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A scientist’s choice of research problem affects his or her personal career
trajectory. Scientists’ combined choices affect the direction and efficiency
of scientific discovery as awhole. In this paper, we infer preferences that
shape problem selection from patterns of published findings and then
quantify their efficiency. We represent research problems as links be-
tween scientific entities in a knowledge network. We then build a gen-
erative model of discovery informed by qualitative research on scientific
problem selection. We map salient features from this literature to key
network properties: an entity’s importance corresponds to its degree
centrality, and a problem’s difficulty corresponds to the network dis-
tance it spans. Drawing on millions of papers and patents published
over 30 years, we use this model to infer the typical research strategy
used to explore chemical relationships in biomedicine. This strategy gen-
erates conservative research choices focused on building up knowledge
around important molecules. These choices become more conservative
over time. The observed strategy is efficient for initial exploration of the
network and supports scientific careers that require steady output, but is
inefficient for science as a whole. Through supercomputer experiments
on a sample of the network, we study thousands of alternatives and
identify strategies much more efficient at exploring mature knowledge
networks. We find that increased risk-taking and the publication of
experimental failures would substantially improve the speed of discov-
ery. We consider institutional shifts in grant making, evaluation, and
publication that would help realize these efficiencies.

complex networks | computational biology | science of science |
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Ascientist’s choice of research problem directly affects his or
her career. Indirectly, it affects the scientific community. A

prescient choice can result in a high-impact study. This boosts
the scientist’s reputation, but it can also create research oppor-
tunities across the field. Scientific choices are hard to quantify
because of the complexity and dimensionality of the underlying
problem space. In formal or computational models, problem
spaces are typically encoded as simple choices between a few
options (1, 2) or as highly abstract “landscapes” borrowed from
evolutionary biology (3–5). The resulting insight about the re-
lationship between research choice and collective efficiency is
suggestive, but necessarily qualitative and abstract.
We obtain concrete, quantitative insight by representing the

growth of knowledge as an evolving network extracted from the
literature (2, 6). Nodes in the network are scientific concepts and
edges are the relations between them asserted in publications. For
example, molecules—a core concept in chemistry, biology, and
medicine—may be linked by physical interaction (7) or shared
clinical relevance (8). Variations of this network metaphor for
knowledge have appeared in philosophy (9), social studies of sci-
ence (10–12), artificial intelligence (13), complex systems research
(14), and the natural sciences (7, 15, 16). Nevertheless, networks
have rarely been used to measure scientific content (2, 11, 17, 18)
and never to evaluate the efficiency of scientific problem selection.
In this paper, we build a model of scientific investigation that

allows us to measure collective research behavior in a large corpus of
scientific texts and then compare this inferred behavior with more
and less efficient alternatives. We define an explicit objective func-
tion to quantify the efficiency of a research strategy adopted by the

scientific community: the total number of experiments performed to
discover a given portion of an unknown knowledge graph. Com-
paring the modal pattern of “real-science” investigations with hy-
pothetical alternatives, we identify strategies that appear much more
efficient for scientific discovery. We also demonstrate that the pub-
lication of experimental failures would increase the speed of dis-
covery. In this analysis, we do not focus on which strategies tend to
receive high citations or scientific prizes, although we illustrate the
relationship between these accolades and research strategies (2).
Our model represents science as a growing network of scientific

