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The hepatitis B virus (HBV) core protein is a dynamic and versatile protein that directs many
viral processes. During capsid assembly, core protein allosteric changes ensure efficient
formation of a stable capsid that assembles while packaging viral RNA–polymerase
complex. Reverse transcription of the RNA genome as well as transport of the capsid to
multiple cellular compartments are directed by dynamic phosphorylation and structural
changes of core protein. Subsequently, interactions of the capsid with the surface proteins
and/or host proteins trigger envelopment and release of the viral capsids or the transport to
the nucleus. Held together by many weak protein–protein interactions, the viral capsid is
an extraordinary metastable machine that is stable enough to persist in the cellular and
extracellular environment but dissociates to allow release of the viral genome at the right
time during infection.

Hepatitis B virus (HBV) belongs to the fam-
ily of Hepadnaviridae and is an enveloped

virus that contains a partially double-stranded
DNA (dsDNA) genome that is surrounded by
an icosahedral protein capsid. HBV virions en-
ter the cell via the recently identified receptor
sodium taurocholate cotransporting polypep-
tide (NTCP), presumably losing their envelope
during endocytosis (Yan et al. 2012). Within the
cytosol capsids are transported to the nucleus
during which uncoating and release of viral ge-
nome is initiated. In the nucleus, the partially
double-stranded genome is then repaired into a
covalently closed circular DNA (cccDNA) ge-
nome. The nuclear cccDNA serves as a template
for the pregenomic RNA (pgRNA) and subge-
nomic RNAs transcripts, encoding all viral pro-
teins (Beck and Nassal 2007).

One copy of pgRNA together with the viral
polymerase polypeptide (P) is packaged con-

comitant with capsid assembly. After forma-
tion of the core particle, P initiates reverse tran-
scription of the RNA genome leading to the
synthesis of minus-strand DNA and digestion
of pgRNA by the ribonuclease H (RNaseH)
domain of P. Minus-strand DNA then serves
as a template for the synthesis of plus–strand
DNA, resulting in the formation of a relaxed
circular, partially dsDNA genome. Mature cap-
sids are either enveloped and secreted from
the cell or transported to the nucleus, amplify-
ing the pool of cccDNA. Secretion of virus
particles is mediated by interactions of the
capsid with the large hepatitis B surface anti-
gen (L-HBsAg) at the endoplasmic reticulum
(ER). Independent of infectious virus particles
(Dane particles), noninfectious subviral parti-
cles (SVPs) containing small, medium, and large
forms of HBsAg are also released from the in-
fected cell.
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This review describes mechanisms of core
assemblyandvirion release.Wealso discussfind-
ings from in vitro studies of core protein that
have greatly enhanced our understanding of
the molecular mechanisms of capsid assembly.

CAPSID ASSEMBLY IN VIVO

Regulation of capsid formation and packaging
of the viral genome is not yet fully understood.
Within the cytosol of infected cells, HBV cap-
sids contain 120 or 90 copies of the core protein,
yielding particles with T ¼ 4 and T ¼ 3 icosa-
hedral symmetry with diameters of �34 and
�30 nm, respectively. The T ¼ 4 particles rep-
resent the predominant form in vivo (Stannard
and Hodgkiss 1979). The core protein is 183 or
185 amino acids (aa) long depending on the
virus isolate, and contains an assembly domain
(aa 1–149) and an arginine-rich carboxy-ter-
minal domain (CTD), essential for interac-
tions with RNA and DNA (aa 150–183/5)
(Birnbaum and Nassal 1990; Nassal 1992).

Specific packaging of the viral RNA depends
on the formation of a ribonucleoprotein (RNP)
complex that requires interaction of P with the
packaging signal 1 near the 50 end of pgRNA
(Bartenschlager and Schaller 1992; Pollack and
Ganem 1994). 1 is a 137-nucleotide-long se-
quence motif that forms a stem loop structure
that is conserved among all known hepadnavi-
ruses (Junker-Niepmann et al. 1990; Pollack
and Ganem 1993; Flodell et al. 2002). Sequence
motifs within 1 as well as the distance between
the 50 cap of pgRNA and 1 are essential deter-
minants for RNA packaging (Pollack and Ga-
nem 1993; Fallows and Goff 1995; Jeong et al.
2000; Hu and Boyer 2006). A recent cryo-EM
study of RNA-filled cores, performed without
imposing symmetry on the complex, showed
two concentric layers of core protein surround-
ing RNA. Inside the RNA layer, multiple densi-
ties were observed, likely corresponding to the P
protein bound to pgRNA and host factors pack-
aged into the virion (Wang et al. 2014). Inter-
estingly, because RNA and non-RNA densities
were well ordered in the reconstruction, it sug-
gests that organization of protein and RNA in
HBV is uniform from particle to particle.

