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Abstract

Major depressive disorder (MDD) will affect one out of every five people in their lifetime and is 

the leading cause of disability worldwide. Nevertheless, mechanisms associated with the 

pathogenesis of MDD have yet to be completely understood and current treatments remain 

ineffective in a large subset of patients. In this review, we summarize the most recent discoveries 

and insights for which parallel findings have been obtained in human depressed subjects and 

rodent models of mood disorders in order to examine the potential etiology of depression. These 

mechanisms range from synaptic plasticity mechanisms to epigenetics and the immune system 

where there is strong evidence to support a functional role in the development of specific 

depression symptomology. Ultimately we conclude by discussing how novel therapeutic strategies 

targeting central and peripheral processes might ultimately aid in the development of effective 

new treatments for MDD and related stress disorders.
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1. Introduction

Mood disorders affect ~20% of the American population over their lifetime and yearly 

prevalence rates are close to 10%, including 6.7% for major depressive disorder (MDD) 

(Kessler et al., 1993, Kessler et al., 2005). This represents approximately 35 million adults 

in the US that will experience an episode of major depression in their lifetime (Kessler et al., 

2003), with women having a higher risk of first onset and twice the occurrence of men 

(Kessler et al., 1993). Moreover, depression is the leading cause of disability worldwide 

(Lopez and Murray, 1998) — the economic burden of depression was estimated to be 83.1 

billion USD in the year 2000 (Greenberg et al., 2003). MDD is characterized by symptoms 

of emotional, motivational, cognitive and physiological domains making it a complex 
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disease to treat. Furthermore, depression is often associated with chronic illnesses (Evans et 

al., 2005) or other mood disorders such as co-morbid anxiety, all of which can be predictors 

of poor response to antidepressant treatments (Brent et al., 1998). In fact, it is estimated that 

only 50% of depressed patients are responsive to currently available antidepressant 

treatments (Rush et al., 2006). This may reflect the fact that depression diagnosis is based 

solely on behavioral symptoms and the drugs used to treat these symptoms are not specific 

to the underlying disease pathology (Berton and Nestler, 2006). Here we provide an 

overview of insights from human and rodent studies identifying new disease mechanisms 

that are relevant to developing novel, efficient treatments of depression.

2. Animal models of depression

Modeling human depression in animals is challenging considering the subjective nature of 

the multiple psychological and physiological symptoms and the lack of objective biomarkers 

(for review, see (Nestler and Hyman, 2010)). Validity of an animal model is generally 

evaluated with the following criteria: 1) manifestation of symptoms are reasonably 

analogous to the human disorder, 2) behavioral changes can be monitored objectively and 3) 

behavior changes can be reversed with therapeutically effective antidepressant treatments 

(McKinney and Bunney, 1969). None of the animal models developed so far perfectly 

reproduce the depression-like phenotype observed in humans (for review, see (Berton and 

Nestler, 2006)). Moreover, unlike other psychiatric disorders, genome wide association 

studies have not identified a single risk allele associated with MDD, thus, the field lacks true 

genetic models of the disease. Nevertheless, overlapping studies in human post mortem 

samples and translational rodent models have led to significant discoveries over the last few 

decades and drug discovery efforts are now geared towards testing the efficacy of drugs 

targeting known disease mechanisms. The next sections will briefly describe the relevance 

of established rodent depression models within the context of recent disease mechanisms 

identified in human MDD subjects.

2.1. Olfactory bulbectomy

Surgical bilateral olfactory bulbectomy (OBX) has been used to screen antidepressant drugs 

for the past 40 years in both rats (van Riezen et al., 1976, Kelly et al., 1997, Mar et al., 

2002) and mice (Han et al., 2009). OBX induces major dysfunction of the cortical-

hippocampal-amygdala circuits (for review, see (Russo and Nestler, 2013)) affecting 

behaviors such as locomotion, food seeking and avoidance (for review, see (Song and 

Leonard, 2005)). Cognitive deficits, loss of libido, reduced social interaction and exploration 

of a novel environment was associated with cortical neuronal degeneration in OBX rats 

(Wang et al., 2007). Impaired structural plasticity of the hippocampus was also recently 

linked to emotional and spatial memory deficits in this model (Morales-Medina et al., 2013). 

Chronic antidepressant treatments can reverse both behavioral and structural changes (Song 

and Leonard, 2005). While the direct link between OBX and human MDD is controversial, 

clinical studies have reported decreased olfactory sensitivity in acute major depression 

(Atanasova et al., 2008) and there is a significant negative correlation between olfactory 

bulb volume and depression severity (Negoias et al., 2010). Still, less invasive and more 

ethologically valid models have been characterized.
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2.2. Maternal separation and models of early life stress

Early life traumatic events contribute to the development of individual differences in the 

ability to react and cope with subsequent stressful events. Victims of childhood abuse or 

parental neglect have significantly higher probabilities of developing mood disorders (for 

review, see (Anacker et al., 2014)) and studies of institutionalized children indicate that 

global deprivation induces persistent behavioral and cognitive deficits (Chugani et al., 

2001). Rodent models of maternal separation suggest that offspring of separated pups are 

more submissive and generally adopt a more passive coping strategy in response to stress 

throughout life (Gardner et al., 2005). These early life events permanently alter endocrine 

responses to stress (Plotsky et al., 2005) and confer vulnerability to drug abuse in adulthood 

(for review, see (Moffett et al., 2007)). Additionally, individual differences in maternal 

behaviors, such as licking and grooming, can correspond with offspring vulnerability and 

promote resilience (Fleming et al., 1999, Meaney, 2001, Weaver et al., 2004, Weinstock, 

2008). As adults, the offspring of high licking and grooming mothers are less fearful and 

characterized by lower hypothalamic-pituitary-adrenal (HPA) responses to stress (Liu et al., 

1997, Caldji et al., 1998, Francis et al., 1999a, Tang et al., 2014). In an elegant study, 

Weaver et al. (2004) showed that mother-pup contacts alter the offspring epigenome thus 

affecting regulation of the glucocorticoid receptor (GR) promoter in the hippocampus. 

Moreover, mother-pup licking and grooming behaviors are stably transmitted across 

generations (Francis et al., 1999a), and cross-fostering studies suggest that these might be 

inherited through the nursing mother and not the biological one (Champagne and Meaney, 

2001). Interestingly, social deprivation and maternal care models seem to have distinct 

behavioral and neurochemical consequences depending upon the developmental stage of the 

offspring (Hall, 1998). This highlights the importance of future studies to identify causative 

factors in the development of depressive behaviors during these critical windows in order to 

translate findings to human disease.

2.3. Learned helplessness

In humans and rodents, learned helplessness (LH) is defined as a deficit to escape an 

aversive stimulus induced by prior exposure to uncontrollable stress (Pryce et al., 2011). It is 

interpreted as a depression-like coping deficit in avoidable situations (Vollmayr and Gass, 

2013). The original protocol consisting of inescapable foot shock was first developed in 

dogs (Overmier and Seligman, 1967) and later adapted to rodents (Maier, 1990, Chourbaji et 

al., 2005). It is associated with the cognitive theory of depression (Overmier and Seligman, 

1967). Helpless rats are characterized by a broad range of behavioral, physiological and 

hormonal changes reversed only by chronic antidepressant treatments (Sherman et al., 1982, 

Takamori et al., 2001). Though rat strains bred for congenital vulnerability to LH exhibit 

normal memory acquisition and retrieval, they exhibit reduced sucrose preference, which is 

analogous to anhedonia in human depression (Vollmayr et al., 2004). Much like in humans, 

susceptibility to LH is observed in only a subset of the male rats exposed to inescapable 

stress, marked by an increase in depressive-like behaviors (Vollmayr et al., 2003). On the 

other hand, female rodents never develop traditional LH (Dalla et al., 2008b), hence the 

importance to keep gender in mind when looking for insights from animal models to 

develop novel, efficient drugs.
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2.4. Repeated restraint stress

Repeated restraint stress is an inescapable paradigm similar to LH where the animal is 

enclosed daily in a narrow tube (1–6h/day) for up to 21 consecutive days (Watanabe et al., 

1992, Magarinos and McEwen, 1995, Kim and Han, 2006, Ulloa et al., 2010, Yu et al., 

2012, Lee et al., 2013, Voorhees et al., 2013, Cheng et al., 2014). Adult rodents exposed to 

repeated restraint stress exhibit a depression-like phenotype marked by reduced sucrose 

preference, anxiety-like exploratory deficits and increased immobility in the forced swim 

test (Kim and Han, 2006, Ulloa et al., 2010, Lee et al., 2013, Voorhees et al., 2013), Some of 

these phenotypes can only be reversed by chronic treatments with antidepressants (Stone et 

al., 1984, Ulloa et al., 2010, Yu et al., 2012). Stress-related hormones, notably 

corticosterone, initially increase following restraint stress (Magarinos and McEwen, 1995, 

Kim and Han, 2006, Lee et al., 2013, Voorhees et al., 2013). However, following repeated 

stress, the HPA response is desensitized and no significant increase of corticosterone level is 

observed after 21 days (Magarinos and McEwen, 1995). Validity of this animal model for 

MDD etiology in human is not as clear as for other paradigms however, over the years 

findings in line with other rodent models as well as human depression have been reported 

and are discussed in the following sections.

