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Hearing loss is the main limitation of radiation therapy for vestibular
schwannoma (VS), and identifying treatment options that minimize
hearing loss are urgently needed. Treatment with bevacizumab is
associated with tumor control and hearing improvement in neurofi-
bromatosis type 2 (NF2) patients; however, its effect is not durable and
its mechanism of action on nerve function is unknown. We modeled
the effect anti-VEGF therapy on neurological function in the sciatic
nerve model and found that it improves neurological function by
alleviating tumor edema, which may further improve results by
decreasing muscle atrophy and increasing nerve regeneration. Using
a cranial window model, we showed that anti-VEGF treatment may
achieve these effects via normalizing the tumor vasculature, improving
vessel perfusion, and delivery of oxygenation. It is known that oxygen
is a potent radiosensitizer; therefore, we further demonstrated that
combining anti-VEGF with radiation therapy can achieve a better
tumor control and help lower the radiation dose and, thus, minimize
radiation-related neurological toxicity. Our results provide compelling
rationale for testing combined therapy in human VS.
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Neurofibromatosis type 2 (NF2) is a dominantly inherited
genetic condition with a birth prevalence of 1 in 25,000 (1).

Bilateral vestibular schwannomas (VS), which are benign tumors
composed of neoplastic Schwann cells that arise from the eighth
cranial nerve, are the hallmark of NF2 (2). Standard approaches
for treatment of growing VS include surgical removal and radi-
ation therapy (RT). Hearing loss is the main limitation of radi-
ation therapy for VS. For patients with sporadic VS who do not
have NF2, RT is associated with long-term tumor control rates
exceeding 95%. However, hearing preservation rates after radi-
ation range from 50% to 80% (3, 4). Outcomes after radiation
for patients with NF2 are inferior to those for sporadic patients,
with short-term local tumor control rates approximately 80–85%
and hearing preservation rates <50% (3). Thus, the identifica-
tion of a novel adjunct therapy to enhance radiosensitivity while
minimizing toxicity-related hearing loss in VS is urgently needed.
Vascular endothelial growth factor (VEGF) and its receptors

(VEGFRs) are expressed in VS, and its expression level positively
correlates with schwannoma growth rate (5–7). In a retrospective
review of 31 NF2 patients, treatment with bevacizumab, a
humanized monoclonal antibody that specifically neutralizes
VEGF-A, was associated with a reduction in the volume of most
growing VS. More importantly, bevacizumab treatment im-
proved hearing in 57% patients (7). Despite this progress, a
number of challenges remain (8). First, not all NF2 patients re-
spond to bevacizumab; second, the hearing response is not durable
in all patients; and third, some patients are unable to tolerate long-
term bevacizumab treatment. Studies to understand the mecha-
nisms of anti-VEGF therapy-induced tumor growth inhibition and

hearing improvement in schwannomas are urgently needed to
optimize this therapy.
In our study, first, we used the sciatic nerve model to characterize

the effect and mechanisms of anti-VEGF treatment on neurological
function. We revealed that anti-VEGF treatment alleviates tumor
edema, which may further result in decreasing muscle atrophy and
increasing nerve regeneration and, thus, improves neurological
function. Second, we used the intracranial window model to monitor
in real time the effect of anti-VEGF treatment on tumor vascula-
ture. We showed that anti-VEGF treatment transiently normalizes
the tumor vasculature, leading to improved perfusion and oxygen
delivery. Using intravital microscopy imaging technique, we fur-
ther defined the timing of this transient effect, termed the “nor-
malization window,” in schwannoma models. Because oxygen is a
potent radiosensitizer, finally, we showed that radiation therapy
applied during the normalization window is most effective, and
combined anti-VEGF and radiation therapy is superior to each
monotherapy. Anti-VEGF and radiation combination therapy
may thus help reduce the dose of each therapy and minimize
treatment-associated adverse effect in NF2 patients.

