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Protein profiling reveals 
consequences of lifestyle choices 
on predicted biological aging
Stefan Enroth1, Sofia Bosdotter Enroth2, Åsa Johansson1 & Ulf Gyllensten1

Ageing is linked to a number of changes in how the body and its organs function. On a molecular 
level, ageing is associated with a reduction of telomere length, changes in metabolic and gene-
transcription profiles and an altered DNA-methylation pattern. Lifestyle factors such as smoking or 
stress can impact some of these molecular processes and thereby affect the ageing of an individual. 
Here we demonstrate by analysis of 77 plasma proteins in 976 individuals, that the abundance of 
circulating proteins accurately predicts chronological age, as well as anthropometrical measurements 
such as weight, height and hip circumference. The plasma protein profile can also be used to identify 
lifestyle factors that accelerate and decelerate ageing. We found smoking, high BMI and consumption 
of sugar-sweetened beverages to increase the predicted chronological age by 2–6 years, while 
consumption of fatty fish, drinking moderate amounts of coffee and exercising reduced the predicted 
age by approximately the same amount. This method can be applied to dried blood spots and may 
thus be useful in forensic medicine to provide basic anthropometrical measures for an individual 
based on a biological evidence sample.

Human ageing is associated with a number of changes in how the body and its organs function1. Among 
visible signs of ageing are greying of hair, changes in posture and loss of skin elasticity2,3. Less noticeable 
signs include hearing loss, increase in blood pressure or sarcopenia4. On the molecular level, ageing 
is associated with numerous processes, such as telomere length reduction, changes in metabolic and 
gene-transcription profiles and an altered DNA-methylation pattern5–10. In addition to chronological 
time, lifestyle factors such as smoking or stress can affect both the pattern of DNA-methylation11 and 
telomere length12 and thereby the aging of an individual. Ageing and lifestyle are the strongest known 
risk factors for many common non-communicable diseases, hence, lifestyle factors or molecular markers 
have been used as 5-year mortality predictors13,14. Additionally, specific food-items have been associated 
with lowered all cause mortality15. Various predictor models have been developed using measures of 
facial morphology16, physical fitness and physiology12,17, telomere length18 and methylation pattern6 to 
predict ones chronological age. Remarkably, some models are able to predict chronological age with cor-
relation coefficients (R2) to actual age up to 0.75, and even above 0.90, when based on DNA-methylation 
status over 353 or 71 CpG-sites6,19. Comparisons of the actual chronological age with the predicted age, 
sometimes denoted the biological age, can be used as an indicator of health status, monitor the effect 
of lifestyle changes and even aid in the decision on treatment strategies for cancer patients16,20. To date, 
no current models have explored the potential of using the plasma protein profile for age prediction. 
Furthermore, while lifestyle factors such as stress have been shown to affect the rate of cellular ageing12, 
to the best of our knowledge, no studies have examined the effect of a wide range of lifestyle factors, 
including smoking or dietary habits, on the predicted age. We have previously characterized abundance 
levels of 144 circulating plasma proteins using the proximity extension assay (PEA) and have found over 
40% of investigated proteins to be significantly correlated with one or more of the following factors, age, 
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weight, length and hip circumference10,21. We therefore reasoned that the plasma protein profile might 
also be predictive of these traits. Here we demonstrate for the first time that the profile of circulating 
plasma proteins can be used to accurately predict chronological age, as well as anthropometrical meas-
ures such as height, weight and hip circumference. Moreover, we used the plasma protein-based model 
to identify lifestyle choices that accelerate or decelerate the predicted age. The protein analysis method 
used has previously been applied to dried blood spot material22. Interestingly, the ability to accurately 
predict anthropometrical characteristics from a dried blood spot sample could potentially be applicable 
in forensic investigations.