2.5. Chronic unpredictable/mild stress

Chronic mild stress (CMS) is an animal model centered on the idea that low level chronic 

and unpredictable stressors, similar to what a human might experience in everyday life, 

induce depression in vulnerable individuals (for review, see (Willner, 2005)). Like other 

depression models, CMS induces a wide range of behavioral deficits including decreased 

sucrose preference, motivation for reward stimuli and sexual behaviors along with increased 

aggression, anxiety-like behaviors and altered sleep patterns. Many of the behavioral 

alterations are reversed by chronic, but not acute, treatments with standard antidepressants 

(Willner, 2005, Mutlu et al., 2012). CMS disrupts the HPA axis and induces a depression-

like phenotype in both male and female rats (Grippo et al., 2005b). Interestingly, a 4-week 

paradigm of CMS decreases the olfactory bulb volume and function in rats (Yang et al., 

2011). Strain-related differences have been recently reported with C57BL/6J mice 

displaying greater anxiety- and depression-like behaviors than the ICR (CD-1) outbred strain 

(Jung et al., 2014). Despite the fact that the CMS model is widely used and effective, it can 

be cumbersome and time consuming. Furthermore, because the types of stressors and length 

of stress can vary widely from lab to lab, the behavioral outcomes may not always fully 

replicate.

2.6 Social isolation

Human beings are social by nature and a lower sense of belongingness is associated with 

higher risk of developing mood disorders and depression-like symptoms (Hagerty et al., 

1996). In this regard, grief and partner loss in later life is especially relevant to depression in 

the elderly (Costello and Kendrick, 2000). Significant associations have been reported 

between social skills, levels of self-esteem and depression in adolescent substance abusers 

(Van Hasselt et al., 1993). Depression-like behaviors and related lack of social skills in 

adulthood may also favor alcohol (Windle and Windle, 2012) and drug abuse (Mueser and 
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Gingerich, 2013). Indeed, co-morbid mood disorder is present in 30–40% of individuals 

suffering from addiction (Conway et al., 2006). Rodents are also by nature social creatures 

and several studies have been conducted with social isolation used to mimic loneliness. 

Deprivation of contact with peers enhances alcohol consumption (Ehlers et al., 2007) and 

vulnerability to drug abuse in male rats, particularly in stressful conditions (Ahmed et al., 

1995). In female prairie voles, a socially monogamous rodent model, chronic social isolation 

induces depression-like behaviors, notably anhedonia, and higher neuroendocrine response 

to a resident intruder (Grippo et al., 2007). Social isolation might even exert deleterious 

effects on normally beneficial experiences such as the induction of neurogenesis in the 

hippocampus following voluntary physical exercise (Stranahan et al., 2006). Anxiety- and 

anhedonia-like symptoms of social isolation in adults can be reversed by chronic, but not 

acute, treatments with antidepressants (Wallace et al., 2009) reinforcing the relevance of this 

model to study depression and antidepressant responses.

2.7 Chronic social defeat stress

Social defeat stress has been extensively studied in humans, particularly in the context of 

bullying, which has gained attention recently as a major public health risk (Bjorkqvist, 

2001). Mood disorders are highly prevalent in victims of bullying. Adults who reported 

bullying in childhood are more than twice as likely to attempt suicide later in life (Meltzer et 

al., 2011). Excessive competition behaviors in a social environment may also increase 

overall vulnerability to stress leading to depression-like symptoms (Gilbert et al., 2009). In 

rodents, repeated exposures to social defeat stress (chronic social defeat stress, CSDS) 

induces a depression-like phenotype characterized by anhedonia and social-avoidance 

behaviors (Kudryavtseva et al., 1991, Berton et al., 2006, Krishnan et al., 2007, Golden et 

al., 2011), which can be reversed by chronic treatment with antidepressants (Rygula et al., 

2006a, Rygula et al., 2006b). Interestingly, in C57BL/6J mice subjected to CSDS there are 

individual differences in vulnerability (Berton et al., 2006, Krishnan et al., 2007, Golden et 

al., 2011, Hodes et al., 2014), which makes this model particularly relevant to study human 

stress vulnerability and depression. Indeed, a majority of humans exposed to stressful events 

are resilient and do not develop depression or post-traumatic stress disorders (PTSD) (for 

review, see (Southwick and Charney, 2012)). In addition, endocrine disruptions similar to 

those observed in humans with depression have been identified as markers of vulnerability 

to social stress in rodents (Korte et al., 1995, Berton et al., 1999, Jochems et al., 2015). 

While much work has determined the mechanisms of vulnerability in these mice, more 

recent studies have highlighted active neurobiological mechanisms associated with 

resilience (for reviews, see (Russo et al., 2012, Pfau and Russo, 2015)). It is thought that 

identification of neurobiological changes associated with active coping to stress normally 

seen in resilient individuals will allow the development of novel more effective classes of 

antidepressant medications.

2.8 Witness defeat

Witnessing a traumatic event is sufficient to induce PTSD symptoms in vulnerable humans 

(Kessler et al., 1995) and rodents ((Warren et al., 2013, Patki et al., 2014)). Warren et al. 

(2013) showed that witnessing stressful events induces long-lasting behaviors associated 

with a depression-/anxiety-like phenotype and enhanced corticosterone serum level in adult 
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mice. More importantly, gene expression changes in the ventral tegmental area were similar 

to those of susceptible mice following the more traditional CSDS (Warren et al., 2013). 

Witness defeat was also associated with depression-/anxiety-like behaviors, memory deficits 

and elevated corticosterone levels in rats (Patki et al., 2014). This animal model is 

particularly relevant for combat-related trauma witnessed by soldiers that develop PTSD 

(Daskalakis and Yehuda, 2014). Some have even argued that witnessing human atrocities 

may in fact have a greater impact than self-exposure (Yehuda et al., 1992).

2.9 Genetic and pharmacological rodent models

Despite the fact that genome wide association studies in humans have not identified a single 

risk allele associated with MDD, there are clearly genetic factors that contribute to stress 

vulnerability in rodent (Levinson, 2006, Flint and Kendler, 2014). Several groups discovered 

that depression-like phenotypes differ dramatically between specific rat strains. For 

example, the Wistar Kyoto rat strain exhibits a pronounced pro-depressant phenotype 

including behavioral despair, social avoidance and anhedonia (Pare, 1994, Solberg et al., 

2004, Nam et al., 2014). Chronic treatment with antidepressants, electroconvulsive therapy 

or deep brain stimulation can reverse depressive-like behaviors in these animals (Jeannotte 

et al., 2009, Falowski et al., 2011, Kyeremanteng et al., 2012, Tizabi et al., 2012, Belujon 

and Grace, 2014, Kyeremanteng et al., 2014). In line with this concept the Flinders sensitive 

rat line, which was originally bred according to their resistance to the anticholinesterase 

agent diisopropyl fluorophosphate, exhibit some similarities to depressed humans (for 

extensive review, please refer to (Overstreet and Wegener, 2013)), such as increased 

immobility in the forced swim test (Overstreet et al., 1992), altered coping response in the 

social interaction test (Overstreet et al., 2004) and reduced maternal behaviors (Lavi-Avnon 

et al., 2005, Friedman et al., 2006). This depression-like phenotype can be partially reversed 

by chronic antidepressant treatments (Schiller et al., 1992, Pucilowski and Overstreet, 1993, 

Overstreet et al., 2004). Surprisingly, Flinders sensitive rats do not exhibit a greater degree 

of anhedonia, (Pucilowski et al., 1993) nor do they show increased anxiety in a novel 

environment such as the elevated plus maze (Schiller et al., 1991). Thus, while this rat 

model recapitulates aspects of human depression, it may be more limited in understanding 

anhedonia or depression without comorbidity of anxiety.