Significance

In patients with progressive vestibular schwannoma (VS), ra-
diotherapy is associated with risk of debilitating hearing loss.
There is an urgent need to identify an adjunct therapy that,
by enhancing the efficacy of radiation, can help lower the ra-
diation dose and improve hearing preservation. Bevacizumab
improved hearing in neurofibromatosis type 2 patients; how-
ever, its effect is not durable and its mechanism of action on
nerve function is unknown. Our study provides (i) insight into
how anti-VEGF treatment improves neurological function, and
(ii) critical data that combined anti-VEGF treatment can en-
hance the efficacy of radiation therapy and help lower its dose.
Our findings support clinical evaluation of combined anti-VEGF
and radiation therapy in patients with VS.
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Results
Anti-VEGF Treatment Improves Neurological Function. First, we stud-
ied the effect of anti-VEGF treatment on neurological function in
mice. To faithfully represent the effect of bevacizumab, we used
an antibody (B20.4.4; Genentech) that neutralizes both human
(tumor) and mouse (host) VEGF in our animal studies. We per-
formed rotarod test to evaluate neurological function; starting as
early as 6 h after the first B20 treatment, rotarod duration in-
creased and became significantly improved after 24 h (Fig. S1). To
examine the effect of different treatments on neurological func-
tion, mice bearing same-sized tumors were treated with control
IgG, radiation (5 Gy), B20, or combined B20 and radiation. Be-
fore treatment, no significant differences were noted from the
rotarod test in mice among different groups. After B20 treat-
ments, mice showed significantly improved rotarod performance
compared with mice in control and RT groups (Fig. 1A). In the
following studies, we further examined three aspects that anti-
VEGF treatment may affect and thus contribute to this improved
neurological function: (i) tissue edema, (ii) muscle atrophy, and
(iii) nerve damage/regeneration.

Anti-VEGF Treatment Reduces Tumor Edema. Tissue edema may in-
crease interstitial fluid pressure, which can compress nerves and
muscles to cause weakness or stiffness (9, 10). In mice and patients
with glioblastoma (GBM), anti-VEGF therapy has been shown to
alleviate tumor edema by reducing vascular permeability within
6 h and 24 h, respectively (10–12). Our observation that rotarod
performance improved after 6 h of anti-VEGF treatment indicates
a change in schwannoma edema. Indeed, we found that the degree
of tumor edema was significantly inversely correlated with rotarod
duration (Fig. 1B), supporting that edema may impair neurologi-
cal function. Furthermore, B20 treatment alone, and in combi-
nation with RT (5 Gy) significantly decreased edema (Fig. 1C).

Anti-VEGF Treatment Decreases Muscle Atrophy.Muscle atrophy is a
common consequence of peripheral nerve lesions such as tumors.
We assessed the effect of anti-VEGF treatment on muscle atrophy
by measuring: (i) the cross-sectional area of single muscle fibers and
(ii) the distribution of muscle fiber size. From both legs, we collected
the gastrocnemius muscle, which is distal to the sciatic nerve tumor
implantation site and is not directly damaged by tumor growth.
Nontumor bearing mice had large and uniform skeletal muscle
fibers, with the average muscle fiber area of 2,123.4 ± 127.8 μm2,
and the majority of gastrocnemius muscle fibers had an area in the
range of 1,000–1,400 μm2. None of the treatments affected muscle
fiber size and distribution in the nontumor-bearing leg. In tumor-
bearing leg from control and radiated mice, significant muscle
atrophy was noted, demonstrating significantly decreased muscle
fiber area, and the majority of gastrocnemius muscle fiber area is
in the range of 400–800 μm2. B20 treatment significantly increased
average muscle fiber area and shifted the distribution peak toward
the normal range in the tumor-bearing leg (Fig. 2).