Multiple host factors have also been impli-
cated in capsid assembly and RNA packaging in
vivo. Among them is the molecular chaperone
Hsp90, which binds to P. Inhibition of Hsp90
can decrease capsid formation and packaging of
viral RNA in cell cultures (Hu and Seeger 1996;
Hu et al. 2004; Shim et al. 2011). Other chaper-
one proteins, such as Hsc70 and Hsp40, have
been found to be associated with viral capsids by
mass spectrometry (Wang et al. 2009). Finally,
nucleophosmin (B23) has been implicated in
interacting with HBV core proteins (Okuwaki
2008; Lee et al. 2009; Jeong et al. 2014).

Encapsidated host factors that can inhibit
HBV replication include the DDX3 DEAD-
box helicase and the human cytidine deaminase
APOBEC3G (A3G) (Turelli et al. 2004; Baumert
et al. 2007; Nguyen et al. 2007; Nguyen and Hu
2008; Wang et al. 2009). Both proteins appear
to block early stages of DNA synthesis that oc-
cur subsequent to RNA packaging (Turelli et al.
2004; Nguyen et al. 2007; Wang et al. 2009). Re-
cently, it has been suggested that the HBV core
protein recruits APOBEC3A and APOBEC3B to
cccDNA within the nucleus (Lucifora et al.
2014).

Core Protein Determinants for Encapsidation

Detailed genetic analyses of the core protein
revealed that efficient packaging of pgRNA
does not require a complete CTD. For example,
core proteins truncated at residue 172, lacking
11 residues, show normal RNA packaging and
reverse transcription activities (Nassal 1992;
Chua et al. 2009). However, core proteins ter-
minating at residues 163 and 164 are defective
for RNA packaging (Nassal 1992; Beames and
Lanford 1993; Kock et al. 2004). Interestingly,
the 19-residue deletion predominantly incor-
porated a spliced RNA that was reverse tran-
scribed into a 2-kb dsDNA (Kock et al. 2004;
Le Pogam et al. 2005). Empty particles have also
been found in the cytosol of HBV-producing
cells, indicating that core proteins can assemble
without RNA packaging (Gerin et al. 1975;
Kaplan et al. 1976; Alberti et al. 1978; Ning
et al. 2011). It is still unclear why core protein
assembly in vivo is highly specific for viral RNA,
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whereas random RNAs are readily packaged in
Escherichia coli and in vitro. It can be hypothe-
sized that specificity for pgRNA in vivo is
achieved by yet-to-be-determined regulatory
factors (Chen et al. 2011).

A complicated system of dynamic CTD
phosphorylation regulates RNA packaging re-
verse transcription, and intracellular traffick-
ing. Residues S155, S162, and S170 are essential
phosphorylation sites for pgRNA packaging
(Liao and Ou 1995; Gazina et al. 2000). Alanine
mutations of these residues, except an S155
point mutation, showed reduced pgRNA pack-
aging (Kann and Gerlich 1994; Lan et al. 1999;
Gazina et al. 2000; Kock et al. 2004; Le Pogam
et al. 2005; Lewellyn and Loeb 2011b). The
kinase(s) mediating CTD phosphorylation is
(are) the subject of conflicting reports. It is
possible that more than one kinase plays a role.
Protein kinase C (PKC), protein kinase A (PKA),
and cyclin-dependent kinase 1 and 2 (CDK1
and CDK2) have been identified based on in-
hibitor assays (Kann and Gerlich 1994; Ludgate
et al. 2012). Ludgate and coworkers provided
immunological evidence for CDK2, but could
not exclude others (Ludgate et al. 2012). Other
kinases such as GAPDH kinase, a 46-kDa serine
kinase, serine protein kinase 1 and 2 (SRPK1
and SRPK 2) have been implicated (Duclos-
Vallee et al. 1998; Kau and Ting 1998; Daub et
al. 2002; Zheng et al. 2005). Although not dis-
cussed in the literature, dephosphorylation of
the CTD associated with reverse transcription
implies the presence of an encapsidated phos-
phatase (Yu and Summers 1994b; Perlman et al.
2005).

ENVELOPMENT AND RELEASE

Maturation Signal

Particles at all stages of reverse transcription
are found within infected cells. Depending on
the level of maturity, they can contain predom-
inantly RNA, ssDNA, or dsDNA. The dsDNA
particles contain mature, partially double-
stranded, relaxed circular DNA (rcDNA) and,
at much lower levels, double-stranded linear
DNA (dslDNA) (Staprans et al. 1991). Empty

and mature particles are directed for envelop-
ment (Summers and Mason 1982; Gerelsaikhan
et al. 1996; Perlman and Hu 2003; Ning et al.
2011; Cui et al. 2013). The signal for capsid
envelopment has not yet been well defined.
However, an increase in internal pressure caused
by the relative rigidity of dsDNA compared with
ssRNA could lead to capsid instability that
triggers envelopment (Tzlil et al. 2003; Hagan
2013). Enveloped empty particles are found in
the serum of infected patients, cell cultures, and
infected chimpanzees, suggesting that empty
and mature particles share a common matura-
tion signal (Gerin et al. 1975; Kaplan et al. 1976;
Alberti et al. 1978; Ning et al. 2011; Cui et al.
2013). In empty capsids, the lack of genome
could result in instability possibly attributable
to electrostatic repulsion by CTDs. Indeed,
empty and mature capsids, but not immature
particles, are sensitive to proteinase K (Cui et al.
2013).