claims that traces the accumulation of observations and experiments
(see Figs. S1–S3). Earlier scientific choices influence subsequent
exploration of the network (19). The addition of one redundant link
is inconsequential for the topology of science. By contrast, a well-
placed new link could radically rewire this network (20). Our model
incorporates two key features of problem selection, importance and
difficulty, which have received repeated attention in qualitative and
quantitative investigations of science. We map these features onto
two network properties, degree and distance, which are central to
foundational models of network formation and search (21–23). First,
scientists typically select “important,” central, or well-studied topics
on which to anchor their findings and signal their relevance to
others’ work (10, 24). Our model uses the degree of a concept in the
network of claims (i.e., the number of distinct links in which it
participates) as a measure of its importance (see Figs. S4–S6). In
assuming that scientists’ research choices are influenced by concept
degree, we posit that scientists are influenced by the choices of
others, a well-attested choice heuristic (25, 26). Second, scientists
introduce novelty into their work by studying understudied topics
and by combining ideas and technologies that others are unlikely to
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connect (17, 20). Henri Poincaré (27) and many since (28) have
observed that the most generative combinations are “drawn from
domains that are far apart” (ref. 27, p. 24). When the concepts under
study are more distant, more effort is required to imagine and co-
ordinate their combinations (29). More risk is involved in testing
distant claims, because no similar claims have been successful (30).*
We operationalize the “cognitive distance” between concepts using
their topological distance in the knowledge network. If two concepts
are not mutually reachable through the network (i.e., in two distinct
components of the network), there is no way a scientist could hy-
pothesize a connection simply by wandering through the literature;
conceptual jumps must be made. If two molecules are distant in the
network but can reach one another (i.e., they are in the same
component), scientists would need to read a range of research
articles—likely spread across several journals and subfields—to infer
a possible connection (32). Drawing together these insights, we model
unlikely combinations as connections between neglected (i.e.,
low degree), distant, or disconnected concepts within the network
of scientific claims.

The Model
In our model, scientists select a pair of entities from all possible
pairs and test that pair for an empirical relationship.† Problem
selection is guided by a “scientific strategy,” which defines the
probability of selecting a pair of entities as a function of the
importance (degree) of each entity and the difficulty associated
with combining them (network distance). Formalizing the studies
of scientific behavior above, a strategy is determined by five
parameters, which jointly define the probability of examining a
relationship between entities i and j at time t:
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Two parameters define science’s preference for the degree cen-
trality rt−1i of each concept or entity at time t: αμ controls the weight
given to the degree of the more central node—maxðrt−1i , rt−1j Þ—
whereas αι controls the weight given to the degree of the less central
node.‡ Two parameters (β and γ) define the preference for short and
long distance between the pair, if the entities are in the same con-
nected component. The fifth parameter (δ) governs the preference
for linking entities in distinct components of a graph (6). When all
parameters are zero, the strategy is random: Each pair has a uniform
and independent probability of being selected for study. Note that,
depending on the parameter values, this model can describe a wide
range of strategies; in fact, reducing the number of parameters would
involve a priori exclusion of certain functional relationships and
hence eliminate some reasonable strategies from empirical consid-
eration. A scientist may prefer a focus on important and/or obscure
concepts; short, medium, or long walks between concepts; jumps
between concepts in different components; etc. (see Figs. S4 and S5
for illustrations of the model’s descriptive plasticity). This flexible
framework allows us to dissect an empirical network tracing the
history of published research choices. We can also test which net-
work features are most important for scientific search.

We use this model to analyze the growing network of published
knowledge about chemical entities in biomedicine (hereafter “bio-
medical chemistry”) from 1976 until 2010. In this knowledge net-
work, the core conceptual entity is a molecule. “Relationships”
between molecules can take many forms (2). Molecules may react
chemically, physically, or indirectly (the reaction byproduct of one
may interact with another). Molecules may be put in relation be-
cause they are found in the same part of the body or involved in the
same biological process. Or they may be chemically, structurally,
or functionally similar. Knowledge about chemical relationships
is central to biomedical disciplines at many scales, from organic
chemistry, biochemistry, and molecular biology to microbiology,
oncology, and pharmacology (Fig. S1). Of course, biomedicine
studies entities besides chemicals. Specific diseases are often central
to a given publication (oncology is a dramatic example), whereas
papers can be further characterized by the methods used (19).
Nevertheless, chemical entities can provide a reliable trace (see Fig.
S2): A disease is often characterized by its molecular manifesta-
tions, and many methods are fundamentally molecular, from ra-
diotracers to green fluorescent protein. To capture these chemical
traces of biomedical knowledge, we leverage expert annotations of
the MEDLINE database and match the relevant chemical terms
into MEDLINE abstracts and the US Patent Database (34) (Ma-
terials and Methods and SI Text). We assume a relationship between
chemicals that appear in the same article or patent abstract and
infer the underlying research strategies by fitting our model to the
resulting network of science.