Genetic models have also been developed based on polymorphisms identified in depressed 

patients although we should caution that none of these polymorphisms have survived 

corrections for multiple comparisons across more stringent population based genome-wide 

analysis in MDD patients (Flint and Kendler, 2014). Rather, most were identified in bipolar 

and schizophrenia patients where MDD comorbidity is high (Levinson, 2006, Flint and 

Kendler, 2014, Gatt et al., 2015). As an example, a DNA variant in the vicinity of the brain-

derived neurotrophic factor (BDNF) gene has been linked to increased susceptibility to 

bipolar disorder in a family-based association study (Neves-Pereira et al., 2002). In parallel, 

single-nucleotide polymorphisms within the BDNF gene were reported in bipolar patients 

(Sklar et al., 2002). Genetic variants of the BDNF gene have also been shown to be 

associated with greater risk for MDD in a subset of patients with a history of schizophrenia 

(Schumacher et al., 2005). Additional studies in animal have shown that BDNF 

polymorphisms are implicated in stress response and the effects of antidepressants (Nibuya 
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et al., 1995, Smith et al., 1995, Duman and Monteggia, 2006). Genetically modified mice 

expressing a methionine substitution for valine at codon 66 of the BDNF gene (Val66Met) 

reproduces phenotypic hallmarks of depression as observed in humans (Chen et al., 2006).

Pharmacological interventions such as chronic corticosterone administration can also induce 

long lasting depressive-like behaviors in rodents by mimicking the increased stress hormone 

production observed in a subset of depressed patients (Gourley and Taylor, 2009, Sterner 

and Kalynchuk, 2010). In addition, serotonin deficiency induced by tryptophan depletion or 

tryptophan hydroxylase inhibition can cause depression in both humans (Young, 2013) and 

rodent models of depression (Berton and Nestler, 2006), implicating reduced serotonergic 

function in depression. For a more detailed discussion of these models and their utility for 

studying depression we refer the reader to the following reviews (Berton and Nestler, 2006, 

Sterner and Kalynchuk, 2010, Jacobsen et al., 2012).

3. Validity for human disorders

Clinical features of MDD are heterogeneous and it is becoming increasingly clear that 

patients can be stratified to some extent based upon underlying etiologies (Kessler et al., 

1996, Frazer and Morilak, 2005, Matthews et al., 2005). Despite the fact that none of the 

animal models currently used fully recapitulate the entire human depression syndrome, as 

we discuss throughout the review each has advantages and disadvantages (for review, see 

(Berton and Nestler, 2006)) by capturing different aspects of the human condition.

Most of the animal models of depression have been developed using male rodents and were 

later applied to their female counterparts. Consequently some models, for example CSDS, 

are less appropriate to study female depression, since females of most rodent strains do not 

readily fight. Furthermore, female rats do not express LH as males do (Dalla et al., 2008b) 

and display a differential response and adaptation to stress in the FST and CMS paradigms 

(Dalla et al., 2008a). In this regard, behavioral effects of antidepressant treatment might be 

gender-specific (Kokras et al., 2009, Dalla et al., 2010). Indeed, women may respond better 

to selective serotonin reuptake inhibitors (Kornstein et al., 2000), which might be related to 

sexual dimorphisms of the serotonergic system (Rubinow et al., 1998). In contrast, men and 

postmenopausal women show a more favorable response to tricyclic antidepressants, 

highlighting a possible role for sex hormones in response to antidepressant treatment 

(Kornstein et al., 2000, Kornstein et al., 2010). For extensive reviews on sex differences in 

animal models of mood disorders readers should refer to (Dalla et al., 2011, Kreiner et al., 

2013, Kokras and Dalla, 2014, Seney and Sibille, 2014, Pfau and Russo, 2015).

Nevertheless, significant progress has been made in the last few decades using the animal 

models presented above and a growing number of studies are including human samples to 

validate results obtained in rodents. In the next sections, we will summarize converging 

evidence from both depressed humans and rodent depression models related to synaptic 

remodeling, transcription factors and epigenetics, immunity and inflammation and astrocyte 

function (Table 1).
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3.1 Neuronal and synaptic remodeling

In the late 1990s, decreased brain activity was linked to a reduction in cortical volume in 

patients suffering from bipolar and unipolar depression (Drevets et al., 1997). Since then, 

multiple groups have investigated neuroanatomical and cellular alterations in the brain of 

depressed patients and suicide subjects (for reviews, see (Manji et al., 2001, Hercher et al., 

2009, Russo and Nestler, 2013)). One of the consistent findings from histopathological 

studies is lower cortical thickness and cell densities in the prefrontal cortex (PFC) of 

depressed patients (Rajkowska et al., 1999). Microarray gene profiling has revealed 

decreased expression of synapse-related genes and loss of excitatory synapses in both the 

PFC (Kang et al., 2012) and hippocampus (Duric et al., 2013) of MDD subjects. 

Interestingly, experience-dependent structural and functional changes identified in human 

MDD are strongly affected in many of the rodent stress models described above and have 

been linked to depression-/anxiety-like behavioral phenotypes (Shansky et al., 2009, 

Shansky et al., 2010, Christoffel et al., 2011b, Davidson and McEwen, 2012, McEwen, 

2012, McEwen and Morrison, 2013)(Christoffel et al., in press). As a side note, sex 

hormones can influence adaptive structural plasticity and have been shown to mediate the 

effects of stress on the brain (for reviews, see (Shansky, 2009, McEwen, 2010)). It has been 

argued that sex hormone mediated restructuring of synaptic contacts within the brain might 

be linked to gender differences in MDD prevalence (Shansky, 2009).

In rats exposed to the LH paradigm, changes in depressive behaviors are closely related to 

persistent remodeling of hippocampal spines and synapses (Hajszan et al., 2009) (Figure 1). 

Dendritic atrophy has also been reported in the hippocampus of OBX rats and was 

associated with depression-like behaviors (Morales-Medina et al., 2013). In addition, 

chronic daily restraint stress induces similar effects in the rat medial PFC (Radley et al., 

2004, Radley et al., 2006) and even a brief episode of uncontrollable stress causes dendritic 

retraction in the PFC of mice (Izquierdo et al., 2006). Moreover, experience-dependent 

structural plasticity and synaptic functioning in the rat hippocampus are influenced by the 

degree and quality of maternal care (Champagne et al., 2008, Bagot et al., 2009), which 

under severe circumstances can be extremely persistent throughout adulthood (Baudin et al., 

2012, Sousa et al., 2014). Unlike the hippocampus and PFC, chronic stress increases spine 

number and dendrite complexity within limbic regions such as the nucleus accumbens 

(NAc) and basolateral amygdala (BLA) (Vyas et al., 2006, Christoffel et al., 2011a, Warren 

et al., 2014). For example, 21-day immobilization stress (2h/day) enhances dendritic 

arborization and elongation in the BLA inducing anxiety-like behaviors in the elevated plus 

maze (Vyas et al., 2006). In addition, restraint stress induces anhedonia and modifies 

synaptic strength of NAc medium spiny neurons (MSN) (Lim et al., 2012). Interestingly, 

chronic gestational stress induces persistent depression-like behaviors and alters spine 

density and dendrite morphology in the NAc (Haim et al., 2014) and the PFC (Leuner et al., 

2014) of female rats.

Collectively, these studies show that stress-induced changes in synapse structure and 

function within the reward circuitry (Figure 1) drive symptoms of anhedonia and greater 

addiction liability seen in depressed patients (for review, see (Russo and Nestler, 2013)). 

Thus, it may be possible in the future to target neuronal and cellular plasticity mechanisms 
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to promote a resilient phenotype and improve treatment in drug-resistant patients (Manji et 

al., 2003, Vidal et al., 2011).

In addition to synaptic plasticity, previous research has implicated other forms of neuronal 

plasticity such as the birth and integration of new neurons in the hippocampus as being 

particularly important for antidepressant drug responses (Banasr and Duman, 2007). Two 

neurogenic niches have been identified in rodents: the subgranular zone of the dentate gyrus 

in the hippocampus and the subventricular zone of the lateral ventricles. New neurons 

generated in the hippocampus become dentate granule cells while those produced in the 

subventricular zone migrate to the olfactory bulb (Imayoshi et al., 2009, Borsini et al., 

2015). Within the adult rodent brain, repeated stress reduces cell proliferation and total 

neuron number in the dentate gyrus (Pham et al., 2003). Conversely physical activity (van 

Praag et al., 1999) and environmental enrichment (Kempermann et al., 1997), both of which 

are antidepressant in humans, promote the formation of new neurons from a pool of neural 

progenitor cells (Cameron and Gould, 1994, Zhao et al., 2008, Imayoshi et al., 2009, Borsini 

et al., 2015). Recent imaging studies suggest that experience-dependent neurogenesis may 

be a biomarker of a healthy and well-functioning brain as reduced neurogenesis has been 

observed in numerous human and rodent studies related to depression and PTSD (for 

reviews, see (Dranovsky and Hen, 2006, Becker and Wojtowicz, 2007, Eisch and Petrik, 

2012, Kheirbek et al., 2012)) (Figure 1). A greater understanding of the mechanisms 

mediating such reduced neurogenesis in depression and related disorders may help to 

improve diagnosis and treatment outcome.