Emphasizing the importance of capsid
structure during envelopment, there are core
protein mutations and truncations that block
envelopment, in some cases despite complete
synthesis of dsDNA (Koschel et al. 2000; Le Po-
gam et al. 2000; Ponsel and Bruss 2003). High-
lighting the importance of core dynamics, a
buried F97L core mutant results in secretion
of immature virions (Yuan et al. 1999).

Not all mature capsid particles are envel-
oped and released from the cell. A portion of
capsids are transported back to the nucleus to
replenish the pool of cccDNA as shown for duck
hepatitis B virus (DHBV) (Tuttleman et al.
1986). Transport to the nucleus depends on ge-
nome maturation, exposure of a nuclear local-
ization sequence (NLS) on the CTD, as well as
phosphorylation of the CTD (Tuttleman et al.
1986; Eckhardt et al. 1991; Kann et al. 1999;
Rabe et al. 2003). Indeed, in capsids derived
from cell cultures, CTDs were more readily ex-
posed in mature and empty particles than im-
mature ones (Rabe et al. 2003; Wang et al. 2012;
Yu et al. 2013). Kann and coworkers have sug-
gested that phosphorylation of the CTD can
act to facilitate CTD exposure to nuclear trans-
port proteins, importina and importinb (Rabe
et al. 2003, 2009; Wittkop et al. 2010).
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Envelope Proteins

Three envelope, or surface, proteins (HBsAg) of
increasing size called small (S-HBsAg, S), me-
dium (M-HBsAg, M), and large (L-HBsAg, L)
are expressed from one open reading frame dur-
ing HBV infection (Fig. 1). M is dispensable for
the production of infectious virions (Schlicht
et al. 1987; Bruss and Ganem 1991; Fernholz
et al. 1993). All three proteins are cotransla-
tionally integrated into the ER membrane and
form disulfide-linked dimers and heterodimers

(Mangold and Streeck 1993; Mangold et al.
1995; Wounderlich and Bruss 1996). Membrane
integration of the amino-terminal domain of
the S domain is directed by the first and second
transmembrane (TM1 and TM2) segments (Fig.
1) (Eble et al. 1987, 1990; Short et al. 2009). M
has the same topology as S with the 55-amino-
acid preS2 domain located in the ER lumen. The
large envelope protein, L has myristic acid at its
amino terminus and is attached to membranes.
Moreover, it has dual topology important for
assembly and infectivity of virions. During ex-
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Figure 1. Morphology of the small hepatitis B surface antigen S-HBsAg (S), the medium M-HBsAg (M), and the
large L-HBsAg (L) (adapted from Schädler and Hildt 2009). The large envelope protein has three domains called
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pression, the preS1 and preS2 domains of L re-
main in the cytosol (i-preS1). In about 50% of
expressed L proteins, the preS1-preS2 domains
are posttranslationally translocated into the ER
lumen, anchored into the membrane by TM1 (e-
preS1) (Fig. 1). The e-preS form is exposed on
the surface of virions, where it is believed to
facilitate subsequent attachment and entry of
the viral particle (Gripon et al. 1995; Le Seyec
et al. 1999; Lepere-Douard et al. 2009). A short
conserved region of the cytosolic i-preS1 form
between residues 96–116 and part of a cytosolic
loop from the S domain are important for the
interaction with capsids and subsequent virion
envelopment (Fig. 1) (Bruss 1997; Poisson et al.
1997; Le Seyec et al. 1998; Loffler-Mary et al.
2000).

Subviral Particles

The envelope proteins also assemble into emp-
ty subviral particles (SVPs) at the post-ER/pre-
Golgi membrane (Huovila et al. 1992). SVPs
are drastically overproduced compared to the
number of virions seen in serum of infected
patients (Ganem and Prince 2004). Subviral
particles are found as spherical structures with
a diameter of about 22 nm and filaments of
similar diameter but variable length (Gavilanes
et al. 1982; Diminsky et al. 1997; Gilbert et al.
2005).