Results
Phenotype prediction from plasma protein profiles.  We have previously quantified abundance 
levels of circulating plasma proteins from cardiovascular and cancer biomarker panels using the highly 
sensitive protein extension assay (PEA)10,21 in 976 individuals from the Northern Swedish Population 
Health Study (NSPHS). Seventy-seven of these protein measurements were used to build models to 
predict chronological age, weight, height and hip circumference. Prediction models were built using 
generalized linear models with penalized maximum likelihoods as implemented by the glmnet-package23 
in R24 and models were optimized using a 10-fold cross-validation scheme on 75% of the observation 
and subsequently evaluated using the remaining 25% (see Methods for details). We repeated the process 
500 times and recorded which proteins were selected in the model. As expected, individual variation in 
protein abundance values and the distribution of phenotypes, gave rise to some variation in the proteins 
selected to be part of the final model. On average 68 of the 77 proteins were included in the model 
predicting age (Fig. 1A, Table 1). In total, all 77 proteins were included at least once in any of the age 
predicting models and a core set of 29 proteins was present in all models. The models for age, height, 

Figure 1.  Model performance. (A) Inclusion-rate of proteins (number of times a protein was included in 
any model) in age prediction models, when executed 500 times. (B) Actual age (y-axis) vs. predicted age 
(x-axis) for one model, with training set in red and test set in blue. P-values indicate significance rate for 
correlation calculated using Spearman’s method. (C) Distribution of errors for all 500 separate execution 
times overlaid, with training set in red and test set in blue. Vertical dashed lines indicate the 2.5% and 97.5% 
quartiles of the distribution of the average error from each of the 500 separate runs, respectively. P-values 
for test-set represent two-sided differences of error distribution in test set vs. training set, calculated using 
Wilcoxon Ranked Sum test.
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weight and hip circumference performed well on the test and training sets (Table 1) and summary statis-
tics (including protein inclusion statistics) for all models and traits are reported in Supplementary tables 
2–5. The models predicted chronological age with an R2 =  0.83, while predicting weight (R2 =  0.48), 
height (R2 =  0.34) and hip circumference (R2 =  0.60) with somewhat lower correlation coefficients. An 
example of the correlation between chronological and predicted age for one model is shown in Fig. 1B, 
and the distribution of prediction errors for 500 age models in Fig. 1C. In the test sets, 95% of the aver-
age errors for each of the models were within +/−  1.23 years and there was no statistically significant 
difference (p =  0.52, Wilcoxon Ranked Sum test) between the distribution of errors in the training and 
test sets, indicating that the models were not over-fitted to the training data. In terms of accuracy, the 
plasma protein profile predicted chronological age within 5.0 years, weight within 6.8 kg, height within 
4.7 cm and hip circumference within 5.1 cm, for 50% of the observations. Additional performance meas-
urements for the models are shown in Supplementary Figures 1–3. We also evaluated the performance 
of the models when restricted to a core set of proteins that were included in all models for each trait 
(Table  1). Interestingly, the models based on the core set of proteins showed similar performance sta-
tistics as the models using the full set of proteins, suggesting that a smaller set of proteins can capture 
most of the phenotype variation. This observation was also confirmed by an analysis of the fraction of 
variance of the traits that can be explained by individual and combined proteins included in the predic-
tion models (Supplementary Figure 4, Supplementary Tables 2–5). An analysis of the overlap between 
the proteins that were present in the four core-models showed that only 4 proteins (Fig. 2) were common 
between all models. These were Tissue plasminogen activator (tPA), Tumor necrosis factor receptor 1 
(TNFR1), the Receptor tyrosine-protein kinase ErbB-3 (ErbB3) and Endothelial cell-specific molecule 1 
(ESM-1). None of the genes coding for these proteins have been implicated in a recent GWAS for var-
iation in human adult height25. In our material, out of the four proteins common to all models, ESM-1 
explains the largest proportion of the variance seen in height (9.8%, Supplementary Table 4). ESM-1 is 
mainly expressed in endothelial cells in lung and kidney tissue but circulates in the bloodstream26. We 
have found no evidence relating ESM-1 to height in the literature but speculate that circulating levels of 
ESM-1 could be a reflection of lung volume, which is correlated to height27. Notably, none of the four 
proteins in common to the traits are among the set of proteins explaining the largest fraction of variance 
in the four traits (Supplementary Tables 2–5).