3.1.1 BDNF—The neurotrophic theory of depression and antidepressant responses argues 

that low levels of neurotrophic factors, such as BDNF, increase stress vulnerability through 

their effects on nerve cells within forebrain structures (Duman et al., 1997) (Figure 1). Over 

the years, the story has become more complex with multiple groups showing that stress and 

antidepressant treatments have opposite effects on BDNF expression in the brain depending 

upon structure (for review, see (Duman and Monteggia, 2006)). BDNF (Val66Met) gene 

polymorphism has been associated with altered hippocampal and cortical morphology 

(Pezawas et al., 2004), reduced hippocampal volume and increased depression prevalence in 

humans (Szeszko et al., 2005, Bueller et al., 2006). Mice expressing the Val66Met gene 

variant also exhibit increased anxiety-related behaviors and decreased hippocampal volume 

and dendritic complexity that are not normalized by fluoxetine treatment (Chen et al., 2006). 

Interestingly, desipramine has antidepressants effects in these same mice suggesting that this 

polymorphism could influence individual response to drug treatment (Yu et al., 2012). 

BDNF has recently been targeted as a promising marker for successful antidepressant 

response in a personalized-medicine approach to treat depression (Cattaneo et al., 2013).

BDNF is important for hippocampal dendritic remodeling following chronic restraint stress 

in mice (Magarinos et al., 2011). Reduced BDNF levels have been reported in the 

hippocampus of rats bred for vulnerability to LH (Aznar et al., 2010). The rapid action of 

ketamine, an antagonist of glutamate N-methyl-D-aspartate (NMDA) receptors, which acts 

as an antidepressant in treatment-resistant patients (Murrough, 2012) seems to be mediated 

by the release of BDNF in the PFC (Lepack et al., 2014). Electroconvulsive seizure therapy 

(ECS), a clinical intervention for depressed patients resistant to antidepressant treatments, 
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induces production of neurotrophic and angiogenic factors in the rat hippocampus (Newton 

et al., 2003). Conversely, chronic stress increases BDNF levels in the mesolimbic dopamine 

system to promote a pro-depressant phenotype (Eisch et al., 2003, Berton et al., 2006), while 

both standard treatment with antidepressants, as well as knockdown of BDNF in the VTA-

NAc pathway, prevents depressionlike behavior induced by CSDS (Berton et al., 2006, 

Walsh et al., 2014). Post mortem studies in humans have verified increased BDNF within 

the NAc suggesting that this may reflect an important disease mechanism to target for 

treatment (Krishnan et al., 2007). Despite this, the heterogeneous effects of BDNF 

throughout mesolimbic and forebrain circuitry make it a very challenging molecule to target 

globally.

3.1.2 p11—Following the promising results reported in BNDF studies, downstream targets 

of this neurotrophic factor, such as the protein p11 (also called S100A10), have been 

considered as potential targets to improve MDD treatments and predict antidepressant 

response (Svenningsson et al., 2014) (Figure 1). p11, a calcium effector protein modulating 

serotonin receptor signal transduction (for reviews, see (Svenningsson and Greengard, 2007, 

Svenningsson et al., 2013)), is down-regulated in the brain of depressed patients 

(Svenningsson et al., 2006) and subjects who commit suicide (Anisman et al., 2008). In 

patients suffering from bipolar disorders, p11 mRNA level in peripheral mononuclear blood 

cells is positively correlated with the number of depressive episodes (Zhang et al., 2011a). It 

has also been proposed as a biomarker to distinguish PTSD from other psychiatric disorders 

(Su et al., 2009) and could be useful to identify patients at high risk of suicide (Zhang et al., 

2011b).

In rodents, therapies such as ECS (Svenningsson et al., 2006, Perez-Caballero et al., 2014) 

or chronic antidepressant treatment (Svenningsson et al., 2006) increase p11 expression. 

Furthermore, overexpression of p11 in the NAc induces antidepressant-like behavioral 

effects (Svenningsson et al., 2006, Alexander et al., 2010). Conversely, p11 knockout mice 

exhibit a pro-depressant phenotype and are insensitive to the antidepressant actions of 

BDNF (Warner-Schmidt et al., 2010). Corticostriatal projection neurons strongly express 

p11 and seem to be required for the antidepressant effects of serotonin reuptake inhibitors 

(Schmidt et al., 2012). Interestingly, excessive cytokine production, which may be a risk 

factor for depression (Hodes et al., 2014), mediates anti-depressant increases of p11 level in 

the frontal cortex and common antiinflammatory drugs have been shown to antagonize 

beneficial antidepressant responses in mice (Warner-Schmidt et al., 2011). This last 

observation seems to be related to a direct drug interaction, whereby over-the-counter anti-

inflammatory compounds inhibit availability of certain monoaminergic antidepressants in 

blood, a finding subsequently confirmed in a human cohort raising concerns for clinicians 

(Warner-Schmidt et al., 2011).

3.1.3 REDD1—As mentioned previously chronic stress and MDD has been associated with 

atrophy in various brain regions. The molecular mechanisms involved in these 

morphological alterations are still poorly understood. However, Ota et al. (2014) recently 

proposed a crucial role for REDD1 (regulated in development and DNA damage response-1) 

(Figure 1). REDD1 expression is increased in the PFC following stress thereby inhibiting 

MÉNARD et al. Page 10

Neuroscience. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mTOR (mammalian target of rapamycin) (Corradetti et al., 2005, Ota et al., 2014), which is 

implicated in BDNF-induced protein synthesis (Takei et al., 2004) and experience-

dependent plasticity (Hoeffer and Klann, 2010). In mice, deletion of the gene encoding 

REDD1 promotes resilience in the CMS paradigm while overexpression in the PFC induces 

neuronal atrophy as well as anxiety- and depression-like behaviors (Ota et al., 2014). 

Accordingly, REDD1 is increased in postmortem tissue from the PFC of depressed patients 

(Ota et al., 2014), whereas mTOR protein is significantly reduced (Jernigan et al., 2011). 

Glucocorticoids released in response to stress have also been shown to negatively regulate 

mTOR activity (Polman et al., 2012) and mTOR-dependent synapse formation, which is 

thought to underlie the rapid antidepressant effects of ketamine (Li et al., 2010, Li et al., 

2011).

3.1.4 Rac1—Our group recently identified Rac1 (RAS-related C3 botulinum toxin 

substrate 1), a small Rho GTPase involved in actin-dependent synaptic remodeling 

(Nakayama et al., 2000, Ng et al., 2002, Tolias et al., 2011, Um et al., 2014), as a promising 

target for MDD treatment (Figure 1). Golden et al. (2013) reported a sustained reduction of 

Rac1 expression in the NAc of stress-susceptible mice following CSDS. Interestingly these 

findings were corroborated in NAc of postmortem tissue from depressed human subjects 

(Golden et al., 2013). Reduction of Rac1 expression or inhibition of its activity specifically 

in the NAc increase social avoidance and anhedonia and induce the formation of immature 

stubby excitatory spines on MSN (Golden et al., 2013). Overexpression of constitutively 

active Rac1 prevents formation of these immature stubby excitatory spines and reduces the 

expression of depressive-like behaviors following CSDS (Golden et al., 2013).

3.1.5 NF-κB—IKK-NF-κB signaling has been associated with regulation of neuronal 

morphology and is necessary and sufficient to induce anxiety- and depressive-like behaviors 

in mice including social avoidance and anhedonia (Christoffel et al., 2011a, Christoffel et 

al., 2012). CSDS induces accumulation of IKK protein leading to phosphorylation and 

activation of NF-κB. Inhibition of NF-κB by expressing a dominant-negative IKK decreases 

basal dendritic spine number and prevents CSDS-induced spine formation in the NAc 

whereas constitutive activation has the opposite effect (Russo et al., 2009) (Figure 1). Brain-

specific NF-ΚB activators include glutamate and neurotrophic factors (for reviews, see 

(O'Neill and Kaltschmidt, 1997, Meffert and Baltimore, 2005)) and thus this transcription 

factor has been closely associated with neuronal function (O'Mahony et al., 2006) and 

synaptic plasticity underlying normal brain function (Meffert et al., 2003, Kaltschmidt et al., 

2006). Hormonal regulation of NF-ΚB seems to occur as its expression is upregulated in 

ovariectomized female mice promoting decreased susceptibility to stress as assessed in the 

CMS paradigm (LaPlant et al., 2009).

In human, higher levels of NF-ΚB has been reported in the postmortem frontal cortex from 

bipolar disorder patients (Sun et al., 2001), although equivalent postmortem studies in MDD 

subjects are still lacking. Increased peripheral NF-ΚB activity has been shown in women 

with childhood abuse-related PTSD (Pace et al., 2012) and NF-ΚB DNA binding is 

enhanced in leukocytes from depressed male patients following a stressful social event when 

compared to controls (Pace et al., 2006). Together, these findings highlight an important role 
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for IKK and NF-κB in the development of mood disorders and underlying neuronal and 

synaptic remodeling.