Expression of S is necessary and sufficient
for the formation of spherical particles (Liu et al.
1982; Patzer et al. 1986; Bruss and Ganem 1991).
During natural infections, however, spherical
particles also contain M and trace amounts of
L (Heermann et al. 1984). Coassembly of par-
ticles with higher amounts of L (ratio of 1:1:4 of
L:M:S) leads to the formation of filamentous
structures (Heermann et al. 1984; Short et al.
2009). Yeast-expressed recombinant S-HBsAg is
the basis of the HBV vaccine (Gerlich and Kann
2010).

Cryo-EM structure determination of fila-
mentous particles reveals tubes with an average
diameter of 25 nm with well-defined spike-like
features, formed by S dimers, projecting from
the membrane surface (Short et al. 2009). The
spikes are reminiscent of those seen in a single-

particle reconstruction of a virion and consis-
tent with projections observed in the raw data
(Dryden et al. 2006). Of note, the ends of fila-
ments appear to be closed off by hemispherical
caps corresponding to half of a 22-nm particle
(Short et al. 2009).

Release of Viral Particles

Growing evidence suggests that release of vi-
ral particles is mediated by multivesicular
bodies (MVBs) of the late endosomal compart-
ment. MVB biogenesis depends on the endo-
somal sorting complex required for transport
(ESCRT) protein complexes (Katzmann et al.
2002; Hanson and Cashikar 2012). Many enve-
loped RNA viruses, such as retroviruses, filovi-
ruses, rhabdoviruses, and paramyxoviruses, hi-
jack host proteins that are part of the ESCRT
machinery to facilitate budding at the plasma
membrane (Katzmann et al. 2002; Jasenosky
and Kawaoka 2004; Chen and Lamb 2008; Hur-
ley and Hanson 2010; Martin-Serrano and Neil
2011; Hanson and Cashikar 2012). In contrast,
it has been suggested that HBV buds into the
MVB and exits the cell via an exosomal pathway
(Fig. 2) (Lambert et al. 2007). Consistent with
this hypothesis, HBV virions have been local-
ized to membranes of the late endosome and
large intracellular compartments (Roingeard
and Sureau 1998; Falcon et al. 2008). HBV re-
lease was shown to be dependent on ESCRT
proteins when dominant negative (DN) mu-
tants of ESCRT III, Vsp4, and ALIX inhibited
virus assembly and release (Lambert et al. 2007;
Watanabe et al. 2007).

It is not clear how HBV recruits the ESCRT
machinery. The endosomal protein g2-adaptin,
an adaptor protein that can guide cargo pro-
teins through membrane compartments has
been implicated, as down-regulation of g2-
adaptin expression inhibited virion formation
and release (Boehm and Bonifacino 2001; Hart-
mann-Stuhler and Prange 2001; Rost et al. 2006;
Lambert et al. 2007). However, interaction with
g2-adaptin may be indirect (Fig. 2) (Garcia et
al. 2009). It has been suggested that Nedd4 me-
diates interactions with g2-adaptin capsids via
the PPAY domain (Rost et al. 2008). However,
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PPAY is located within the dimer–dimer con-
tact region of the core protein that is essential
for capsid assembly (Wynne et al. 1999). Muta-
tion of residue Y132 to alanine interferes with
capsid formation (Bourne et al. 2009). Impor-
tantly, P130 is not conserved throughout all
HBV genotypes (Chain and Myers 2005).

Inhibition of the described host factors
(g2-adaptin and proteins of the ESCRT com-
plex) does not inhibit SVP secretion (Rost et
al. 2006; Lambert et al. 2007), indicating that
the pathway of virion release differs from the
release of SVPs. SVPs are secreted via the general
secretory pathway, independent of glycosylation
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(Patzer et al. 1986; Huovila et al. 1992; Lu et al.
1995; Le Seyec et al. 1999). S-HBsAg assembles
first into filamentous particles within the ER
that are then transported to the ER-Golgi in-
termediate compartment (ERGIC). Within the
ERGIC lumen, filamentous particles are con-
verted into spherical particles and secreted out
of the cell (Patient et al. 2007, 2009).

Capsid and Virion Structure

The structures of T ¼ 4 capsids, formed by the
assembly domain, Cp149, have been deter-
mined by cryo-EM and X-ray crystallography
(Bottcher et al. 1997; Conway et al. 1997; Wynne
et al. 1999). Each monomer has five a helices:
helices a3 and a4 form a 4-helix bundle with
the adjacent monomer, the intradimer inter-
face. Helices a1, a2, and a5 form a domain
perpendicular to the 4-helix bundle that mod-
ulates dimer–dimer interactions (Fig. 3). This
a-helical structure has some similarities to the
retroviral Gag protein, but is unrelated to the
b-barrel fold found in many unenveloped virus
capsids (Zlotnick et al. 1998).