The proteins included in the study represent a non-random selection of the proteome since they are 
based on biomarker panels for cancer and cardiovascular disease. We therefore evaluated the distribution 
of superfamilies relative to the human proteome using the International Protein Sequence Resource (PIR) 
database. We found a significant overrepresentation (p <  0.05, Bonferroni adjusted) of 3 such families 
among the 77 proteins analysed (PIRSF002522:CXC chemokine, PIRSF001950:small inducible chemok-
ine, C/CC type and PIRSF000619:TyrPK_EGF-R, Supplementary Table 6). In the core set of proteins 
used in the prediction models, only one family was shown to be overrepresented (PIRSF000619:TyrPK_
EGF-R) and only in the models predicting age, weight and height. We repeated our model after removing 
any protein that was annotated within this family and found performance to remain unchanged (Table 1, 
Supplementary Figures 5–7). This suggests, however, that the non-random selection of proteins included 
in the analysis does not significantly contribute to the performance of the models.

Trait
Model 

size

Actual-predicted correlation (R2) Error (mean +/− sd) Errore

Train Test P-vald Train Test Train Test

Age 69a 0.87 0.83 6.4 ×  10−96 0.0 + /−  7.6 yrs − 0.13 + /−  8.4 yrs 5.2 yrs 5.0 yrs

29b 0.84 0.85 7.9 ×  10−103 0.0 + /−  8.1 yrs − 0.66 + /−  8.3 yrs 5.2 yrs 5.4 yrs

64c 0.85 0.82 4.8 ×  10−90 0.0 + /−  8.1 yrs 0.0 + /−  8.7 yrs 5.4 yrs 5.5 yrs

Weight 60a 0.55 0.48 1.3 ×  10−35 0.0 + /−  10.3 kg 0.94 + /−  10.5 kg 6.1 kg 6.8 kg

27b 0.52 0.44 3.2 ×  10−32 0.0 + /−  10.8 kg 0.61 + /−  10.6 kg 6.2 kg 7.3 kg

56c 0.52 0.46 1.3 ×  10−33 0.0 + /−  10.9 kg − 0.15 + /−  10.5 kg 6.3 kg 8.0 kg

Height 66a 0.52 0.34 6.2 ×  10−24 0.0 + /−  6.8 cm 0.60 + /−  7.5 cm 4.6 cm 4.7 cm

26b 0.43 0.44 3.3 ×  10−32 0.0 + /−  7.2 cm 0.26 + /−  7.3 cm 4.6 cm 5.4 cm

61c 0.46 0.35 6.0 ×  10−24 0.0 + /−  6.9 cm − 0.28 + /−  8.0 cm 4.8 cm 5.0 cm

HIP 51a 0.61 0.60 2.2 ×  10−49 0.0 + /−  8.0 cm − 0.30 + /−  8.7 cm 4.8 cm 5.1 cm