3.2 Transcription and epigenetics

Given the disappointment surrounding genome wide linkage studies in MDD, the field has 

largely focused on mechanism of epigenetics that refer to either inherited or environmentally 

induced post-translational modifications on the DNA that can mediate long-term changes in 

gene expression independent of DNA sequence changes (Bagot et al., 2014). Recent 

evidence suggest that stress sensitivity can be transmitted through generations in rodents 

(Dietz et al., 2011) and human (Yehuda et al., 2014). Moreover, molecular changes are 

different if the stressful events occurred early or late in life (Malki et al., 2014) suggesting 

that long-term alterations in transcription potential may be relevant to mood disorders. 

Accordingly, epigenetic mechanisms have been linked to the persistent synaptic plasticity 

changes associated with depressive-like behaviors (Bagot et al., 2014, Fass et al., 2014) and 

gender differences in stress responses (Hodes, 2013, Hunter and McEwen, 2013). In the next 

sections, we will summarize recent findings related to the transcription factor ΔFosB, 

microRNA regulation by β-catenin and histone modifications (Figure 1) that might be used 

to augment current MDD treatment.

3.2.1 ΔFosB—Immediate early gene expression is differentially regulated in the brain by 

stress (Melia et al., 1994). However, while acute stress is associated with elevated c-Fos and 

FosB expression in the NAc and PFC, only ΔFosB, a stable splice variant of the FosB gene, 

is induced by restraint stress, CMS (Perrotti et al., 2004) and CSDS (Hinwood et al., 2011). 

ΔFosB owes its stability, in part, to a splicing mediated absence of degron domains (Carle et 

al., 2007) and phosphorylation sites (Ulery et al., 2006) that prevent a rapid proteosomal 

degradation. This unique stability makes it a good candidate to explain the persistence of 

behaviors associated with exposure to chronic stimuli (for review, see (Nestler, 2014)). 

Furthermore, ΔFosB expression affects synaptic strength and dendritic spine morphology 

(Grueter et al., 2013). Interestingly, resilience to social defeat stress has been associated with 

ΔFosB induction in D1 MSNs in NAc of mice (Vialou et al., 2010a, Vialou et al., 2010b) 

and humans (Vialou et al., 2010a) and is required for antidepressant behavioral responses 

(Vialou et al., 2010b). Although ΔFosB seems to be induced in the NAc of susceptible mice 

to a lesser extent than resilient mice, its induction is specific to D2 MSNs (Lobo et al., 

2013). Interestingly, natural reward behaviors such as sucrose drinking and sexual behaviors 

also increase ΔFosB expression in the NAc (Wallace et al., 2008). Unlike in NAc, increased 

expression of ΔFosB in the PFC leads to anhedonia, social avoidance behavior and 

immobility suggesting that it has region specific effects (Vialou et al., 2014). Environmental 

enrichment, which is known to dampen stress-related behaviors and promote resilience 

(Greenwood and Fleshner, 2008, Schloesser et al., 2010), affects ΔFosB expression in both 

NAc (Zhang et al., 2014) and PFC (Lehmann and Herkenham, 2011). Molecules regulating 

ΔFosB (Wang et al., 2012) or its downstream targets look promising to develop novel 

antidepressant treatments. As an example, expression of the opioid peptide dynorphin is 

suppressed by ΔFosB (Zachariou et al., 2006) and knockdown of prodynorphin gene 

protects against age-related increases in anxiety and altered synaptic plasticity (Menard et 
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al., 2013), raising the possibility that dynorphin downregulation may promote stress 

resilience.

3.2.2 β-catenin—The multi-functional protein β-catenin has recently been identified as a 

key regulator in the development of behavioral resilience (Dias et al., 2014) Selective 

knockdown of β-catenin in the NAc during chronic stress promotes the establishment of 

depressive-like behaviors (Dias et al., 2014). One of the first studies highlighting a role for 

β-catenin in depression showed that chronic ECS up-regulates expression and promotes 

neurogenesis in the rat hippocampus (Madsen et al., 2003). β-catenin regulates downstream 

Wnt signaling, which has also been associated with stress susceptibility in the CSDS model 

(Wilkinson et al., 2011). In humans, β-catenin protein level is significantly reduced in the 

PFC of postmortem tissue from MDD patients (Karege et al., 2012). Interestingly, 

overexpression of β-catenin mimics the effect of lithium (Gould et al., 2007), which is 

commonly used to treat bipolar disorder and acts by inhibiting glycogen synthase kinase 3β 

(GSK-3Β) (Beaulieu et al., 2004). GSK-3Β phosphorylation is negatively correlated with β-

catenin level in the PFC of depressed patients (Karege et al., 2012). In vivo inhibition of 

GSK-3Β upregulates β-catenin level in the mouse hippocampus and has antidepressant 

effects (Kaidanovich-Beilin et al., 2004). Furthermore, selective deletion of GSK-3Β in the 

forebrain has anxiolytic and pro-social effects (Latapy et al., 2012) highlighting the fact that 

GSK-3Β may play a central role in mood regulation (for review, see (Saus et al., 2010)).

Regulation of microRNA expression by β-catenin in the context of CSDS (Dias et al., 2014) 

is intriguing since these non-coding transcripts are abundant in the nervous system and seem 

to play a role in synaptic function and plasticity (for reviews, see (Kosik, 2006, Im and 

Kenny, 2012)). β-catenin itself is modulated by microRNAs (Veronese et al., 2011) and 

polymorphisms in these microRNAs have been associated with MDD in human (Saus et al., 

2010, Xu et al., 2010). Lastly, given that chronic treatment with antidepressants affects 

microRNA levels in serotoninergic neurons (Baudry et al., 2010), this raises the possibility 

that they make be targeted in new MDD treatment strategies.

3.2.3 DNA and histone modifications—Long-lasting changes of gene regulation 

associated with the establishment of depressive-like behaviors are highly similar between 

different animal models of depression, whereas the patterns observed in resilient rodents 

generally overlap with those of animals treated with antidepressants (Hunter et al., 2009, 

Wilkinson et al., 2009, Sun et al., 2013, Bagot et al., 2014). As for brain structural 

remodeling, sex differences in epigenetic mechanisms may influence susceptibility to stress 

and thus MDD prevalence (Sterrenburg et al., 2011, Hodes, 2013, Hunter and McEwen, 

2013). Prenatal stress may even have a sexually dimorphic influence on stress-coping 

strategies later in life (Mueller and Bale, 2007, 2008). Here we will briefly discuss recent 

findings on DNA and histone modifications associated with depression (for a more 

extensive reviews on the topic, please refer to (Hodes, 2013, Hunter and McEwen, 2013, 

Sun et al., 2013, Bagot et al., 2014).

A genome-wide study conducted in 58 mother-child dyads reveals small DNA methylation 

differences between neonates exposed to non-medicated maternal depression when 

compared to controls (Non et al., 2014). Early life experience such as maternal care greatly 
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affects stress susceptibility later in life. In rats, behavioral programming of the offspring 

epigenome includes changes in DNA methylation and histone acetylation, which promote 

either depressive-like behaviors or resilience (Weaver et al., 2004) and influences synaptic 

plasticity (Bagot et al., 2012a, Bagot et al., 2012b). Prenatal stress or prolonged maternal 

separation modifies DNA methylation of the corticotropin-releasing factor (CRF) gene, an 

effect that persists in adulthood (Mueller and Bale, 2008, van der Doelen et al., 2015). CRF, 

which is secreted by neurons of the hypothalamic paraventricular nucleus (PVN) in response 

to stress (Herman et al., 2008), mediates the effects of early life experience on stress 

response in adulthood and may be involved in vulnerability to mood disorders across 

generations (Francis et al., 1999b). Social stressors such as CSDS also affect DNA 

methylation in adult mice and decreased methylation of the CRF promoter has been reported 

in susceptible, but not resilient, mice (Elliott et al., 2010). These findings are interesting in 

light of the fact that a subset of MDD patients exhibit HPA axis hyperactivity which might 

be driven by increased production of CRF (Arborelius et al., 1999). Hence, an increased 

number of CRF neurons have been reported in the PVN of depressed subjects in postmortem 

studies (Raadsheer et al., 1994, Raadsheer et al., 1995, Wang et al., 2008) leading to the 

hypothesis that CRF receptor antagonists may represent a potential novel class of 

antidepressants.

DNA methyltransferase (Dnmt) enzymes catalyze the transfer of methyl groups to the DNA, 

are abundant in neurons (Feng et al., 2005) and are involved in experience-dependent 

synaptic plasticity and function (Levenson et al., 2006, Feng et al., 2010). In line with 

altered DNA methylation, Dnmt3a expression is upregulated in the NAc following CSDS 

and promotes greater stress vulnerability (LaPlant et al., 2010). In addition, infusion of 

R108, a potent non-nucleoside inhibitor of DNA methylation, promoted resilience similar to 

chronic intraperitoneal injection with the antidepressant fluoxetine (LaPlant et al., 2010). 