The intradimer interface is highly dynamic.
Its flexibility is evident in the structure of the
HBV e antigen (HBeAg). The HBeAg sequence
is identical to that of Cp149 but contains a 10-
amino-acid amino-terminal extension, the re-
mains of a signal sequence (Fig. 3). HBeAg has
an intramonomer disulfide with cysteine-7 of
the amino-terminal extension and the highly
conserved cysteine 61, located at the intradimer
interface (Nassal and Rieger 1993; DiMattia et
al. 2013; Zlotnick et al. 2013). This results in a
complete reorganization of the dimer interface,
rotating one monomer 140˚ relative to the other
(Fig. 3).

During capsid assembly, dimer–dimer con-
tacts are formed by hydrophobic interactions
involving helix a5 and the carboxyl terminus
with some contribution from the amino-ter-
minus (Wynne et al. 1999; Ceres and Zlotnick
2002). Mutations of highly conserved residues
F23 and Y132 to alanine, located at the points
of dimer–dimer interactions, inhibit capsid for-
mation (Chain and Myers 2005; Bourne et al.

2009; Packianathan et al. 2009; Alexander et al.
2013).

The CTD, localized to the interior of the
capsid, is largely disordered in reconstructions
of empty full-length core protein, Cp183 (Wang
et al. 2012). However, the 16 arginines of the
CTD and seven serines, some of which are able
to be phosphorylated, play important roles in
packaging nucleic acid and regulating cellular
activity. Cp183 shows poor solubility compared
with Cp149 (Porterfield et al. 2010). Preventing
Cp183 aggregation in vivo may require a host
factor.

The core is an active participant in reverse
transcription as indicated by mutational studies
that show mutants with wild-type-like packing
of pgRNA but diminished DNA synthesis (Nas-
sal 1992; Beames and Lanford 1993; Le Pogam
et al. 2005; Lewellyn and Loeb 2011a,b; Tan et
al. 2013). Also, the capsid surface is perforated
by many holes that allow nucleotides to diffuse
through during reverse transcription (Wynne
et al. 1999).

Although the icosahedral core of HBV is
very uniform, the envelopes of secreted virions
are diverse in shape and morphology. Virions
may have relatively tight-fitting envelopes re-
sulting in an overall diameter of about 42 nm
or have filamentous appendages (Fig. 4A) (Stan-
nard and Hodgkiss 1979; Seitz et al. 2007). How-
ever, cryo-EM has shown that particles may have
tight or gapped envelopes, emphasizing the het-
erogeneity of this layer (Seitz et al. 2007).

In Dane particles, core and envelope pro-
teins form contacts. However, a lack of register
between the spikes of the capsid and the enve-
lope proteins results in an ordered, but nonico-
sahedral envelope (Fig. 4B) (Dryden et al. 2006).
This lack of coherence between envelope and
capsid is unusual in viruses (Zlotnick and Muk-
hopadhyay 2011). When the reconstruction was
based on the envelope, S dimers formed con-
spicuous spikes protruding from the envelope;
these were spaced about 6 nm apart, reminis-
cent of those seen in helical reconstructions of
SVP filaments (Fig. 4B) (Short et al. 2009). Also
visible in the Dane particle reconstruction is
density corresponding to dsDNA stretched be-
tween CTD clusters underneath fivefold and
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quasi-sixfold vertices. The organization of nu-
cleic acid in these particles is similar to that of
RNA found in unphosphorylated Cp183 cap-
sids that assemble in vitro. (Fig. 4B) (Dryden et
al. 2006; Wang et al. 2012). Indeed, the core pro-
tein isolated from dsDNA-containing HBVand
DHBV cores are largely dephosphorylated (Perl-
man et al. 2005; Basagoudanavar et al. 2007),
which suggests that unphosphorylated core pro-
tein packages nucleic acid with this sort of ver-
tex-to-vertex electrostatic organization.

Biochemical studies show that residues on
the capsid surface located near the spike tips on
the base of the 4-helix bundle, as well as residues
of the protruding a-helix 5 are important for
envelopment (Bottcher et al. 1998; Ponsel and
Bruss 2003). In cryo-EM studies, possibly be-
cause of the heterogeneity of core-preS1 inter-

actions, the preS1 domain was not observed
(Dryden et al. 2006; Seitz et al. 2007). A further
consideration is that residues surrounding the
spike tips might not directly be involved in
binding envelope proteins but are important
for mediating structural changes.

ASSEMBLY IN VITRO

Capsid Assembly Biochemistry

HBV capsid assembly in vitro has been exten-
sively studied using only the assembly domain
of the core protein, Cp149. Cp149 dimers ex-
pressed in E. coli assemble in response to increas-
ing ionic strength into particles indistinguish-
able from capsids from cell culture (Kenney et al.
1995; Wingfield et al. 1995; Zlotnick et al. 1996).