Results
Before estimating our model, we explored the empirical pattern of
degree and distance characterizing the chemicals combined in
published articles and patents. Fig. S3 illustrates the conservative
nature of most published investigations in biomedical chemistry.
The vast majority of chemical relationships combine two chemicals
that are moderately central by 2010; in other words, most scientists
work in the “core” of various regions of biochemical knowledge
(Fig. S3A). When chemicals are combined for the first time, they
tend to be very close to one another in the network inscribed by
prior published work (Figs. S3B and S6D and Table S1), reflecting a
triadic closure mechanism (19). Most links, however, join chemicals
that have already been linked before, i.e., chemicals at distance one
(2). This conservatism contrasts with the strategies rewarded by high
citations and prizes. Consistent with earlier work (2), we find that
prize winners and highly cited scientists exhibit a more diverse range
of strategies in their published research (see Table S2). Combina-
tions of more and less central chemicals are associated with higher
citations and scientific awards (Fig. S3A). Further, awards are linked
with strategies more likely to bridge disconnected network com-
ponents (Fig. S3B). We then use our generative model to infer the
typical search strategy in biomedical chemistry. Encoding this
strategy as a set of parameter values in our model allows us to
evaluate its efficiency and identify more efficient alternatives by
searching through the parameter space.
When we estimate model parameters from the data (Table 1

and Materials and Methods), we find that typical (modal) strat-
egies are more likely to combine a relatively “famous” chemical
(one with a high degree) with a more obscure one, given the
opportunity; αμ > 0 and αι < 0. This is consistent with the emer-
gent empirical degree–degree distribution in Fig. S3A. When
molecules are in the same component, biomedical scientists
typically prefer to combine those close in the network (β< 0,
γ < 0, β � γ). Only rarely do they study chemicals in different
connected components (Figs. S3B and S6).§ In sum, the typical
strategy is oriented toward exploitation, extracting further value

*The notion that linking distant literatures is hard but potentially fruitful underwrites
Swanson’s work on literature-based discovery (31).

†Scientists often study several entities in combination. This complicates the modeling, so
we approximate the discovery process with dyadic strategies.

‡Some values of αμ and αι describe a mechanism analogous to preferential attachment
(21, 33), in which researchers choose concepts in proportion to the product of their
degrees. Our model encodes many types of preferential attachment, e.g., versions that
are superlinear in the degrees. We find that such preferential attachment strategies can
be much more efficient for discovery.

§Observed behavior is generated by the interaction between preferences and the evolv-
ing set of opportunities. This makes interpretation subtle. For example, when consider-
ing chemicals in different connected components, a specific opportunity to combine
them would be preferred (i.e., has a higher probability than an opportunity to connect
similar chemicals at finite distance). Over time, however, more nodes enter the giant
component. Hence, fewer opportunities exist to connect nodes in different components,
leading to their small absolute number (Figs. S3B and S6).
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from well-explored regions of the knowledge network (30).
Strategies estimated from MEDLINE articles and US patents
are very similar, with patents reflecting a slightly more conser-
vative strategy (Fig. S6). When we estimate model parameters
for 5-y windows (Fig. 1), we find that scientists have come to
focus on more central chemicals (higher αμ and αι). They have
become more conservative. They put increased weight on op-
portunities that explore slightly larger distances, e.g., preferring
experiments that result in triadic closure, but these preferences
interact with the space of opportunities (including the joint de-
gree distribution) to produce a decreasing fraction of links at
distances greater than 1 (Fig. S6D). The relative preference for
bridging disconnected network components has increased over
time, leading to a slight increase in the fraction of links that
bridge disconnected components (Fig. S6A). In other words,
biomedical chemistry has largely become more conservative and
more reliant on the exploitation of established knowledge, al-
though it has become slightly more adventurous in bridging
disconnected components.
We quantify the efficiency of a scientific strategy in terms of