Decreased level of p11 in the PFC of Flinders Sensitive Line, a genetic rat model of 

depression, was linked to hypermethylation in its promoter region, a pattern that could be 

reversed by chronic treatment with escitalopram, a selective serotonin reuptake inhibitor 

(Melas et al., 2012). Interestingly, escitalopram-induced hypomethylation was associated 

with reduction of Dnmt1 and Dnmt3a levels (Melas et al., 2012) reinforcing the interest in 

targeting these enzymes as novel treatments for MDD.

In addition to DNA methylation, increased methylation at the BDNF promoter has been 

linked to reduced BDNF levels and increased risk for suicide in humans (Kang et al., 2013). 

In rodents, downregulation of BDNF following CSDS is associated with a similar repressive 

histone methylation in the hippocampus and antidepressant treatment upregulates BDNF 

expression through histone acetylation (Tsankova et al., 2006). Acute or repeated ECS 

treatment affects histone acetylation in the rat hippocampus modulating cFos and BDNF 

gene expression (Tsankova et al., 2004). Conversely in NAc, CSDS induces a persistent 

increase in acetylated histone H3 level associated with a decrease of histone deacetylase 2 

(HDAC2), which can be reversed by HDAC inhibitors to promote resilience (Covington et 

al., 2009). In line with these findings, HDAC2 protein level is reduced in the NAc of 

postmortem tissue from depressed patients (Covington et al., 2009). On the other hand, 

HDAC2 expression is increased in peripheral white blood cells of depressed patients when 

compared to controls during a depressive episode, but not during the remissive state (Hobara 
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et al., 2010), suggesting that aberrant transcriptional regulation in mood disorders may vary 

between the central nervous system and periphery.

3.3 Immune system and inflammation

Alterations within the peripheral immune system and subsequent over activation of pro-

inflammatory cytokines has long been associated with mood disorders (for reviews, see 

(Capuron and Miller, 2011, Maes et al., 2011)) leading to the proposal of a macrophage 

theory of depression (Smith, 1991). In addition, continuous activation of the peripheral 

immune system induced by various forms of cancer, systemic infection or autoimmune 

disease may promote the development of major depression in vulnerable individuals (for 

review, see (Dantzer et al., 2008)). Disturbances in leukocyte function and/or leukocyte 

number and elevated cytokine expression have been proposed as potential biomarkers of 

depression (Maes et al., 1992, Raison et al., 2006, Dowlati et al., 2010, Baune et al., 2012, 

Hodes et al., 2014) and PTSD (Pace and Heim, 2011). There is also increasing evidence that 

anti-inflammatory drugs may have antidepressant effects in MDD patients (Muller et al., 

2006, Tyring et al., 2006, Raison et al., 2013, Kohler et al., 2014). Interestingly, there are 

gender differences with regard to the immune system and depression that might make 

females more vulnerable to both inflammatory illnesses and depression (Maes et al., 1992, 

Vogelzangs et al., 2012). In the next sections, we will summarize findings related to 

cytokines, microglia activation and monocyte infiltration through reduced blood-brain 

barrier (BBB) permeability (Figure 1) in the context of MDD.

3.3.1 Cytokines—Multiples human studies have associated increased peripheral cytokine 

production with the development of mood disorders (Maes et al., 1992, Maes et al., 1997, 

Lanquillon et al., 2000, Dean et al., 2010, Dowlati et al., 2010, Maes et al., 2011, Fagundes 

et al., 2013) and PSTD (Baker et al., 2001, Gill et al., 2008, Newton et al., 2014). Systemic 

injection of pro-inflammatory cytokines induce depression-like behaviors (Dantzer et al., 

2008), whereas antidepressant treatment may normalize elevated cytokine levels (Sluzewska 

et al., 1995, Kubera et al., 2011). Altered genetic status at the interleukin 6 (IL-6) gene locus 

has been recently identified by computational analyses as a risk for stress vulnerability (Cole 

et al., 2010). Nevertheless the mechanisms and sources of increased inflammation and 

behavioral disturbance in depression are not yet well understood.

Cytokines can be generally divided into either pro- or anti-inflammatory in nature (for 

review, see (Kubera et al., 2011)). Pro-inflammatory cytokines such as interleukin 1 (IL-1) 

and tumor necrosis factor alpha (TNFα) affect synaptic plasticity leading to the 

establishment of depression-like behaviors and mood disorders (Khairova et al., 2009). In 

rodents, CSDS-, CMS- and LH-induced depression-like behaviors have been correlated with 

high levels of pro-inflammatory IL-1β, IL-6 and TNFα (Grippo et al., 2005a, Kubera et al., 

2011, Wohleb et al., 2011, Hodes et al., 2014). In contrast, anti-inflammatory IL-10 is 

reduced in the rat cortex and hippocampus following chronic restraint stress and depression-

like behaviors can be reversed by administration of recombinant IL-10 (Voorhees et al., 

2013). Activation of the immune system and elevated pro-inflammatory cytokine production 

affects multiple biological targets associated with depression, including cell proliferation, 

neurogenesis, gliogenesis and apoptosis (for reviews, see (Kubera et al., 2011, Borsini et al., 
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2015)). Stress-related activation of NF-ΚB signaling and IL-1β inhibit neurogenesis in the 

hippocampus and promote depression-like behaviors in the CMS paradigm (Koo et al., 

2010). Interestingly, chronic light deprivation induces IL-6-dependent depression-like 

behaviors also through activation of NF-ΚB signaling and may be relevant to seasonal 

affective disorder marked by depressive symptoms (Monje et al., 2011). Our group recently 

reported that preexisting individual differences in stress-responsive IL-6 release from 

leukocytes contributes to CSDS susceptibility in adult mice (Hodes et al., 2014). Leukocyte-

derived IL-6 release prior to stress exposure predicts susceptibility versus resilience in the 

CSDS paradigm (Hodes et al., 2014). Furthermore, while inhibiting peripheral IL-6 

production promotes resilience, transplantation of bone marrow from stress-susceptible mice 

leads to greater social avoidance following subthreshold defeat or witness defeat (Hodes et 

al., 2014). Surprisingly, a recent study reported that transplantation of lymph node cell 

suspensions from chronically stressed mice into stress-naïve lymphocyte-deficient mice 

produces antidepressant-like effects. These interesting results may suggest that there are 

differences in the innate (monocytes and macrophages) versus adaptive (lymphocytes) 

immune system that differentially contribute to susceptibility and resilience (Brachman et 

al., 2015).

A major issue related to studies investigating the role of the immune system in CSDS-

induced depressive behaviors is the possibility of individual variation in wounding. 

Especially given the fact that wounding during social stress can affect antiviral immunity (de 

Groot et al., 2002) and modulate splenic immune responses (Merlot et al., 2003). 

Nevertheless, we found that peripheral IL-6 also promotes greater vulnerability to a non-

physical form of social defeat stress in which the experimental mouse simply witness the 

traumatic event without experiencing any physical attack themselves (Hodes et al., 2014), 

suggesting that psychological stress is sufficient to induce immune dysregulation and 

depression. Lastly, enhanced vulnerability to stressful events in older rodents has been 

associated with persistent activation of the peripheral immune system (Godbout et al., 2008), 

which highlights the relevance of these findings in the context of the worldwide population 

of aging adults.

3.3.2 Microglia—Elevated cytokine production in the periphery and/or central nervous 

system is accompanied by activation of microglia, the immunocompetent cells of the brain. 

This in turn has been associated with altered synaptic plasticity, neurogenesis and emotional 

behaviors (for reviews, see (Kettenmann et al., 2013, Delpech et al., 2015)). On the other 

hand the antibiotic minocycline, which reduced microglia responses, prevents stress-induced 

IL-1β release in LH rats (Blandino et al., 2006, Blandino et al., 2009), suggesting that 

cytokines and microglia may be involved in stress responses. Leukocytes from stress-

susceptible mice in the CSDS paradigm release more IL-6 following LPS stimulation than 

resilient mice (Hodes et al., 2014) and similarly, isolated microglia from LH rats or stress-

susceptible mice produced higher levels of IL-1β or IL-6, respectively, in response to the 

same stimulation (Frank et al., 2007, Wohleb et al., 2011). As is the case for cytokines, 

higher microglia immunoreactivity has been reported in the cortex of depressed patients 

(Steiner et al., 2011) and subjects who commit suicide (Steiner et al., 2008). In an elegant 

study, Setiawan et al. (2015) recently showed that microglia activation is enhanced during a 
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major depressive episode using positron emission tomography. These changes were 

significant in the PFC, anterior cingular cortex and insula and greater microglia activation in 

the insula was correlated with depression severity (Setiawan et al., 2015).