Propeptide

HBeAg

α4

α3α1

α5 α2
90°

Free HBcAg HBcAg from capsid

Figure 3. Structures of hepatitis B core antigen (HBcAg) and hepatitis B e antigen (HBeAg) dimers. HBeAg
harbors a 10-amino-acid-long amino-terminal extension (propeptide). The structure of the monomer structure
shows modest conformational changes between free HBcAg, HBcAg in capsid, and HBeAg. The largest struc-
tural changes are found in helix a3 and a4, located at the intradimer interface (orange) (adapted from Zlotnick
et al. 2013). Cysteine-7, located on the amino-terminal extension of HBeAg (3V6Z) (magenta spheres) can form
a disulfide with cysteine 61 (yellow spheres). To accommodate this peptide, the monomers are rotated �140˚
about the intradimer interface from their orientation in HBcAg. In HBcAg, the monomers are parallel, and an
intradimer Cys61-Cys61 disulfide can form. Structural differences in the spike region as well as the dimer–dimer
interface can be observed between free HBcAg dimer (3KXS) and HBcAg from capsid (1QGT) (assembly-
inactive and assembled states, respectively).
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Assembly in vitro has been quantified by
inducing assembly of dimer and measuring
the yield of capsid and remaining dimer (Zlot-
nick et al. 1999). When dimer concentration
exceeds a pseudocritical concentration, almost
all additional free dimer assemble into capsid
leaving a nearly constant concentration of free
dimer (Fig. 5A) (Katen and Zlotnick 2009). For
Cp149 at approximately physiological condi-
tions (150 mM NaCl, 37˚C), the pseudocritical
concentration is about 5 mM (Ceres and Zlot-
nick 2002), which is in remarkable agreement
with studies of spontaneous assembly of full-
length core protein expressed in xenopus oo-
cytes (Seifer et al. 1993).

Because assembly appears to equilibrate, it
can be described with good approximation by
the law of mass action (Zlotnick 1994; Katen
and Zlotnick 2009). Assembly of HBV is char-
acterized by multiple weak intersubunit con-
tact energies (about 3–5 kcal/mol [5–8 kT])
equivalent to a millimolar dissociation constant
(Ceres and Zlotnick 2002; Mohan et al. 2009).
Weak protein–protein interactions support reg-

ulated assembly, avoid kinetic traps attribut-
able to errors, and promote the formation of
a barely stable dynamic capsid that is primed
for uncoating (Katen et al. 2010). Evidence for
dynamic changes of capsid was shown by pro-
teolytic cleavage experiments, indicating that
Cp149 capsids “breathe” (Hilmer et al. 2008).

The major driving force behind subunit as-
sociation is entropy, indicated by the tempera-
ture dependence of assembly, which is consistent
with burial of hydrophobic surface and con-
comitant release of water (Ceres and Zlotnick
2002). Also, increasing ionic strength increases
the yield of capsids (Wingfield et al. 1995; Zlot-
nick et al. 1999). This has been suggested to
arise from conformational changes that respond
to ionic strength and divalent cations or ionic
shielding of repulsive electrostatic forces (Ceres
and Zlotnick 2002; Kegel and van der Schoot
2004; Stray et al. 2004; Choi et al. 2005).

The interdimer contact is a hydrophobic
patch with numerous gaps (Wynne et al. 1999;
Bourne et al. 2006, 2008). Filling gaps in the
hydrophobic interface is predicted to strengthen

A

B

100 nm

Figure 4. The hepatitis B virus (HBV) virion. (A) Cryoelectron micrograph (cryo-EM) of virions isolated from
chronically infected patients showing virions (Dane particles) containing spherical envelopes and virions with
elongated appendages. Also shown are spherical and filamentous subviral particles (provided by Dr. Stefan
Seitz). (B) Composite cryoelectron microscopy model of an HBV virion comprising the viral lipid envelope with
hepatitis B surface antigen (HBsAg) protrusions (yellow), the icosahedral capsid (blue), and the enclosed
double-stranded DNA (dsDNA) (red) (Dryden et al. 2006). The capsid displays icosahedral symmetry with
protrusions representing the 4-helix bundles of the hepatitis B core antigen (HBcAg) dimers. Protrusions from
the envelope are dimers of predominantly the small (S) form of the envelope protein, S-HBsAg. The viral envelope
interacts with the spike tips of the capsid but is not arranged with icosahedral symmetry. Scale bar, 10 nm
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association energy by increasing buried non-
polar surface (Eisenberg and McLachlan 1986).
Indeed, heteroaryldihydropyrimidines (HAPs)
and phenylpropenamides (PPAs), two chemi-
cal families found to have antiviral activity, act
by increasing assembly by filling in the “HAP
pocket” at the dimer–dimer interface (Stolte-
fuss et al. 1999; Delaney et al. 2002; Deres et al.
2003; Bourne et al. 2006, 2008; Stray and Zlot-
nick 2006; Katen et al. 2010, 2013; Li et al. 2013).
Similarly, filling the same pocket with a V124W
mutation leads to an assembly hyperactive mu-
tant (Tan et al. 2013).