the total number of experiments performed, relative to the
number of discoveries made, i.e., the number of new connections
identified. We define X% loss as the total number of experi-
ments performed (edges tested) before discovering X% of all
edges in the target network. Relative loss is the number of ex-
periments performed divided by the number of novel edges
discovered plus one. Relative loss measures the number of ex-
periments performed to discover one new chemical relationship
(network edge). Strategies with larger relative loss continue to
investigate previously explored relationships or test relationships
that do not exist. This definition of efficiency implies that the
objective function of science prizes the discovery of novel rela-
tionships above all else. We consider alternative objective func-
tions in Discussion.
To estimate the efficiency of the inferred strategy and com-

pare it with alternatives, we drew a subsample from the empirical
network with a similar degree distribution (Figs. S7–S10 and SI
Text) (14, 21). Then we used a supercomputer to simulate the
exploration of this sample network with thousands of different
strategies. Based on these simulations, we calculated the average

cost (relative loss) associated with each strategy and minimize
this cost with simulated annealing. By simulating the discovery
process hundreds of times for each parameter setting, we identify
strategies that, on average, discover a given proportion of the
network with greatest efficiency. This exploration was compu-
tationally intensive and could not be conducted on the full net-
work; in fact, our project was a use case for the development of
novel parallel programming approaches (35, 36). Recall that
each strategy (i.e., set of parameters) prioritizes different kinds
of experiments. A given experiment “succeeds” if it proposes a
relationship that is realized in the empirical (sample) network.
Successful experiments are added to the network (“published”).
An experiment “fails” if it proposes a relationship that is never
realized in the empirical network. In the simplest scenario con-
sidered here, failures are not published. In our model, both
“success” and “failure” are error free; i.e., there are no false
positives or false negatives; this could be relaxed at the cost of
considerable complexity and additional modeling assumptions.
Fig. 1 and Table S1 show the optimal parameters we discov-

ered for uncovering X% of the network (X% relative loss opti-
mized; SI Text). We find that connecting multiple important,
high-degree chemicals (positive αμ and αι) is critical for early
exploration—discovering the first 10–20%—of the network. In-
stead of exploiting the local neighborhood of a high-profile
chemical (like MEDLINE), this strategy prioritizes connections
between important chemicals at either very short or infinite
distance, a combinatorial exploitation strategy (driven by pref-
erential attachment) similar to interdisciplinary approaches that
mine connections between fields. By contrast, efficient discovery
of 100% of the target network requires a disposition to link
distant chemicals (in the same network component and discon-
nected components), whereas degree becomes less important.
This strategy engages considerable risk, as it attempts to establish
links spanning substantial cognitive distance and relies less on
imitating prior scientists’ chemical choices. Fig. 1 illustrates how
the history of inferred strategies for chemical discovery diverges
from our estimated optimal discovery strategies. Historical
strategies have become more conservative each year, as scientists
focus on more central (i.e., higher-degree) chemicals. By con-
trast, optimal discovery strategies trend in the opposite direction.

Actual, 1975-2010 
(MEDLINE)

Optimal discovery 
of 10% -100% of network

20% 40% 60% 80% 100%

% of Network Discovered
0%

Year

Preference for centrality 
of the more central chemical

Preference for centrality 
of the less central chemical

Optimal discovery 
of 10% -100% of network

Actual, 1975-2010 
(MEDLINE)

Year

20% 40% 60% 80% 100%

% of Network Discovered
0%

, 

20% 40% 60% 80% 100%

% of Network Discovered
0%

Actual, 1975-2010 
(MEDLINE)

Optimal discovery 
of 10% -100% of network

Year
Relative preference for 

along the network

Discovering Increasing Percentages of the Biomedical Network of Chemicals Historical Shifts in Actual Search Strategies vs. Optimal Search Strategies for  

Actual, 1975-2010 
(MEDLINE)

Optimal discovery 
of 10% -100% of network

20% 40% 60% 80% 100%

% of Network Discovered
0%

Relative preference for 
long walks along the network

Actual, 1975-2010 
(MEDLINE)

Optimal discovery 
of 10% -100% of network

Year

20% 40% 60% 80% 100%

, 

% of Network Discovered

disconnected network components
Preference for bridging

Year

0%

short walks

Fig. 1. Red lines show model parameters estimated from the network of published chemical relationships over historical time, 1975–2010, every 5 y. The preference
for more central chemicals (αμ, αι) increases consistently over time. The parameters controlling preference for walk length (β, γ) and for jumping to disconnected
network components (δ) also decrease consistently between 1975 and 2010, although the interpretation is somewhat subtle (main text). The green lines illustrate the
optimal 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% strategies against the historical trend and highlight the contrast between the trajectories.