16b 0.57 0.54 1.3 ×  10−42 0.0 + /−  8.6 cm 0.80 + /−  8.7 cm 5.1 cm 5.3 cm

Table 1.   Model performances for the traits. aMedian number of proteins used in the models in 500 
train-test splits. bCore set of proteins used in all 500 train-test splits. cAs abut excluding proteins with over-
represented PIR superfamilies compared to the complete set of human proteins as background. dSignificance 
of correlation between actual and predictive values in test set. eAs defined in Horvath6, i.e. 50% of subjects 
classified within this error.
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Lifestyle choices affect the biological age.  The ability to use the plasma protein profile to accu-
rately predict age allowed us to examine the effect of lifestyle choices on the predicted phenotype (age). 
We first studied smoking by comparing data on 115 individuals in the study cohort who self-reported as 
smokers with 860 individuals that reported as non-smokers. Smoking status was used to split the cohort 
into training and test sets, and an age-prediction model was built using the non-smokers. This model 
predicted smokers to be on average 2.3 years older (Fig. 3A, p <  1.8 ×  10−4, Wilcoxon Ranked Sum test) 
than their chronological age, even though the two groups do not differ in chronological age (p >  0.9, 
Wilcoxon Ranked Sum test). Usage of the Swedish wet tobacco product “snus” did not alter the predicted 
age (Fig. 3B, p >  0.5, Wilcoxon Ranked Sum test).

Body mass index (BMI) is used to classify obesity and we examined the impact of BMI on predicted 
age by training a model on individuals with normal weight (BMI between 18.5 and 25) and applying 
this to higher BMI-intervals (Fig. 3E). We observed that a BMI less than 40 does not alter the predicted 
versus chronological age, however individuals with a BMI over 40 were predicted to be on average 6.3 
years older than their chronological age (p <  4.2 ×  10−3, Wilcoxon Ranked Sum test).

Over 1000 phenotypic traits have been measured in our study cohort, including lifestyle factors such 
as dietary habits. Many of the 284 lifestyle and anthropometrical variables were, however, not inde-
pendent. This is illustrated for dietary items in Fig.  3D, where variables which are significantly cor-
related (p <  0.05/2842 =  6.2 ×  10−7, Spearman’s Rho) with soda consumption are shown. For instance, 
consumption of sweets (Bulk confectionery, R =  0.40, p <  below machine precision (BMP)), French fries 
(R =  0.40, p <  BMP), pizza (R =  0.25, p <  8.9 ×  10−16) and white bread (R =  0.25, p <  3.6 ×  10−15) were all 
positively correlated with soda consumption, while consumption of fatty fish (R =  − 0.18, p <  1.8 ×  10−7), 
porridge (R =  − 0.19, p <  5.6 ×  10−9) and berries (R =  − 0.19, p <  5.4 ×  10−9), as well as chronological age 
(R =  − 0.38, p <  3.5 ×  10−34), were all found to be negatively correlated with soda consumption. In light 
of these findings, individual dietary variables should be viewed as lifestyle indicators, and differences in 
plasma protein abundance is not necessarily the effect of a single food item. Nevertheless, we trained 
a model on non-soda drinkers and predicted the age of soda drinkers stratified by consumption. Since 
soda-consumption is known to be age-correlated, we included only individuals between 20 and 50 years 
of age, restricting the analysis to categories with at least 25 individuals. Individuals with high soda con-
sumption were predicted to be significantly older than their chronological age (Fig.  3F, p <  9.6 ×  10−3, 
Wilcoxon Ranked Sum test). There was no statistical difference in actual chronological age between 
individuals when stratified on soda consumption (p >  0.1, Wilcox Ranked Sum test).

In addition, we trained an age predicting model on the consumption of fatty fish. Using the most 
common consumption frequency (once per week) as controls, the age of individuals consuming fatty fish 
at least 3 times per week were predicted to be lower than their chronological age (Fig. 3C, p <  1.2 ×  10−2, 
Wilcoxon Ranked Sum test), whilst individuals with little or no consumption were predicted to be older 
than their chronological age (Fig.  3C, p <  4.3 ×  10−2, Wilcoxon Ranked Sum test). There was no sta-
tistical difference in chronological age between individuals when stratified on fatty fish consumption 
(p >  0.05). Remarkably, the same pattern was found for coffee consumption. The age-prediction model 
was trained on non-coffee drinkers and applied to the remaining individuals. Individuals reporting a 
consumption of between 3 to 6 cups of coffee per day were predicted to be on average 5.6 years younger 
than their chronological age (Fig. 3G, p <  4.0 ×  10−2, Wilcoxon Ranked Sum test). This analysis was also 
restricted to individuals between 20 and 50 years of age, and as before there was no statistical difference 
in chronological age between groups based on consumption of coffee (p >  0.1, Wilcox Ranked Sum 
test). Finally, we studied self-reported exercise, where participants compared their own level relative to 