In rats, chronic restraint stress affects density and morphology of microglia in stress-

sensitive brain regions (Tynan et al., 2010) and can be reversed by treatment with 

minocycline (Hinwood et al., 2013). Repeated social defeat (RSD), a modified version of the 

CSDS paradigm, is also associated with microglia hypertrophy in the mouse hippocampus, 

PFC and amygdala and an increase of inflammatory markers on microglia and CNS 

macrophages (Wohleb et al., 2011). Furthermore, RSD promotes the infiltration of 

monocytes originating from the periphery in the brain (Wohleb et al., 2013), suggesting that 

blood brain-barrier (BBB) permeability may be affected by stress and could contribute to the 

establishment of depressive-like behaviors and mood disorders (Wohleb et al., 2014b, 

Reader et al., 2015).

3.3.3 BBB permeability and monocyte infiltration—Several weeks after RSD, acute 

stress exposure is sufficient to re-establish monocyte trafficking from the spleen to the brain 

and alter emotional behaviors in mice (Wohleb et al., 2014a). Monocytes, which originate 

from progenitor cells in the bone marrow or spleen, can traffic to the CNS via the 

bloodstream when the BBB is compromised (for review, see (Gordon and Taylor, 2005)). 

The BBB, which is formed by endothelial cells sealed by tight junctions, pericytes and 

astrocytes, seems to be compromised in patients suffering from mood disorders as assessed 

by the ratio of cerebrospinal fluid to serum of various markers including albumin 

(Gudmundsson et al., 2007, Bechter et al., 2010).

While the mechanisms of increased immune infiltration and BBB integrity are not well 

understand, recent evidence suggests that altered gut microbiota, which plays an active role 

in immunity and inflammatory diseases (for review, see (Kamada et al., 2013)), may 

influence BBB permeability early in life and throughout adulthood (Braniste et al., 2014). 

Multiple groups have now reported that manipulation of the microbiome status affects 

anxiety- and depressivelike behaviors in rodents (for review, see (Foster and McVey 

Neufeld, 2013)) and these behavioral changes can be reversed by treatment with probiotics 

(Foster and McVey Neufeld, 2013). This concomitant involvement of both CNS and the 

peripheral immune system in stress responses suggests that depression is a complex disease 

requiring interventions at multiple levels. In this regard, selective ablation of astrocytes 

seem to facilitate leukocyte infiltration in the brain and delay BBB repair (Bush et al., 1999) 

making these glial cells an interesting target to develop innovative new treatments for 

human depression.

3.4 Astrocytes

Histopathological studies showed that glial cell density is reduced in the PFC, hippocampus 

and amygdala of MDD patients (for review see (Russo and Nestler, 2013)). Accordingly, 

astrocytic gene expression such as structural glial-fibrillary-acidic-protein (GFAP) is 

markedly decreased in PFC samples of postmortem tissue from depressed patients (Nagy et 

al., 2014) (Figure 2). In rats, GFAP protein expression is reduced following maternal 
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deprivation (Leventopoulos et al., 2007) or a 5-week social defeat paradigm (Araya-Callis et 

al., 2012), while S100β mRNA, a marker of astrocytes and oligodendrocytes, is decreased in 

a genetic model of depression (Strenn et al., 2015). Astrocytes can be classified into three 

types according to their morphology and spatial organization: 1) first radial astrocytes have 

long unbranched processes and surround blood vessels, 2) protoplasmic astrocytes are 

present mostly in gray matter and display highly branched short processes and finally 3) 

fibrous astrocytes have a classic stellar shape and are enriched in the white matter (Chen and 

Swanson, 2003). Chronic stress seems to disrupt the GFAP+ astrocytic network (process 

length, branching and volume) leading to structural atrophy but maybe not loss of the 

astrocytes themselves as assessed with S100β and Nissl staining (Tynan et al., 2013). GFAP 

is necessary for normal fibrous astrocyte function, which includes maintenance of BBB 

integrity (Kakinuma et al., 1998) (Figure 2). In adult rats, toxin-mediated glial loss in the 

PFC is sufficient to induce depressive-like behaviors (Banasr and Duman, 2008). In mice, 

epigenetic modifications of the glial cell-derived neurotrophic factor (Gdnf) gene in the 

ventral striatum have been associated with susceptibility to CMS (Uchida et al., 2011), while 

treatments with standard antidepressants have multiple effects on astrocytes including 

upregulation of structural proteins, activation of intracellular pathways and alterations of 

receptor expression (for review, see (Czeh and Di Benedetto, 2013)). S100β has been 

proposed as a biomarker for depression since it is elevated in the serum of patients suffering 

from depressive symptoms (Schroeter et al., 2008, Kim et al., 2012) (Figure 2). Moreover, 

antidepressant treatment decreases S100β level correlating with clinical improvement 

(Schroeter et al., 2008).

Cytokines and mediators of inflammation modulate astrocyte signaling through cell surface 

receptors, which, in turn, regulate behavior and synaptic function (for review, see 

(Sofroniew, 2014)). Astrocytic transcriptome profiles change dramatically in response to 

stimulation with cytokines and/or inflammatory mediators and most of the up-regulated 

genes are chemokines, cytokines and related growth factors (Pang et al., 2001, Meeuwsen et 

al., 2003, John et al., 2005, Hamby et al., 2012) (Figure 2). Chronic production of IL-6 by 

astrocytes reduces hippocampal neurogenesis (Vallieres et al., 2002), which may then 

increase vulnerability to stress as discussed previously. Regulation of astrocytes by 

glycolipids may also drive chronic inflammation in the brain by over-activating microglia 

and facilitating monocyte infiltration (Mayo et al., 2014). Still, astrocyte reactivity is not 

homogenous (Anderson et al., 2014) and more studies are required to define the precise 

mechanisms between astrocytes and stress-related immune responses in the context of 

human depression.

3.4.1 VEGF—Persistent clinical observations suggest a relationship between cardiovascular 

diseases and depression: vascular diseases elevate the rates of depression-like symptoms and 

depression is a risk factor for the development of cardiovascular pathologies (Musselman et 

al., 1998, Carney et al., 2003, Carney and Freedland, 2003, Plante, 2005, Salaycik et al., 

2007, Teper and O'Brien, 2008, Newton et al., 2013). Astrocytes closely interact with blood 

vessels and transient calcium increases in astrocyte end-feet causes cerebrovascular 

constrictions affecting cerebral blood flow and neuronal activity (Mulligan and MacVicar, 

2004) (Figure 2). A recent study reported that activation of astrocytes in the olfactory bulb 

MÉNARD et al. Page 18

Neuroscience. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in response to odor stimulation mediates hyperemia onset indicating an active role in 

neurovascular coupling (Otsu et al., 2015). Overexpression of the astrocyte-derived 

neurotrophic factor VEGF (vesicular endothelial growth factor), a growth factor involved in 

angiogenesis, has been associated with breakdown of the BBB permeability and down-

regulation of the tight junction proteins claudin-5 and occludin in CNS inflammatory 

diseases (Argaw et al., 2009, Argaw et al., 2012) (Figure 2). Interestingly, VEGF has been 

proposed as a potential target to treat depression (Warner-Schmidt and Duman, 2008, 

Fournier and Duman, 2012). Indeed, VEGF signaling is necessary for hippocampal cell 

proliferation and neurogenesis induced by ECS (Segi-Nishida et al., 2008) or treatment with 

antidepressants (Warner-Schmidt and Duman, 2007). Limited enhancement of BBB 

permeability through VEGF up-regulation may facilitate drug delivery in the brain (Jiang et 

al., 2014). Nevertheless, tight manipulation of VEGF overexpression to favor angiogenesis 

and drug delivery without affecting BBB permeability and neuronal function appears to be 

challenging. However, despite conflicting results in clinical studies (for review, see (Clark-

Raymond and Halaris, 2013)) VEGF has been proposed as a potential biomarker to diagnose 

human depression (Arnold et al., 2012) and may be useful to evaluate the timeline of 

antidepressant treatment efficacy (Fornaro et al., 2013) (Figure 2).