Although assembly rapidly equilibrates, dis-
sociation in the absence of a catalyst or chao-
trope does not. HBV, as well as other viruses,
display a high kinetic barrier to dissociation
called hysteresis. Dilution experiments and

mass spectrometry revealed that capsids were
stable even under conditions in which assembly
was abrogated (Singh and Zlotnick 2003; Ue-
trecht et al. 2010). Hysteresis to disassembly has
an important biological function. Virions per-
sist even in conditions unfavorable to assembly
despite their fragility (Uetrecht et al. 2008).

Kinetics of Assembly

In vivo, virus assembly is dynamic and may not
have the time to equilibrate; thus, kinetics may
be more relevant to activity in a cell. Cp149 as-
sembly kinetics has been a powerful system for
describing the general question of virus assem-
bly as well as the specifics of HBV. Assembly of
a single capsid starts with a nucleus followed
by “elongation” (i.e., completion of the capsid).

Capsid

Thermodynamics of assemblyA

B

Lag phase Rapid
accumulation
of capsids

Elongation/equilibration
approaching steady state

Kinetics of assembly

Nucleation
taking place throughout assembly

+

Fr
ee

 d
im

er
 c

on
ce

nt
ra

tio
n

C
ap

si
d 

co
nc

en
tr

at
io

n

Dimer
KDapp

Total dimer concentration

Figure 5. Predicted behavior for capsid assembly. (A) Capsid assembly at equilibrium. Very little capsid is
observed until the total dimer concentration reaches a pseudocritical concentration of assembly, referred to
as KDapp, the apparent dissociation constant. Above KDapp, almost all additional free dimer assemble into capsid
(red), leaving a nearly constant concentration of free dimer (green); a slope of almost zero indicates that
assembly is very close to equilibrium (Zlotnick 2007; Katen and Zlotnick 2009). (B) Assembly of large popu-
lations of particles displays sigmoidal kinetics (Endres and Zlotnick 2002; Hagan and Chandler 2006; Katen and
Zlotnick 2009). The observed lag phase of assembly is proportional to the time to establish a steady state of
intermediates. Following the lag phase, capsid particles accumulate (Hagan and Chandler 2006; Katen and
Zlotnick 2009). As more free subunits are consumed to form capsids, the reaction slowly approaches equilib-
rium, plateauing when the pseudocritical concentration is reached (Katen and Zlotnick 2009). Nucleation and
intermediate formation occurs throughout the entire assembly reaction.
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Assembly of large populations of particles dis-
plays sigmoidal kinetics, which appears similar
to nucleated assembly of crystals or filaments
(Fig. 5B) (Zlotnick 2005; Hagan and Chandler
2006; Katen and Zlotnick 2009). However, there
are striking differences. During polymer assem-
bly, the lag phase corresponds to the formation
of a nucleus. The capsid assembly lag phase,
however, is proportional to the time required
to build intermediates and assemble the first
capsid (Hagan and Chandler 2006; Katen and
Zlotnick 2009). It has been described as a shock-
front of intermediates (Morozov et al. 2009).
Intermediates are predicted from graph theory
and dynamic simulations to be a compact spe-
cies (Endres et al. 2005; Moisant et al. 2010;
Rapaport 2010; Dykeman et al. 2014). In capsid
assembly, the plateau phase has concurrent nu-
cleation and elongation. The reaction slowly ap-
proaches equilibrium until it reaches the pseu-
docritical concentration (Fig. 5B) (Katen and
Zlotnick 2009).

High protein concentrations and/or strong
subunit association energies between subunits
can lead to kinetic trapping of incomplete or
incorrect capsids because of depletion of sub-
units or locking mistakes into growing capsid
(Zlotnick et al. 1999). These kinetic traps are
local energy minima that persist—they are anal-
ogous to misfolded protein. Supporting theo-
retical predictions, trapped Cp149 assembly in-
termediates, T ¼ 4 capsids missing 3–16 dimer
subunits, have been reported (Pierson et al.
2014).

Allostery

Regulating assembly may be important for pre-
venting misincorporation of the wrong nucleic
acid, and minimizing kinetic traps. One mech-
anism to regulate assembly is allostery. It has
been proposed that the capsid proteins undergo
a structural transition from an assembly-inac-
tive to an assembly-active conformation, ener-
getically and structurally separating nucleation
and elongation (Caspar 1980; Zlotnick 2005).
Consistent with this, structural studies reveal
differences between free HBV dimers and di-
mers within capsids (Fig. 3) (Packianathan et

al. 2009; DiMattia et al. 2013). This hypothesis
is further supported by core protein mutants
that alter the assembly behavior. The F97 to
leucine mutant, located at the intradimer inter-
face, assembles faster and with stronger associ-
ation than wild-type protein. Similarly, muta-
tion of L42 to alanine inhibits capsid assembly,
although L42 is located at the base of the spike
tips far from dimer–dimer contacts (Alexander
et al. 2013). Other point mutations that alter
assembly unexpectedly alter dimers’ Stokes ra-
dius (Bourne et al. 2009; Tan et al. 2013). An-
other indicator of allostery is the requirement
that the disulfide at the intradimer contact be in
the reduced state for efficient capsid assembly,
suggesting that this region is essential for medi-
ating allosteric changes (Selzer et al. 2014).