Figure 2.  Protein overlap in core models. Overlaps between proteins present in each of the four core 
models predicting Age, Hip Circumference (HIP), Weight and Height.
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individuals of the same age in the community (peers). We trained the model using individuals that exer-
cise at similar levels as their peers, and applied it to other exercise categories. Individuals that exercised 
less or much less than their peers had a significantly higher predicted age (+ 2.3 years, p <  1.2 ×  10−2 
versus +5.2 years, p <  7.9 ×  10−4, Wilcox Ranked Sum test). There was no difference in actual chrono-
logical age between the different exercise groups (p >  0.6, Wilcox Ranked Sum test) (Fig. 3H). None of 

Figure 3.  Effects of lifestyle factors on predicted age. (A) Smoking. Age predicting model trained on non-
smokers and applied to smokers. (B) Snus. Snus is Swedish wet tobacco. Age predicting model trained on 
non-snus-users and applied to snus-users. (C) Fatty fish. Age prediction model trained on individuals with 
the most common consumption of fatty fish (Salmon, Whitefish and Herring) applied to groups with other 
levels of fatty fish consumption. Analysis restricted to individuals between 20 and 50 years of age.  
(D) Significant correlations between Soda consumption and other phenotypic traits in the study cohort, with 
red colour indicating positive and blue negative correlations. (E) BMI. Model trained on individuals with 
normal BMI (18.5–24.9) and applied to individuals with higher BMI. Analysis restricted to individuals over 
20 years of age. (F) Soda. Age prediction model trained on individuals that do not drink soda and applied to 
groups with different levels of soda consumption. Analysis restricted to individuals between 20 and 50 years 
of age. (G) Coffee. Age prediction model trained on non-coffee drinkers and applied to groups with different 
levels of coffee consumption. Analysis restricted to individuals between 20 and 50 years of age. (H) Exercise. 
Model trained on individuals reporting that they are as active on their free-time as other individuals in 
their age-group, and applied to individuals that reporting to be much less, less, more or much more active 
than individuals in their age-group. (A–C,E–H). Specifically written out predicted phenotype differences 
imply a statistically significant (p <  0.05, two-sided Wilcoxon Ranked Sum test) change compared to the 
control group (coloured black). All other differences have a p >  0.05. All actual phenotype differences have a 
p >  0.05.
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the individual groups in any of the lifestyles investigated showed any significant (Bonferroni adjusted 
p >  0.05, Breusch-Pagan test) dependency between the predicted age and the actual age.

The contribution of an individual protein to the age model and the difference between groups (e.g. 
smokers vs. non-smokers) was in most cases modest, and an increase in protein abundance was shown 
to have either an additive or subtractive effect on the predicted age (Supplementary Tables 1–6). This is 
illustrated using the effect of individual proteins on predicted age of smokers versus non-smokers. The 
majority of proteins contributed a small positive or negative effect on the predicted age (Fig. 4). Some 
proteins however, such as the cytokines CXCL9 and CXCL10, mediated relatively large effects (on aver-
age +0.27 years in smokers compared to non-smokers, p <  5.6 ×  10−7 and − 0.77 years, p <  5.6 ×  10−2 
respectively). Both CXCL9 and CXCL10 have previously been shown to be down-regulated in response 
to cigarette smoke extract compared to control samples in human monocyte-derived macrophages28. In 
our age prediction model, the coefficient (β ) for CXCL9 was positive while negative for CXCL10 and 
both abundance levels were found to be higher in non-smokers compared to smokers. Therefore, the 
contribution from CXCL9 to the predicted age was lower in smokers compared to non-smokers, while 
higher in smokers compared to non-smokers for CXCL10. Notably, IL-12 was found to contribute the 
largest effect (on average, + 0.82 years in smokers compared to non-smokers, p <  7.6 ×  10−14, Wilcoxon 
Ranked Sum test). For IL-12 the sign of the coefficient (β ) in the age prediction model was negative, 
meaning that smokers have lower levels of IL-12, which in turn contributes to a higher predicted age 
compared to non-smokers.