3.4.2 Neuronal function regulation—Astrocyte perivascular end-feet establish a 

concomitant physical link with blood vessels (Kacem et al., 1998) and neurons to allow the 

transfer of metabolic substrates (for reviews, see (Tsacopoulos and Magistretti, 1996, 

Haydon and Carmignoto, 2006)) (Figure 2). This metabolic network is associated with 

activity-dependent synaptic transmission (Rouach et al., 2008) and plasticity (Gordon et al., 

2009). Mice susceptible to CSDS are characterized by lower astrocytic ATP level and 

normalization of astrocyte-derived ATP release reversed depression-like behaviors such as 

social avoidance, coat deterioration, anhedonia and immobility in the FST test (Cao et al., 

2013). Antidepressant treatments may not only prevent stress-induced decreases in GFAP 

expression (Czeh et al., 2006), but also rescue gap junction dysfunction (Sun et al., 2012) 

and promote gliogenesis (Kusakawa et al., 2010). A role for the astrocytic network has also 

been proposed as a therapeutic mechanisms in deep brain stimulation (for review, see 

(Fenoy et al., 2014)). Pathological activation of the lateral habenula has been reported in 

depressed patients (Morris et al., 1999, Roiser et al., 2009) and this phenomenon might be 

associated with astrocyte-mediated disruption of glutamate clearance (Figure 2), promoting 

susceptibility to chronic stress and depressive-like behaviors in mice (Cui et al., 2014). In 

line with this idea, reduced expression of glial glutamate transporters was observed in the 

hippocampus and cortex of LH rats (Zink et al., 2010) and hippocampal NMDA receptor 

function is robustly increased in stress-susceptible offspring of mothers displaying low 

maternal care (Bagot et al., 2012a) (Figure 2). Targeting glial cells may be a promising 

avenue to develop novel antidepressant treatments (Sanacora and Banasr, 2013) considering 

the central role of astrocytes in immune responses, homeostasis, metabolism and neuronal 

transmission.
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4. Conclusions

Despite decades of active research using various animal models of depression combined 

with analysis of postmortem tissue from depressed subjects, only a handful of new 

treatments have been developed for MDD. Fortunately, new genetic, epigenetic and 

optogenetic tools have extensively broadened the toolbox of neuroscientists to better 

understand the cells and circuits involved in depression-like behaviors. In addition, several 

groups are now investigating the biology of resilience, which could lead to unexpected 

discoveries in the near future and novel therapeutic strategies aimed at promoting active 

coping. Profound individual differences are observed in both human and rodents when 

confronted with stressful events and these could be related to early life experiences, prenatal 

environment and transgenerational inheritance of epigenetic marks that confer resilience. 

The immune system may also play an active role in the development of mood disorders as 

demonstrated by recent findings from our group and others raising the intriguing possibility 

of novel therapeutics that target peripheral immune cells. Finally, the involvement of 

astrocytes in neurovascular coupling and neuronal function are still poorly understood and 

requires more focus considering their potential as mediators of central and peripheral 

processes. While these insights raise a lot of questions they also offer an opportunity for a 

more efficient, personalized approach to medicine for patients suffering from MDD that are 

unresponsive to currently available treatments.
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Highlights

✓ Discoveries related to major depressive disorders (MDD) obtained in rodent 

models and validated in human depressed subjects

✓ Recent findings on neuronal and synaptic remodeling, transcription and 

epigenetics

✓ Functional role of the immune system in the development of depression 

symptomology

✓ Involvement of glial cells in MDD pathogenesis

✓ Necessity of novel therapeutic strategies targeting central and peripheral 

processes
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Figure 1. Mechanisms associated with MDD pathogenesis
A) Pro-inflammatory cytokine (interleukin, IL; tumor necrosis factor alpha, TNFα) levels 

are increased in the blood of depressed patients and animal models of MDD suggesting 

enhanced monocyte production through the bone marrow or release from the spleen 

reservoir. Moreover, reduction of the bloodbrain barrier (BBB) permeability may favor 

monocyte infiltration in the brain (B) leading to inflammation and increased microglia 

activation (C). The MDD brain is characterized by lower neurogenesis in the hippocampus 

(HIPP) (D) and altered synaptic remodeling in multiple structures including the prefrontal 

cortex (PFC), HIPP and nucleus accumbens (NAc) (E). Changes have also been reported in 

other brain regions such as the amygdala (AMY) and ventral tegmental area (VTA) but are 

not discussed here. All these brain regions with various functions are highly interconnected 

highlighting the complexity of MDD treatment. Experience-dependent synaptic remodeling 

and dendritic spine formation is affected by chronic stress and regulated through multiple 

signaling pathways including brain-derived neurotrophic factor (BDNF), its downstream 

target p11, regulated in development and DNA damage response-1 (REDD1), small Rho 

GTPase RAS-related C3 botulinum toxin substrate 1 (Rac1) and nuclear factor kappa-B 

(NF-ΚB). F) Heritability and chronicity of MDD also imply persistent changes at the 

molecular level and recent studies reported altered transcription and epigenetics through 
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pathologically modified expression of ΔFosB and DNA methyltransferases (Dnmt), 

respectively. LHA, lateral hypothalamus; lHb, lateral habenula.
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Figure 2. Potential role of astrocyte function in stress susceptibility and MDD pathogenesis
A) Under normal conditions, astrocytes mediate neuronal function at excitatory synapses via 

glutamate uptake and maintain BBB permability through tight intercellular junctions with 

blood vessel endothelial cells. They also participate in brain metabolism by transporting 

nutrients through end-feet that physically connect blood vessels on one end and neuronal 

cells on the other. Within few hours of a brain injury, expression of structural proteins such 

as GFAP, is increased in reactive astrocytes initiating astrogliosis, a protective mechanism 

that might be deficient in stress-susceptible animals and patients suffering from MDD. B) 
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The astrocytic network integrity seems to be impaired in MDD as mutiple groups reported 

lower glial fibrillary acidic protein (GFAP) expression in the PFC and hippocampus of 

depressed patients and rodents vulnerable to stress. Therefore, glutamate recapture is 

reduced affecting neurotransmission and possibly leading to glutamate receptor (AMPA, 

NMDA, mGluR) overactivation and excitotoxicity. Concomitantly, chronic stress may favor 

BBB breakdown allowing the infiltration of peripheral monocytes. Once in the brain, these 

monocytes release pro-inflammatory cytokines activating astrocytes and microglia. Reactive 

glial cells also produce and release proinflammatory cytokines exacerbating stress response. 

Overexpression of astrocyte-derived growth factor VEGF (vesicular endothelial growth 

factor) affects BBB permeability and may initiate or reinforce BBB breakdown but its exact 

role remains unclear. Finally, glial-specific calcium-binding protein S100β is secreted in the 

bloodstream by astrocytes following injury. Both VEGF and S100β have been proposed as 

biomarkers of MDD according to clinical studies.
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Table 1

Promising targets to treat depression validated in human and rodent studies.

Target Human studies Rat/mice studies

Neuronal/synaptic remodeling

  BDNF Pezawas et al., 2004; Szesko et al., 2005; 
Bueller et al., 2006

Berton et al., 2006; Chen et al., 2006; Aznar et al., 2010; 
Magarinos et al., 2011

  p11 Svenningsson et al., 2006; Su et al., 2009; 
Zhang et al., 2011a

Svenningsson et al., 2006; Alexander et al., 2010; 
Warner-Schmidt et al., 2010

  REDD1 Ota et al., 2014 Ota et al., 2014

  Rac1 Golden et al., 2013 Golden et al., 2013

  IKK Sun et al., 2001; Pace et al., 2006 2012 LaPlant et al., 2009; Russo et al., 2009; Christoffel et al., 
2011a; 2012

Transcription/epigenetics

  ΔFosB Vialou et al., 2010a Perrotti et al., 2004; Wallace et al., 2008; Vialou et al., 
2010a; 2010b; 2014; Hinwood et al., 2011; Donahue et 
al., 2014

  β-catenin/microRNA Saus et al., 2010; Xu et al., 2010; Karege et 
al., 2012

Dias et al., 2014

  Histone modifications Covington et al., 2009; Hobara et al., 2010; 
Non et al., 2014

Tsankova et al., 2004; 2006; Weaver et al., 2004; 
LaPlant et al., 2010; Bagot et al. 2012b

Immune system/inflammation

  Cytokines Maes et al., 1992; 1997; 2011; Lanquillon et 
al., 2000; Dean et al., 2010; Dowlati et al., 
2010; Fagundes et al., 2013

Sluzewska et al., 1995; Grippo et al., 2005; Khairova et 
al., 2009; Kubera et al., 2011; Wohleb et al., 2011, 
Voorhees et al., 2013; Hodes et al., 2014

  Microglia Steiner et al., 2008; 2011; Setiawan et al., 
2015

Blandino et al., 2006; 2009; Frank et al., 2007; Tynan et 
al., 2010; Wohleb et al., 2011; Hinwood et al., 2013

  BBB permeability and monocyte 
infiltration

Gudmundsson et al., 2007; Bechter et al., 
2010

Wohleb et al., 2012; 2013; 2014a

Astrocytes

  VEGF Arnold et al., 2012; Clark-Raymond & 
Halaris, 2013; Fornaro et al., 2013

Warner-Schmidt & Duman, 2007; Segi-Nishida et al., 
2008

  Neuronal function Sun et al., 2012; Cao et al., 2013; Cui et al., 2014
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