Anti-VEGF Treatment Enhances Nerve Regeneration. It is known that
muscle atrophy occurs after complete denervation—when the nerve
supply to a muscle is interrupted, the muscle no longer receives
signals or stimuli from the nervous system (13). Therefore, we next
evaluated the effect of anti-VEGF therapy on nerve damage and
regeneration. The tibial nerve in the control group presented with
edema, and B20 treatment significantly decreased nerve edema
(Fig. 3A). Under electron microscopy (EM), there is a marked
deficit or abnormal appearance of axons in the cross-sections of the
tibial nerve from control and radiated mice, demonstrating scattered
degenerating axons, macrophage infiltration, and empty Schwann
cell stacks, indicating loss of myelinated and unmyelinated axons. In
contrast, sections from anti-VEGF–treated animals showed regen-
erating clusters, thinly myelinated axons, which are consistent with
regeneration and remyelination (Fig. 3B). We examined the ex-
pression of several molecules that are known to mediate nerve re-
generation; there is a trend toward up-regulation of these genes by
B20 treatment, but only CXCL1 [chemokine (C-X-Cmotif) ligand 1]
was significantly induced more than twofold (Fig. 3C).

Anti-VEGF Treatment Normalizes Vasculature. Abnormal vascular per-
fusion has been associated with muscular atrophy and nerve dam-
age (14–17). Next, in the cranial window model, we used intravital
microscopy imaging to observe vascular changes in real time. We
found that control tumors have dilated and tortuous vessels, and
B20 treatment makes tumor vessels less tortuous and smaller in
diameter (Fig. 4A). Quantification of the image confirmed that
B20-treated mice have decreased vessel diameter, vessel number,
surface area, and length compared with that of the control group.
These changes started 2 days after B20 treatment and continued to
day 5, but were less pronounced on day 8, indicating the vessel
normalization phenomenon is transient, and the normalization
window is between day 2 and day 5 (Fig. 4 B–E). This vascular
normalization effect was similarly observed in HEI-193 intracranial
model (Fig. S2), and the decreased microvessel density (MVD) was
confirmed in the sciatic nerve model (Fig. 5 A and B).
Tumor vessels have fewer pericytes, which support the endo-

thelial surface of blood vessel walls, and this structural abnormality
lead to abnormal vessel perfusion (18, 19). We found that anti-
VEGF treatment increased the fraction of pericyte-covered vessels,
indicating the schwannoma vasculature is structurally close to
normal vessels (Fig. 5). Next, to determine whether structural
normalization of tumor vessels translates into improved functional
perfusion, we measured the fraction of perfused vessels by
injecting FITC-lectin i.v. to identify perfused tumor vessels and by
staining for CD31 to detect the total number of blood vessels. In
concert with the vessel morphological and structural changes, B20
treatment increased the percentage of perfused vessels more than
threefold (Fig. 5C). As a result of improved vessel perfusion, we
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Fig. 1. Anti-VEGF treatment improves rotarod performance and decreases
Nf2−/− tumor tissue edema. (A) Rotarod test was carried out in mice bearing
size-matched tumors, followed by tumor collection to evaluate edema (B and
C). The average time to fall from the rotating cylinder was normalized to the
value from each mouse on the first day and presented as relative rotarod
endurance. (B) Edema index significantly inversely correlates with rotarod
duration. Pearson product moment correlation coefficient r = −0.7416, P =
0.006. (C) B20 treatment, as monotherapy as well as in combination with ra-
diation therapy (5 Gy), significantly decreased tumor edema. Representative of
at least three independent experiments (n = 8), data presented are mean ±
SEM. *P < 0.01, **P < 0.005.
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found the hypoxic fraction of the viable schwannomas was sig-
nificantly lower in B20-treated mice (Fig. 5D). Collectively, our
studies show that B20 treatment improves the schwannoma vessel
perfusion and alleviates tumor hypoxia, which may contribute to
the improved neurological function.