Table 1. Maximum-likelihood estimates of strategies used in articles and patents, 1980–2010

Model parameter MEDLINE articles* US patents*

Preference for degree of the more central chemical, αμ 1.375 (1.374, 1.377) 1.508 (1.505, 1.512)
Preference for degree of the less central chemical, αι −0.280 (−0.281, −0.280) −0.172 (−0.175, −0.169)
Preference for network distance between chemicals, β −5.312 (−5.328, −5.297) −5.503 (−5.536, −5.469)
Preference for network distance between chemicals, γ −45.369 (−45.470, −45.268) −49.579 (−49.799, −49.345)
Preference for bridging disconnected network components, δ −15.483 (−15.529, −15.428) −16.303 (−16.399, −16.200)

*Modal estimates; 99% credible intervals in parentheses.
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Early on they leverage existing knowledge by linking high-profile
chemicals and then become riskier as they attend less to prior
chemical choices and attempt more distant combinations.
Fig. 2B visualizes the strategy estimated from MEDLINE data

(Table 1) on a planar network, whereas Fig. 2 C and D illustrates
the 50% and 100% optimal strategies for exploring that network.
Results are shown after 25% of the network has been discovered.
The planar nature of the network makes the aggregate effect of
these strategies apparent (see bit.ly/16QRviz for an animation of
the MEDLINE strategy and SI Text for other animation URLs).
In particular, Fig. 2B highlights the tendency of the MEDLINE
strategy to explore the neighborhood of prominent chemicals.
Fig. 2A compares the efficiency of several search strategies,
quantified as the estimated number of experiments each strategy
requires to discover from 1% to 100% of the network. Efficiency
results use the sample network drawn from MEDLINE (Fig. S7
and SI Text). The MEDLINE strategy—which works well for
generating coherent, thoroughly explored islands of knowledge
in a young knowledge network—rapidly becomes inefficient, as
effort is wasted by excessive focus on a few key entities and
repetition of known connections. The MEDLINE strategy rea-
ches maximum efficiency at 13% of the network discovered (Fig.
2A); it becomes increasingly inefficient at discovering larger
fractions of the network. Although more efficient than the ran-
dom strategy, which tests all edges with equal probability, the
MEDLINE strategy is over three times more costly than the
most efficient alternative when discovering the bulk of the net-
work. By contrast, the optimal strategy for uncovering 50% of
the network is nearly 10 times more efficient than the random
strategy for discovering a range of network fractions (Table S1,
50% of network discovered).
Judging from the distribution of distances spanned in the

empirical network (Figs. S3B and S6D), researchers rarely
wander far across the knowledge network or bridge disconnected
chemicals. Such behavior is critical for advance in mature areas
of science (Table S1), and award-winning scientists appear to do
so more frequently (“Prizes” in Fig. S3B). Scientists may hesitate
to undertake a long walk or jump because of the low chance of
success, even though a successful outcome could reveal the
structure of the larger network and stimulate further work. In
this way, individual incentives for productivity, reinforced by
institutions like tenure, may be at odds with science’s collective
interest in maximizing discovery.
Patterns in the parameters associated with efficient discovery

reveal strategies that are consistently important. Preference for a
high degree of the more central chemical is consistently associ-
ated with efficient discovery, which underscores the importance

of preferential attachment as a mechanism for guiding research
(21, 33). Preference for the degree of the less central chemical
declines more rapidly (Fig. 1). Distinct preferences for the net-
work distance between chemicals are rarely (clearly) implicated
in optimal search (i.e., efficient discovery is robust to consider-
able variation in these parameters; see the ranges containing
95% of sampled parameters in Table S1).
Beyond alternative strategies, we also consider an alternative

institution: “coordinated” discovery, in which scientists publish
all findings, positive and negative, and do not repeat experiments.
We calculate the efficiency of this regime analytically for a random
strategy and numerically estimate the efficiency of coordinated
MEDLINE and optimal discovery strategies on the sample net-
work (SI Text). Coordinating research decreases the costs of
discovery—the number of failed or duplicate experiments—
regardless of strategy (Fig. S11).

