including 202 hepatocellular carcinoma
(LIHC) (72,862 mutations), 183 esophageal carcinoma (ESCA) (54,042 muta-
tions), 288 stomach adenocarcinoma (STAD) (115,357 mutations), 220 colon
adenocarcinoma (COAD) (114,594 mutations), 81 rectum cancers (READ)
(25,003 mutations), and 147 pancreas cancers (PAAD) (56,815 mutations) from
TCGA datasets and 242 hepatocellular carcinomas (22,294 mutations) in Schulze
et al. (32). We applied the program MutSigCV 1.4 (52), which corrects for var-
iation by incorporating a patient-specific mutational spectrum and gene-
specific background mutational burden, and by measuring gene expression
and replication time as well, to detect significantly mutated genes.

In total, we identified 372 driver genes from the somatic mutations dataset of
1,363 gastrointestinal cancer cases (Dataset S5). Comparing the 166 fixed pro-
tein-altering mutations in our study to the driver genes identified from the
databases, we identify 6 putative driver genes (q-value ≤ 0.2): CCAR1, CPXM2,
DNAH7, TMPRSS13, TSC1, and TP53; the last of the 6 genes has a high fre-
quency in all gastrointestinal cancers (Fig. S5). We note that none of the genes
carrying any of the 35 polymorphic mutations in this study belongs in the driver
group. Ingenuity pathway analysis (IPA) (www.ingenuity.com) and Fisher’s ex-
act test were carried out to identify significantly enriched pathways for the
genes with polymorphic and fixed protein-sequence altering SNVs (Dataset S5).

9) Observed Mutation Frequency Spectrum. The mutation frequency spectrum
is denoted as [ξi, i = 1 to n − 1] in the main text, ξi is the number of sites
where the mutant appears i times in n samples in the infinite-site model of
population genetics. In Fig. 1B, the heat map is equivalent to a spectrum of
[ξi = 24, 2, 3, 2, 1, 3, 0, 0, . . .] for i = 1–22, where Σiξi = 35 is the number
of mutations in the 23 WES samples. In this spectrum, the mutation in each
sample is scored as either present or absent.

Because the frequency of each mutation was more accurately determined by
genotyping, ξi is represented by the number of sites where the frequency of the
mutation was between (i − 1)/23 and i/23 from the 286 samples. We kept the
number of frequency bins at 23 because themutations discovered were still based
on the initial 23 samples. The spectrum, as given in Dataset S8, is [ξi = 26, 7, 1, 1, 0,
0, . . .] for i = 1–22. There are two methods to compute the frequency spectrum
using the data from the 286 samples. One is to score the presence/absence of each
mutation in each sample. This will tend to inflate the frequencies of themutations
as samples with only a fraction of cells carrying themutation would be scored as a
full site. To obtain the spectrum of [ξi = 26, 7, 1, 1, 0, 0, . . .], we used a second
method by averaging the frequency of each mutation over all samples.

Finally, Fig. 4D presents local diversity by scoring mutations that have lower
counts in each WES sample. In calling such mutations, stringent validation is
necessary to determine the level of confidence, which would be lower as the
frequency decreases. At 21 of 22 sites, SNV calls based on 6–10 mutant reads
were validated by Sequenom genotyping (Dataset S2), a validation rate of
95.5%. SNV calls supported by >10 reads are accurate with a 99% validation

rate. The validation rates suggest that the calls in bins >5 reads are of high
confidence. We disregard calls with ≤5 reads in Fig. 4D, which gives the mean
and SD of mutation number in each of the larger size bins.

10) Expected Mutation (Site) Frequency Spectrum in Exponentially Growing
Populations.

Eξn,i ≈

8>>>><
>>>>:

nu
r

XNT r

k=1

1
n+ k

k
n+ k− 1

i= 1

nu
r

1
iði−1Þ 2≤ i<n,

[4]

where r is the rate of exponential growth, u is the mutation rate per cell
generation, n is the sample size, and NT is the cell population size at time T
(25). For HCC-15, [ξ23,i = 26, 7, 1, 1, 0, 0, . . .; i = 1–22]. Because Σi>1ξ23,i = (7 +
1 + 1) = 9 = 23 u/r, we obtain u/r = 0.41. The expected site frequency spectrum
for 35 mutations is hence [E(ξ23,i) = 26.0, 4.72, 1.57, 0.79, 0.47, 0.31,. . .].