Radiation Therapy Applied During the Anti-VEGF Induced Normalization
Window Shows Improved Efficacy. Hypoxic cells are more resistant
to radiation (20); therefore, we further hypothesized that the
improved oxygenation may enhance the cytotoxic effect of RT,
and when radiation is applied during the vascular normalization
window, it would be most effective. Indeed, in the Nf2−/− in-
tracranial model, when radiation was applied during the normal-
ization window (2 d after B20 treatment), it significantly extended
survival and inhibited tumor growth over B20 or radiation mono-
therapy. When radiation was applied outside the normalization
window (2 d before B20 treatment), the combined therapy had no
additive effect compared with each monotherapy (Fig. 6 A and B).
This effect was confirmed in our sciatic nerve model—combina-
tion therapy induced an 8-d tumor growth delay, more than
monotherapy with B20 (4 d) or RT (3 d; Fig. 6 C and D). The
same effect of B20-enhanced radiation efficacy was observed in
HEI-193 intracranial and sciatic nerve models (Fig. S3). These
studies support our hypothesis that radiation applied during the
vascular normalization window induced by anti-VEGF treatment
is most effective.
To evaluate whether B20 enhances RT efficacy via direct anti-

tumor effects, we examined the expression and function of VEGF-A
in schwannoma cell lines. Our study showed that although both
Nf2−/− and HEI-193 cells express VEGF-A and its receptors R1
and R2, B20 treatment does not directly affect: (i) tumor cell
proliferation, (ii) DNA damage, (iii) radiosensitivity, or (iv) an-
giogenic gene expression (Fig. S4). These studies suggest that B20
enhanced the efficacy of radiotherapy through the host vascular
remodeling and normalization effect.

Anti-VEGF Treatment Combined with Low-Dose Radiation Is as Effective
as High-Dose Radiation. To determine whether by combining anti-
VEGF therapy with RT, we can lower the dose and, thus, the
adverse effect of RT, we treated groups of mice with: (i) control,
(ii) B20, (iii) 5 Gy, (iv) 10 Gy and (v) B20 + 5 Gy. In both Nf2−/−

and HEI-193 sciatic nerve models, we found that 10-Gy ra-
diation is significantly more effective than the 5 Gy. However,
when combined with B20 treatment, 5-Gy radiation is as effective

as 10-Gy radiation in the Nf2−/− model (Fig. 6E) and significantly
more effective than 10-Gy radiation in the HEI-193 model (Fig.
S3E). These studies suggest that combining anti-VEGF treatment
may help lower the radiation dose needed to control schwannoma
growth and, thus, may minimize RT side effect.

Discussion
In this study, we sought to determine: (i) the mechanism of anti-
VEGF improved neurological function, and (ii) whether com-
bined anti-VEGF treatment can enhance the efficacy of radiation
therapy and help lower its dose and, thus, minimize its toxic side
effect on neurological function in schwannoma animal models.
Schwannomas of the cranial, spinal, and peripheral nerves orig-

inate from the nerve sheath and damage the nerve as they grow,
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Fig. 2. Anti-VEGF treatment decreases muscle at-
rophy. (A) Representative images of periodic acid
Schiff’s (PAS) staining. When tumors reached 1 cm in
diameter, mice were killed and gastrocnemius mus-
cles from both normal and tumor-bearing legs were
collected for histological analysis. (Scale bar: 100 μm.)
(B) Single fiber areas in 10 randomly selected micro-
scopic fields were quantified by using ImageJ software.
Data presented are mean ± SD. *P < 0.05, **P < 0.01.
Histogram of muscle fiber area distribution comparing
nontumor bearing mice (black, n = 1,088 muscle
fibers) with tumor-bearing control mice (green,
n = 1,289 muscle fibers) and B20-treated mice
(pink; n = 930 muscle fibers) (C ); and nontumor
bearing mice (black) with radiation (blue; n = 1,712
muscle fibers) and combination therapy treated
mice (orange; n = 1,249 muscle fibers) (D).
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causing neurological dysfunction (1, 21, 22) and any treatment that
could relieve these symptoms is highly desirable. Radiation therapy
can further cause hearing loss by inducing local damage to mature
nerve tissue, which is partly attributable to microvascular injury (23,
24). Whereas the role of VEGF on tumor angiogenesis and pro-
gression has been well characterized, the role of anti-VEGF
treatment on tumor-related neuropathy remains largely unknown.
We reproduced the ability of anti-VEGF treatment to improve
neurological performance in the sciatic nerve xenograft model; we
showed that anti-VEGF treatment potentially affects the function
of nerve and muscle via reducing tissue edema, which may further
decrease muscle atrophy and improve nerve regeneration. In mice,
it is technically challenging to orthotopically implant schwannomas
in the vestibular nerve and performs functional vestibular studies
and hearing test (25). Models for the development of new treat-
ment options in VS are lacking. Transgenic and xenograft mouse