Discussion
Our paper provides a quantitative method for inferring research
strategies from data, examining their consequences, and discov-
ering more efficient alternatives. Nevertheless, our model has
several limitations. First, by modeling discovery as the explora-
tion of a hidden network, we imply that new discoveries in bio-
medical chemistry always link chemicals never linked before.
This is not true; a tie between two chemicals may be novel because
previously linked chemicals are now linked in a new way (e.g.,
in the context of a new disease). Second, we evaluate efficiency
only in relation to a single objective function—maximizing dis-
covery of novel links. Many other objective functions exist,
including minimizing error or increasing the robustness of dis-
covered knowledge (37, 38). Development of useful medical and
industrial technologies relies on the productive repetition of
molecular relationships, which our current objective function
does not reward. These alternative goals could be incorporated
into the evaluation of our model—for example, by allowing re-
peat explorations of a known relationship to contribute to the
objective function, but with diminishing marginal returns. Note
that individual scientists may “locally” hold objectives that are
very different from the global objective function of science. They
may optimize their total number of publications or the predicted
number of future citations to their work (2, 20). That said, we
believe that the broader scientific community does have an im-
plicit objective to traverse the space of possible research prob-
lems in search of novel and useful knowledge, and so we use that
as a baseline here (39, 40). Third, we found that the most effi-
cient discovery strategies are dominated by preferential attach-
ment to the most central chemical in a problem over preferences
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Fig. 2. (A) Comparison of the efficiency of discovery for different search strategies. Efficiency is quantified as the estimated number of experiments required
to discover from 1% to 100% of a representative sample of the 2010 MEDLINE network. Compared strategies include random choice, the inferred MEDLINE
strategy, and optimal strategies for discovering 20%, 50%, and 100% of the network. Results show that contemporary scientific activity (MEDLINE) may have
been nearly optimal for discovering 10% of the chemical network, but becomes increasingly inefficient for discovering more than 30%. Parameters for
“optimal” strategies are drawn from multistage collections of simulated annealing and subsequent MCMC search procedures. (B–D) Actual and optimal
search processes illustrated on a planar network of chemical relationships. Each panel represents the average from 500 independent runs of the strategy, at
the point where 25% of the possible chemical relationships have been discovered. The node and edge legends for each network strategy (Upper Right and
Lower Right of each panel) are normalized to highlight differences between the strategies and are paired with histograms to illustrate the frequencies with
which chemicals and chemical relationships of various degree centralities are selected for experimentation. Panels compare the strategies used by biomedical
scientists publishing MEDLINE-indexed articles with alternative strategies that most efficiently discover the first 50% or 100% of the network.
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for the degree of the less central chemical or the distance be-
tween chemicals. In the empirical network, most published links
connect chemicals that have already been connected, and most
novel links connect chemicals at distance two. Chemicals in
disconnected components are next most frequent. All other dis-
tances are extremely rare. We could thus construct more parsi-
monious models that focus on preferential attachment and a few
distinct categories of distance to describe the most efficient
discovery strategies. Finally, our empirical network of published
chemical relationships represents an imperfect sample of re-
search effort, as effort is screened by experimental failure and
the greater challenge of publishing an unconventional paper vs.
an incremental one. The sample is drawn from virtually every
publishing biomedical scientist, but publications overwhelmingly
document successful experiments. Our data almost certainly
underrepresent the risky but unsuccessful choices made by in-
dividual scientists. It nevertheless represents an informative trace
of the scientific process—the very trace that scientists themselves
use as they read the literature and design new experiments to
build upon it. A more complete record of failures would both
deepen our understanding of research behavior and improve its
efficiency.{ Future models could introduce these layers as addi-
tional features, penalties, and rewards associated with the “game”
of science.
Despite these limitations, our model reveals patterns of dis-