Limitations of the study.  The NPSHS cohort used consists exclusively of western European eth-
nicity and therefore the models used here need not be representative of other populations. The sample 
size is moderate which restricts statistical evaluation of relationships between different lifestyle choices 
or stratifications on these. Finally, the NSPHS is a cross-sectional study and we lack follow-up data that 
could have been used to study relationships between longevity, mortality and the age prediction carried 
out here.

Discussion
A number of molecular markers have been used to study the ageing process and to compare chronolog-
ical age with the predicted age, also termed biological age. The definition of biological age has been a 
matter of debate for decades29 as have the biomarkers used to define it30. We have shown that the plasma 
protein abundance profile is highly predictive of both chronological age and basic anthropometrical 
traits. In examining the effect of lifestyle choices we choose to compare chronological age with the pre-
dicted age, in order to avoid using the somewhat unclear concept of biological age.

The proteins included in our study have not been selected because they belong to pathways or pro-
cesses known to be involved in biological ageing, or in the development of the anthropometrical traits 
studied. Instead, we used protein panels designed as research tools for the discovery and validation of 
biomarkers for cancer and cardiovascular disease. The changes in the protein profile seen are therefore 
not likely to be drivers of the ageing process but merely a reflection of this process at the metabolic level. 
The strong correlation between traits and the abundance profile of proteins not known to be involved in 
their development, underscores the likelihood that other proteins exist that exhibit similar strong corre-
lations with age. For instance, strong correlations have recently been described31 between chronological 
age and the abundance of a number of cytokines not included in our study. Additionally, analysis on 

Figure 4.  Effect of single proteins on predicted age in smokers. The age predicting model was trained 
on non-smokers and applied to smokers. The Y-axis shows the contribution of each protein to the total 
age-difference between predicted and chronological age in smokers, based on the change in protein levels 
between the two groups. Red (blue) colour corresponds to a positive (negative) contribution to the age in 
smokers compared to non-smokers. The X-axis depicts the statistical significance of that contribution for 
each protein (two-sided Wilcoxon Ranked Sum test, − log10(p)).
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proteins known to have a direct involvement in cellular ageing, e.g. telomerases and methylases, are likely 
to improve the models and provide even more powerful predictions.

The plasma protein profile described herein is highly accurate in predicting chronologic age, while 
somewhat less accurate for weight, height and hip circumference. This can be seen in the analysis of the 
fraction of variance of the traits that is explained by the proteins measured. In the combined model, the 
77 proteins explain 85.6% of the variance in age, but only between 51.1% and 65.1% of the variance in 
weight, height and hip circumference. It is not known how different disease states affect the individual 
protein levels, and thereby the precision of the prediction models used. From a biological standpoint, 
some of the individual proteins might be expected to be more important for a particular trait. For 
instance, growth hormone followed by Fatty acid binding protein 4 (FABP4) were found to exert the 
strongest effect on height. For weight, the main predictive proteins were growth hormone followed by 
Tissue plasminogen activator (tPA). Interestingly, for age the top predictor was Osteoprotegerin, fol-
lowed by Chemokine (C-X-C motif) ligand 9 (CXCL9) and growth differentiating factor (GDF-15) 
(Supplementary Tables 2–5). However, many of the other proteins also contributed to the different traits.