models of VS have been previously reported in the literature (26,
27). However, none of these models replicate the intracranial lo-
cation of these tumors in human disease. Recently, a novel NF2
mouse model generated through excision of theNf2 gene under the
control of schwann cell-specific promoter element demonstrated
spinal, peripheral, and cranial nerve tumors histologically identical
to human schwannomas (28). This new model would permit testing
of the vestibular nerve function and hearing response for VS
translational studies. Although we cannot directly translate our
findings from a major motor nerve to a cranial nerve, our data pave
the road for further study of the molecular mechanisms of the ef-
fect of anti-VEGF treatment on neurological function.
The effect of VEGF on nerves has been studied in neurode-

generative disease (such as amyotrophic lateral sclerosis) (15),
and in acute neurological disease (such as cerebral ischemia)
(29, 30). In these disease models, it has been shown that the effect
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and density of schwannoma vessels. (A) Representa-
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Fig. 5. Inhibition of VEGF signaling normalizes
schwannoma vessel structure, increases schwannoma
blood vessel perfusion, and relieves tumor hypoxia.
Nf2−/− schwannomas were collected on day 5 after
treatment. (A) Representative immunofluores-
cent staining images of CD31 (an endothelial cell
marker, green) and αSMA (a pericyte marker, red).
(B) Microvessel density (MVD) and the fraction of
pericyte covered vessels (% αSMA+CD31+/CD31+) were
quantified by using ImageJ software. (C) Representa-
tive immunofluorescent staining and quantification of
the fraction of perfused blood vessels (green, FITC-
lectin) among all vessels (red, CD31). Yellow, CD31+

staining of perfused vessels. (D) Representative im-
munohistochemical staining and quantification of the
hypoxic fraction of the viable (nonnecrotic) tumor
tissue area (pimonidazole+, brown). Data presented
are mean ± SD. *P < 0.05, **P < 0.01. (Scale bar: A and
C, 100 μm; D, 1 mm.)
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of VEGF on nerve is twofold: (i) VEGF exerts direct neuro-
protective effects on cultured neurons in vitro (15, 31, 32); and (ii)
VEGF stimulates angiogenesis, which is thought to provide an
“angiogenic niche” that improves neural perfusion and favors
neuronal progenitor proliferation and differentiation in vivo (15–
17, 33). In a genetic study where the hypoxia response element
(HRE) of the Vegfa promoter is mutated, serum VEGF level
decreases, resulting in decreased neural perfusion and spinal cord
ischemia, ultimately leading to neuron degeneration and pro-
gressive paralysis (34). We found that anti-VEGF treatment, by
normalizing schwannoma vasculature, improved tumor blood
vessel perfusion and oxygen delivery and, thus, our finding is
consistent with the HRE knock-out study. It has been well docu-
mented that although tumors harbor excess blood vessels, the
tumor vascular network is highly abnormal, leading to aberrations
in local blood flow and oxygenation that, in turn, can fuel tumor
growth, invasion, and metastasis while diminishing response to
cytotoxic therapies (9). It has been shown in many preclinical and
clinical studies that antiangiogenic therapy prunes tumor vessels and
reverts the abnormal structure and function of the remaining vas-
culature toward a more normal state, abrogating its deleterious
effects on the tumor microenvironment (9). In GBM patients,
anti-VEGF treatment-induced vascular normalization allevi-
ated vasogenic edema (11). In our schwannoma model,
whether the improved vessel perfusion and oxygenation induced
by anti-VEGF treatment contributes to muscle atrophy and/or
nerve regeneration directly or via reducing tumor growth and
relieving edema remains to be determined.
Anti-VEGF agents were originally developed to block tumor