covery in biomedical chemistry and shows that more efficient
discovery strategies would incorporate more “interdisciplinarity”
and more risk, with the latter particularly important as a field
matures. Efficient discovery of radically new knowledge in a
mature field, including many areas of biomedicine (42), requires
abandoning the current focus on important, nearby chemicals.
Adopting a more efficient approach would lead to greater risk,
but our findings suggest that scientists pursue progressively less
risk, focusing more and more on the immediate neighborhood of
high-degree chemicals, with the slight increase in bridging links
as a silver lining. Successful research that goes against the crowd
is more likely to garner high citations and prizes (Fig. S3), but
these incentives may not be sufficient or flexible enough to
motivate sustained advance in mature fields. A shift to riskier
research would lead to more failures, which typically remain
unpublished under current publication norms. We find that pub-
lication of failures substantially increases the speed of discovery.
Thus, science policy could improve the efficiency of discovery by
subsidizing more risky strategies, incentivizing strategy di-
versity, and encouraging the publication of failed experiments.
Policymakers could design institutions that cultivate intelli-

gent risk-taking by shifting evaluation from the individual to the
group, as was done at Bell Labs (43). They could also fund prom-
ising individuals rather than projects, like the Howard Hughes
Medical Institute (44). Both approaches incentivize the spread-
ing of risk across a portfolio of experiments that reflect multiple
research strategies, instead of evaluating each experiment sepa-
rately and selecting safer opportunities. Science and technology
policy might also promote risky experiments with large poten-
tial benefits by lowering barriers to entry and championing
radical ideas, emulating the Gates Foundation’s Grand Chal-
lenges program. Finally, new incentives to publish failures, like

those mandating web publication of clinical trials at https://www.
clinicaltrials.gov, should be considered if risk-taking increases.
With carefully designed incentives and institutions, scientists
will choose the next experiment to benefit themselves, science,
and society.

Materials and Methods
Data. We examine scientific discovery by analyzing the growth of the
knowledge network in biomedical chemistry since 1976. We constructed this
network by matching a large lexicon of 52,654 distinct chemical terms
extracted fromMEDLINE metadata into MEDLINE from 1976 to 2010 (34) and
then inferring a chemical relationship when the terms appeared in the same
abstract. We used the same procedure to extract chemical relationships
within US patents (SI Text). This process resulted in 30,060 unique chemicals
with at least one link to others and 12,342,474 links between chemicals,
corresponding to 1,338,753 unique chemical relationships. This network
represents accumulated chemical knowledge within 2,363,858 articles and
295,812 patents. The combined network has a broad, approximately log-
normal degree distribution (45, 46) (Fig. S8).

Estimating and Simulating Strategies. In estimating parameters from the
MEDLINE and US Patent networks, we considered time-dependent snapshots
of the “visible” connectivity of each chemical within the growing chemical
network to compute time-dependent choice probabilities. We can then
compute the full likelihood of selecting a sequence of edge sets for exper-
imentation, given model parameters. Parameter estimates are obtained by
maximizing this likelihood function with respect to parameter values (SI Text).
We used simulated annealing to find the maximum-likelihood estimates and
Markov chain Monte Carlo (MCMC) to explore the parameter space around
these estimates and assign Bayesian credible intervals (Table 1 and SI Text). We
used the same approach to explore the parameter space of the model on the
sample network: simulated annealing to identify an initial estimate, followed
by MCMC to explore the objective function in the neighborhood of that es-
timate. Because of the heuristic nature of simulated annealing and MCMC,
there are no formal guarantees on the global optimality of discovered strat-
egies. Our purpose is less to establish claims of global optimality and more to
demonstrate that much more efficient strategies exist and can be discovered.

Appendix
See SI Text for more details about the data, further definition
and characterization of the model, analysis of the empirical
network, and strategy comparisons.
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