11) Max (k)s—Frequency of the Most Common k Mutations in a Sample. We note
that the observed frequency spectrum given in the main text is [ξi = 26, 7, 1, 1, 0,
0, . . .] for i = 1–22. Hence, the average frequency of the k most common muta-
tions would be 4, (4 + 3)/2, and (4 + 3 + 2)/3 for k = 1–3, respectively. Because
Darwinian selection would drive the advantageous mutations to a high fre-
quency (19, 21), it would be informative to compare the observed frequencies of
themost common kmutations with those expected for the detection of selection.

Under the neutral model, we can determine the average frequency of themost
common k mutations in our sample, denoted Max(k). E(ξn,i) is the expected num-
ber of mutations that were found in i of the 23 samples. In exponentially growing
populations, the corresponding E(ξn,i) has been defined by Durrett (25) as Eq. 1,

E
�
ξn,i

�
≅
nu
r

1
iði− 1Þ  2≤ i<n,

where r is the rate of population growth, the difference between cell birth
and death (main text). For the total of 35 sites, [E(ξn,i) = 26.0, 4.72, 1.57, 0.79,
0.47, 0.31, . . .] which sum up to 35. We took 35 mutations from this distri-
bution and determined the Max(k) for k = 1–4. The distributions of Max(k) in
10,000 repeats are given in Fig. S6. For example, the 95% cutoff for k = 1 (i.e.,
the most common mutation) would be 20 of 23 samples. Likewise, the 95%
cutoff for k = 3 (the average frequency of the top 3 common mutations)
would be 12 as presented in the main text.

12) Four Estimates of the Total Number of Mutations (MALL). The minimal number
of mutations accrued during tumor growth was referred to asMmin. When cells
of a tumor divide from 1 to NT cells, the minimal number of cell divisions should
be NT − 1, if no cells die during tumor growth, resulting in Mmin = NT × u. We
carried out computer simulations in which tumors grew outward as a 3D mass.
In our model, cells were “frozen” when they become encapsulated inside the
tumor; only cells on the periphery were able to divide (Materials and Methods,
section 14). This mode of growth does not require manymore cell divisions than
the minimum of NT − 1. Fig. 3 shows that the number of mutations under such
a growth mode, with NT = 106 and u = 0.03 (per cell division in the coding
region, equivalent to 10−9 per cell division per base pair), was very close to the
minimum of Mmin = NT × u = 3 × 104 mutations. Even at this minimum, MALL

was substantial. The choice of u = 0.03 is in agreement with several previous
studies (18, 24), as well as with the estimate by the approximate Bayesian
computation (ABC) method (Supporting Information and Fig. S8).

The secondmethodused to estimateMALLwas to assume that the cell population
was maintained at a constant size, close to the long-term average of changing
population sizes. Standard population genetic formulaes can then be used to esti-
mate the equilibrium genetic diversity,Meq, analytically (2, 3). Nevertheless, because
the cell population is likely to have been growing, Meq would almost always un-
derestimate the true diversity. This is because the imposition of the equilibrium
conditions on the data would result in adequate estimation of diversity only in the
observable portion of the spectrum. Low-frequency mutations were expected to be
underestimated. In Materials and Methods, section 13, we provide the details of
obtaining Meq, as well as the simulation data that corroborated the conjecture of
Meq<MALL. Asmost tumors are growing, albeit not necessarily in any specificmode,
Meq should be a reasonable lower bound of a tumor’s diversity. For HCC-15, Meq

was roughly 14% of NT and substantially larger than Mmin as shown in Fig. 3.
In the third estimate, Mexp, the mode of population growth is specified. If

cells divide and die at a constant rate, the population would be growing
exponentially. The net growth (i.e., the difference between the birth and
death rates) could be positive, negative, or net zero. Under this exponential
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model developed by Durrett (25), the number of mutations with frequency
>x in the entire population is given by Eq. 2.