The stepwise nature of core protein activity
in the HBV lifecycle—packaging nucleic acid,
participating in reverse transcription, regulat-
ing transport for egress or to the nucleus—all
argue that core allostery is critical in vivo.

Assembly around Nucleic Acid

Because of the complexity of virus assembly in
vivo, the study of capsid assembly around nu-
cleic acid in vitro has been avaluable tool. Cp183
packages ssRNA with high affinity and high co-
operativity, which might be highly important
in facilitating specific packaging of viral RNA
in vivo (Porterfield et al. 2010). However, assem-
bly lacks specificity, indicating a regulatory step
that has yet to be explained (Chen et al. 2011).

CTD phosphorylation appears to be an im-
portant regulator of RNA packaging in vivo
(Kann and Gerlich 1994; Gazina et al. 2000).
Cryo-EM studies of capsids assembled from
Cp183 and a phosphorylation mimic, Cp183-
EEE, in which three serines are replaced by glu-
tamic acid, show that phosphorylation influ-
enced the organization of the CTD and the pack-
aged pgRNA (Wang et al. 2012). Cp183-EEE
CTDs have a more compact organization con-
sistent with inter-CTD salt bridges. In Cp183-
EEE capsids, the RNA forms a mesh-like density
more consistent with ssRNA. Conversely, the
structure of the pgRNA in unphosphorylated
capsids closely resembled dsDNA in authentic
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Dane particles (Dryden et al. 2006; Wang et al.
2012). This structural difference suggests dy-
namic interactions between CTDs and RNA,
which react to changes in phosphorylation (Yu
and Summers 1994a,b; Perlman et al. 2005).

Bound nucleic acid is synergistic with viral
capsids. An excess of negative charges to positive
charges is commonly observed in nucleoprotein
complexes with typical values of about 1.6 but
going as high as 2.0 (Manning 2001; Belyi and
Muthukumar 2006; Hu and Shklovskii 2007;
Hagan 2013; Perlmutter et al. 2013). In HBV,
the number of positively charged arginines in
the CTD correlates with the amount of RNA
encapsidated (Zlotnick et al. 1996; Le Pogam
et al. 2005; Chua et al. 2009), consistent with a
charge neutralization component to encapsida-
tion. However, the change in charge is account-
ed for by changing the CTD phosphorylation
state during the course of reverse transcription.
The charge ratio for an immature capsid, assum-
ing a 3500-nt polyadenylated pgRNA and a fully
phosphorylated CTD (Perlman et al. 2005), is
about 1.5. The same ratio is found for a mature
virus with 6300 nt of rcDNA (partially dsDNA)
and completely dephosphorylated CTDs.

Cp183 assembles on ssDNA as well as it does
on ssRNA, but fails to assemble around dsDNA,
suggesting that constraining the less-flexible
dsDNA requires stronger dimer–dimer associ-
ation energies (Dhason et al. 2012; Zlotnick et al.
2012). In vivo, both the increase in internal pres-
sure and also density of negative charge caused
by formation of dsDNA might also lead to de-
stabilization. The stiffness of dsDNA in an HBV
capsid of only 25 nm internal diameter will sub-
stantially affect internal pressure and organiza-
tion of the nucleic acid (Tzlil et al. 2003; Hagan
2013). Indeed, HBV core particles containing
dsDNA appear less stable based on analyses of
dsDNA-filled particle structure and measured
stability by electrophoresis, velocity sedimenta-
tion, and susceptibility to proteolytic cleavage
(Zlotnick et al. 2012; Cui et al. 2013).

CONCLUDING REMARKS

Assembly and egress are closely connected ac-
tivities that are regulated in part by HBV core

protein in close concert with other viral and
host proteins. Conformational changes of the
core protein can modulate assembly, the struc-
ture of packaged nucleic acid, and the activity of
the packaged polymerase. Interactions of the
capsid with the HBVenvelope proteins regulate
envelopment and envelope organization on the
virion. Because of the relative simplicity of this
system, both the physics of the virion and its
biological regulation are experimentally acces-
sible. Combining in vivo and in vitro studies has
shed light on many mechanisms of the HBV life
cycle. However, involvement of host proteins
during RNA packaging and intracellular traf-
ficking, core protein interactions with the poly-
merase and RNA during reverse transcription,
and the mechanisms of virion envelopment and
release are just beginning to be understood.
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