To study the consequences of lifestyle choices on the predicted age we trained a model on individ-
uals with a specific lifestyle choice, and subsequently applied it to individuals with other choices. This 
enabled us to identify factors that accelerate and decelerate the predicted age by 2 to 6 years. A model 
trained on non-smokers predicted the age of smokers to be 2.3 years older than their actual chronological 
age. Whether this reflects all aspects of ageing, including risk of developing disease, or is an immediate 
lifespan reduction by 2.3 years cannot be determined using our cohort since we lack follow-up data, but 
these number are in good agreement with expected life extension following smoking cessation32. An 
interesting question is whether ceasing to smoke results in normalization of the plasma proteome profile, 
or if some of the changes of the protein profile are permanent? Our study is cross-sectional rather than 
longitudinal, and we therefore lack the possibility to examine if the effect of smoking or any other life-
style choice is reversible or permanent. The largest effect on age seen by smoking is mediated by IL-12. 
Lower levels of IL-12 have previously been observed in smokers compared to non-smokers33,34, whilst the 
levels in moist-tobacco users and non-smokers have been found to be comparable35. Kroening et al.33, 
suggest that the suppression of IL-12 is due to oxidative stress rather than the nicotine component in 
cigarette smoke, which is in concordance with our observations. Previous studies have also shown a rela-
tionship between IL-12 levels and responses to smoking triggered by the immune system36. This suggests 
an acute response that could be reversible, but further studies are needed to elucidate this.

Our method allowed us to examine the consequences of lifestyle choices on the predicted age with 
high statistical confidence on a group level. Furthermore, the models provide the ability to predict effects 
at the individual level. That said, additional studies in larger cohorts are needed in order to increase 
the accuracy of prediction further. We envisage that having established the effect of lifestyle factors on 
predicted age, analyses of the plasma protein profile could be used to motivate lifestyle changes for indi-
viduals at risk of developing non-communicable disease, by monitoring the effect of such changes on 
the predicted age. Pointing to the effect of individual lifestyle factors is complicated by the correlation 
between variables. Even so, it has recently been shown that sugar-sweetened beverages causes earlier 
menarche in US girls37, demonstrating that dietary effects are not only confined to specific molecular 
events but can have a significant impact on the development of the body. Such dietary choices can have 
direct downstream consequences on the disease risk of an individual. For example, the risk of breast 
cancer is known to increase by 5% for each year of early onset of menarche as a consequence of longer 
lifetime exposure to oestrogen38–40.

The plasma protein profile may also be valuable in forensic medicine. Age and gender predic-
tion in forensic medicine have been proposed based on DNA-methylation or N-glycan levels41,42. The 
PEA-technology we used for profiling of protein levels requires only 1 μ l of plasma or serum for analysis 
of up to 92 proteins, and is applicable to dried whole blood samples22. Our results demonstrate that our 
protein profile can be used to predict a number of traits with high accuracy. In light of our findings 
we propose that such a method may be useful for predicting basic anthropometrical characteristics in 
forensic investigations. Ultimately, this possibility rests on the assumption that the protein profile is 
sufficiently stable over time. Future studies of the stability of individual proteins in biological samples 
found on crime scenes are called for. Our core-models for predicting chronological age, weight, height 
and hip circumference, were based on a total of 48 proteins. This suggests that only a small, specific, set 
of proteins might be sufficient to capture sufficient amounts of the variation in these traits to be useful 
for anthropometrical predictions.

Methods
Samples.  The Northern Sweden Population Health Study (NSPHS) was initiated in 2006 to provide 
a health survey of the population in the parish of Karesuando, county of Norrbotten, Sweden, and to 
study the medical consequences of lifestyle and genetics. In the first phase, 719 individuals participated 
(KA06 cohort) and in a second phase, another 350 individuals from a neighboring village (Soppero) were 
recruited in 2009 (KA09 cohort). Here, 974 individuals with were included out of which 510 are female 
and 464 male with ages ranging from 14 to 94, mean (+ /−  standard deviation) height was 164 (9.6) cm, 
weight 72.3 (15.3) kgs and hip circumference 97 (13.5) cm. For each participant, blood samples were 
drawn (serum and plasma) and stored at − 70 °C on site. A questionnaire was used to collect data on 
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medications and lifestyle. The anthropometrical measurements were carried out, and the questionnaire 
was filled in, at the local health care center in the presence of the local district nurse.