The elegant simplicity of Eq. 2 is not unexpected because the genetic
diversity in a tumor is largely determined by two parameters: the number of
mutations (U) each cell accumulates during tumor growth and the pop-
ulation size (NT = erT). The expression, U = uT = (u/r) ln(NT), thus anticipates
the simplicity. The total number of mutations in the tumor, Mexp(x = 1/NT), is
projected to be (u/r) × 1/(1/NT). From the observed mutation frequency
spectrum [ξis] and Eq. 1, we have obtained u/r = 0.41.

Given NT = 106 cells, HCC-15 would have Mexp= 4.1 × 105 coding muta-
tions (Fig. 3), which was more than 10-fold larger than Mmin. The mutation
frequency spectrum is also given in Fig. 3. Even for such a small tumor, there
would still be 5,000 mutations, each of which can be found in more than 100
cells. In a different approach to estimating u/r, we used an approximate
Bayesian computation method (53) by simulating a branching process with
cell birth, death, and mutation often used for modeling tumor growth (54).
We obtained the posterior mean u and r that showed u/r = 0.412 (Fig. S8),
which was nearly equal to 0.41 obtained from Eq. 1.

In the fourth estimate, M3D, the growth mode is also specified and the in-
crease in cell number is assumed to occur only on the periphery of a tumor in
3D (Materials and Methods, section 14). In the interior, each cell division results
in the birth of one cell, which would replace a neighboring cell. Because the
births and deaths cancel out in the interior, the growth rate of the tumor
(dN/dt) is proportional to N2/3, instead of N as in the exponential growth. Simu-
lation results of Fig. 3 showed that the 3D growthmode yielded similar mutation
numbers Mexp, except in the lowest-frequency bin of fewer than 10 cells.

13) Computer Simulations of Meq, a lower bound of MALL. Meq is the number of
mutations in the population by artificially imposing the mutation–drift equi-
librium on the tumor. Thus, Meq = θ ln(NT), where θ = 2Neu is the scaled
mutation parameter in tumor growth and Ne is the effective cell population
size. We implemented computer simulations to prove that Meq is a proper
lower bound of mutation numberM in a growing population.Meq is expected
to always be smaller than M under any mode of tumor growth. Three typical
growth models were simulated, including exponential growth, 2D growth,
and 3D growth. It should be noted that the cell populations with models of 2D
growth (dN/dt = r N1/2) and 3D growth (dN/dt = r N2/3) are essentially well
mixed and belong to the power law family of tumor growth models.

For exponential growth, we simulated a discrete-time birth–death process,
in which an individual divides and gives birth to two daughter cells with
probability b and dies with probability d (b + d = 1) in each generation.
Hence the expected exponential growth rate r = ln(2b). In simulation of 2D
growth or 3D growth, the birth probability varied with time, depending on
the population size N(t). In particular, birth probability b = (1 + r/N(t)1/2)/2
and (1 + r/N(t)1/3)/2, respectively, for 2D growth and 3D growth, where r is
the factor determining the growth rate.

Because Meq = θ ln(NT) and θ is unknown, we use the maximum-likelihood
method based on the Ewens sampling formula to estimate θ under a particular
growth model and associated parameters (2). To do this, we need to know the
allele frequency spectrum, which can be obtained by randomly sampling
23 cells at a time from NT = 105 cells (i.e., similar to sampling 23 cell populations
for exome sequencing in HCC-15). Therefore, we can obtain both M and Meq.
Mutation rate u = 0.03 (the whole coding region) was applied in all of the
simulations. In each model, 20 simulations were implemented and the average
was treated as the estimate for the mutation numbers M and Meq (Fig. S9).

14) Simulation of Genetic Diversity in Growing Populations. To simulate the
clonal diversity in a tumor and to compare with the theoretical predictions, we
designed cellular automata models (55, 56) to simulate tumor expansion and
mutation accumulation in 3D space.