growth by inhibiting blood vessel formation (19, 35). Bevacizumab
failed to improve survival benefit as a monotherapy in a number of
tumors, but conferred survival benefit in combination with chemo-
therapy or immunotherapy (19). A potential explanation for the
success of combined therapies is that bevacizumab “normalizes” the
abnormal vasculature of tumors; the effect is transient—leading to
a normalization window—during which, the resulting vasculature
is more normal, characterized by increased blood flow and improved
delivery of concurrently administered anticancer drugs as well as
oxygen (19). In our schwannoma model, the anti-VEGF–induced
normalization window is between day 2 and day 5. This observa-
tion is consistent with previously published vessel dynamic changes

—preclinical GBM study showed that anti-VEGF treatment de-
creased vessel density in 2 days, and clinical data in recurrent
GBM patients demonstrate that antiangiogenic agents induced
vascular normalization within 24 hours (11, 36). Clinical studies
of relative vessel size and permeability, tumor contrast en-
hancement, and edema-associated parameter are needed to fully
elucidate the normalization effect of bevacizumab in NF2 patients.
Preclinical and clinical studies showed that vessel normalization

improves the efficacy of conventional chemotherapy and radiation
therapy, because both rely on adequate tumor blood flow for the
delivery of drugs and radiosensitizing oxygen (19, 37). In an ex-
perimental study in mice with GBM, combining anti-VEGF therapy
enhanced the efficacy of radiation therapy (36). Phase I/II trials
reported promising response rates and safety results for adding
bevacizumab before and concurrent to chemoradiation therapy in
the preoperative treatment of locally advanced rectal cancer (38–
41). However, the response rate varied, indicating the importance
of a good selection of patients for this combination treatment, as
well as prospectively validated biomarkers of response (39, 42–46).
Our study showed that in schwannoma model, when radiation is
applied during the normalization window, it is more effective than
either therapy alone; providing useful information on the timing
and schedule of radiation therapy relative to anti-VEGF treatment.
Furthermore, we showed that combining anti-VEGF treatment
helps lower the radiation dose needed for tumor control and, thus,
may help relieve the toxic radiation side effect. Biomarkers of re-
sponse and resistance to bevacizumab treatment are needed to
improve the efficacy of this approach in patients with schwannomas.
In summary, this study demonstrated that integrating anti-

VEGF with RT in schwannoma models is more effective than
either therapy alone and may reduce neurological dysfunction
related to tumor growth and radiation (Fig. S5). Our study pro-
vides the rationale and critical data for the clinical translation of
combining anti-VEGF with radiation therapy in patients with VS.

Methods
The effects of anti-VEGF treatment on neurological function and radiation effi-
cacy were studied in two schwannoma models. All animal procedures were per-
formed following the guidelines of Public Health Service Policy on Humane Care
of Laboratory Animals and approved by the Institutional Animal Care and Use
Committee of theMassachusetts General Hospital. For additional information, see
SI Methods.
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Fig. 6. Combination therapy more effectively in-
hibits growth of Nf2−/− schwannomas. Kaplan–Meier
survival curves (A) and tumor growth curves (B) of
mice in Nf2−/− cranial window model. Tumor growth
in control, B20, 5 Gy, and two different combination
groups [radiation given 2 d before (combine −2 d) or
after (combine 2 d) B20 treatment] were measured by
OFDI (n = 8). **, combined (2 d) compared with B20 or
radiation only groups. (C) Tumor growth was mea-
sured by whole body imaging (WBI, n = 8) in Nf2−/−

sciatic nerve tumor. (D) Tumor growth delay (vs. con-
trol) was defined by the time taken for tumors to
double their WBI reading. (E) Tumor growth in con-
trol, B20, 5 Gy, 10 Gy, and B20 combined with 5 Gy
were measured by WBI. Representative of at least
three independent experiments, all data presented
are mean ± SEM. *P < 0.05, **P < 0.01.
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