Ethical considerations.  The NSPHS study was approved by the local ethics committee at the 
University of Uppsala (Regionala Etikprövningsnämnden, Uppsala, 2005:325) in compliance with the 
Declaration of Helsinki43. All participants gave their written informed consent to the study including the 
examination of environmental and genetic causes of disease. In cases where the participant was not of 
age, a legal guardian signed additionally. The procedure that was used to obtain informed consent and 
the respective informed consent form has recently been discussed in light of present ethical guidelines44.

Plasma protein profiles.  The Protein Extension Assay (PEA) has previously been used to measure 
the plasma protein levels of 144 proteins in the NSPHS cohort. The protein abundance levels were meas-
ured using the Olink Proseek Multiplex Oncology I96 × 96 and CVD I96 × 96 kits as previously described10,21. 
All assay characteristics including detection limits and measurements of assay performance and valida-
tions are available from the manufacturers webpage (http://www.olink.com/products/proseek-multiplex/
downloads/data-packages).

Model generation.  Phenotype prediction models were built in R24 utilizing the glmnet-package23. 
The glmnet-package implements elastic net regularization, which performs variable selection and fits 
Intercept and Beta-values for each selected variable (protein) yielding a linear model explaining the 
response variable (phenotype). The glmnet-package does not allow for missing values and therefore the 
data set was pruned to the 77 proteins with no missing values nor measurements below detection limit 
in any of the individuals (Supplementary Table 1) The Gaussian model-family was used throughout and 
the elastic-net penalty (α ) was set to 0.6.

Model evaluation.  Model performance was evaluated by randomly splitting the observations into a 
training set (75%) and a test set (25%). The model was optimized using a 10-fold cross validation schema 
over the training set using the ‘cv.glmnet’-function from the glmnet-package. A final model was built 
from the training set using the ‘glmnet’-function with the lambda-values returned by ‘cv.glmnet’. This 
model was then used to predict the response variable in the test set. The random-split into training and 
test set and the variable selection of the elastic net regularization can result in different proteins being 
selected and thus different models. The process was thus repeated 500 times and the proteins included in 
the models as well as model prediction errors on the training and test set were recorded. The correlation 
between actual and predicted values was reported for one model only. This was carried out separately 
for each investigated phenotype.

Effects of lifestyle-choices.  The observations were split into train and test set(s) according to e.g. 
smoking status or consumption patterns of specific food items. A single model was built and optimized 
using e.g. non-smokers and then applied to smokers and the difference between actual response variable 
(e.g. age) and predicted was recorded.

Statistics and figure generation.  The Protein Information Resource (PIR)45 superfamily overrep-
resentation analysis was carried out using the DAVID online resource46,47 using the whole human genome 
as background. Associations were considered significant if the reported Bonferroni adjusted p-values 
were below 0.05. All other statistical analyses were carried out in R. Tests for heteroskedasticity were car-
ried out using the ‘bptest’ function from the ‘lmtest’48 R-package implementing the Breusch-Pagan test. 
The fraction of variance explained by a variable in a trait was calculated by fitting a linear model using 
the trait as response and one or several proteins as variables. Differences in phenotype distribution were 
examined using two-sided Wilcoxon rank tests and correlation coefficients and statistics between varia-
bles were calculated employing two-sided Spearman statistics. Heatmaps and dendrograms for clustering 
of correlations were calculated using the R-function ‘hclust’ with Euclidean distances and employing the 
Wards agglomeration method. Venn diagrams were drawn using the VennDiagram R-package49.
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