15) The Expected Frequency Spectra Under Selection. Here, we develop a
model of selection to compare the total genetic diversity under Darwinian
and non-Darwinian evolution (SI Theory). The full model was developed to
study the evolution of tumor size (31) with selection and migration. Because
the dynamics with migration are the same as those with mutation, the
model is interchangeable for mutation and migration (31).

16) Mathematical Derivation of Clonal Diversity HT. LetNt be the population size
at generation t and u be mutation rate per generation in the coding region of
the human genome. We denote by Pr(coalescence) the probability that two
randomly chosen cells at generation t find their common ancestor at generation
t − 1. And we denote by Jt the probability that two random cells are genetically
identical at generation t (1 − Jt is equivalent to Simpson’s diversity index).

Jt can be expressed as a recursive formula:

Jt = ð1−uÞ2 × ½PrðcoalescenceÞ+ ð1− PrðcoalescenceÞÞJt−1�.

In a Wright–Fisher growing population, Pr(coalescence) can be approximated
by 1/Nt−1, and thus

Jt = ð1−uÞ2 ×
�

1
Nt−1

+
�
1−

1
Nt−1

�
Jt−1

�
, [5]

which can be solved by substituting Ji by Ji−1 successively:
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If N0 = 1, the last term can be removed. Then

Jt =
1
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When u is small, it can be approximated by

Jt =
e−2u
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Therefore, the expected clonal diversity H, the probability that two ran-
dom cells or cell clones are genetically different, at time T will be

HT = 1− JT = 1−
e−2u

NT−1
−

XT
j=2

(
e−2uj
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∏
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i=1

�
1−

1
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�)
,

which is Eq. 3.
The Wright–Fisher model of tumor growth assumes Poisson distribution for

the number of offspring cells that a cell generates in a division, whichmay not be
rigorous in modeling cell dynamics. To investigate the generality of Eq. 3, we also
derived the exact formula of clonal diversity (HT) under a discrete-time birth–
death process of tumor growth. In particular, a cell gives birth to two daughter
cells with probability a and dies with probability b (a + b = 1) in a generation.
The population grows exponentially with an expected population size of Nt =
N0(2a)

t at time t. We are primarily interested in a lineage that starts with one
single cell and propagates in a total of t generations. Therefore, N0 = 1 and Nt =
(2a)t. Suppose two cells are randomly selected from generation t; the probability
that coalescence occurs in the previous generation between the two cells is Pr
(coalescence) = 1/(Nt − 1). Solving previous recursion in the same way gives rise to

HT =1−
e−2u
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XT
j=2
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NT+1−j − 1
∏
j−2

i=0

�
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1
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. [6]

17) Estimating Clonal Diversity, HT, Under Different Growth Models. Eq. 3 can
be applied to arbitrary time variable-size cell populations. However, we
examined three models in this study to estimate the clonal diversity HT in a
growing cell population (Dataset S8), including an exponential growth
model and two power-law growth models (resembling 2D and 3D growth,
respectively).

In the exponential model, the population dynamics follow dN/dt = r*N in
continuous time. It can be solved as Nt = ert. In discrete time, r = ln(2) cor-
responds to the situation that all cells duplicate with no cell death in each
generation. We showed the results using two growth rate values as r = ln(2) ×
0.1 and r = ln(2) × 0.01, respectively. The other two models, 2D growth (dN/dt =
rN1/2) and 3D growth (dN/dt = rN2/3), belong to the power-law family of tumor
growth models. In these two models, r = 2π1/2 and r = (36π)1/3 correspond
to the condition that the population generates exactly one layer of cells in
the periphery in each discrete generation for 2D growth and 3D growth,
respectively. In the 3D growth model, two growth rate values were tested,
where r = (36π)1/3 × 0.1 and r = (36π)1/3 × 0.01.

We set NT at three levels between 103 and 105 cells and Nis for i between
0 and T, depending on which of the three growth models were used. Once the
growth model and the r value were defined, the number of cell divisions re-
quired to reach NT could be calculated. We calculated the expected clonal
diversity HT from Eq. 3 (Table 1).
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