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The study of homologous recombination has its historical roots in meiosis. In this context,
recombination occurs as a programmed event that culminates in the formation of crossovers,
which are essential for accurate chromosome segregation and create new combinations
of parental alleles. Thus, meiotic recombination underlies both the independent assortment
of parental chromosomes and genetic linkage. This review highlights the features of meiotic
recombination that distinguish it from recombinational repair in somatic cells, and how
the molecular processes of meiotic recombination are embedded and interdependent with
the chromosome structures that characterize meiotic prophase. A more in-depth review
presents our understanding of how crossover and noncrossover pathways of meiotic recom-
bination are differentiated and regulated. The final section of this review summarizes the
studies that have defined defective recombination as a leading cause of pregnancy loss and
congenital disease in humans.

MEIOSIS AND THE ROOTS OF
RECOMBINATION RESEARCH

The concept of recombination emerged dur-
ing the early 20th century, following the

post-Mendel era of heredity research. Thomas
Hunt Morgan’s formal theory of gene linkage
and crossing-over (Morgan 1913) was a synthe-
sis of three key concepts: “the chromosome the-
ory of inheritance,” imparted by Wilhelm Roux,
Walther Flemming, Theodor Boveri, and Walter
Sutton; “gene linkage,” an exception to Mendel’s
law of independent assortment, first reported
by Carl Correns; and the “chiasmatype theory,”
derived from Frans Janssens’ cytological ob-
servations of meiotic chromosomes. The first
proof of the crossover theory came from Harriet

Creighton and Barbara McClintock (Creighton
and McClintock 1931), who were able to corre-
late cytological and genetic exchanges in maize.

Experiments aimed at understanding the
mechanism of meiotic recombination became
dominated by fungal genetics because of the
huge advantage afforded by being able to recov-
er all four meiotic products. These elegant stud-
ies culminated in four key concepts that formed
the foundation of molecular models of re-
combination: gene conversion, an exception to
Mendel’s principle of segregation, signaled a lo-
cal nonreciprocal transfer of genetic informa-
tion (Winkler 1930; Lindergren 1953; Mitchell
1955); postmeiotic segregation (PMS) indicat-
ed the presence of heteroduplex DNA (Olive
1959; Kitani et al. 1962); polarity gradients of
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gene conversion lead to the idea that recombi-
nation initiated from pseudofixed sites (Lis-
souba and Rizet 1960; Murray 1960); and the
strong correlation between gene conversion/
PMS events and crossing-over led to the pro-
posal that these processes were mechanistically
linked (Kitani et al. 1962; Perkins 1962; White-
house 1963).

MOLECULAR MODELS OF MEIOTIC
RECOMBINATION

Holliday’s classic model reconciled gene con-
version, PMS, and crossing-over into a single
mechanism with the key features of hybrid (het-
eroduplex) DNA formed via strand exchange,
mismatch correction of hybrid DNA to yield
gene conversion, and a four-way exchange junc-
tion that could be resolved to yield either cross-
over or noncrossover duplex products (Holliday
1964). The meticulous testing and revision of
models of meiotic recombination ensued over
the next 20 years (Haber 2008), culminating
in the formulation of the double-strand break
repair (DSBR) model of Szostak et al. (1983),
which proposed that meiotic recombination is
initiated by DNA double-strand breaks and the
ensuing strand exchanges result in the formation
of double-Holliday junctions (dHJs) (Fig. 1).

Identification of the key DNA intermediates
of the DSBR model was enabled by techniques
to synchronize meiosis in budding yeast cul-
tures, and a series of Southern blot assays to
monitor events at defined recombination sites.
These approaches provided direct confirma-
tion that meiotic recombination initiates with
double-strand breaks (DSBs) and gives rise to
dHJs (Sun et al. 1989; Cao et al. 1990; Schwacha
and Kleckner 1994, 1995). These powerful ap-
proaches also revealed several important spatial
and temporal features of meiotic recombina-
tion. DSBs form after bulk chromosome repli-
cation and are rapidly processed to form long
single-stranded tails with 30-termini (Padmore
et al. 1991; Sun et al. 1991; Zakharyevich et al.
2010). Distinct from the original DSBR model,
there is no evidence that a significant gap is
formed at the DSB site. Detection of recombi-
nation intermediates by Southern analysis was

dependent on the fact that DSBs at the assayed
loci were confined to very narrow regions or
hotspots, a conserved feature that was subse-
quently shown to apply genome-wide and has
been the subject of intense studies (e.g., Baudat
and Nicolas 1997; Gerton et al. 2000; Blitzblau
et al. 2007; Buhler et al. 2007; Hwang and Hun-
ter 2011; Pan et al. 2011; Smagulova et al. 2011;
de Massy 2013, 2014; Pratto et al. 2014).

Formation of metastable one-ended strand-
exchange intermediates, called single-end inva-
sions (SEIs), is coincident with chromosome
synapsis, that is, the intimate connection of ho-
mologs along their lengths by zipper-like struc-
tures called synaptonemal complexes (Fig. 2)
(Hunter and Kleckner 2001). Given that chro-
mosome pairing and synapsis requires recom-
bination in most organisms, including budding
yeast (but not Drosophila or Caenorhabditis
elegans), detected SEIs must be preceded by
less stable nascent strand-pairing intermediates
(presumably D-loops) that are not readily de-
tected by current approaches. The timing of SEI
formation reflects the interdependence between
the initiation of synapsis and the initial differ-
entiation of crossover and noncrossover path-
ways, with SEIs being the earliest detectable
crossover-specific joint molecules (see below)
(Hunter and Kleckner 2001; Borner et al. 2004;
Reynolds et al. 2013; Zhang et al. 2014a). Along
the crossover pathway, SEIs give rise to dHJs,
which must be resolved exclusively into cross-
overs, in contrast to the equal mixture of cross-
overs and noncrossovers originally envisioned
by the DSBR model (Allers and Lichten 2001a;
Clyne et al. 2003; Zakharyevich et al. 2012).

These findings are incorporated into con-
temporary models of meiotic recombination
that propose early differentiation of crossover
and noncrossover pathways, with a majority of
noncrossovers arising from D-loops via synthe-
sis-dependent strand annealing, and crossover-
designated events going on to form stable dHJs
(Fig. 1) (McMahill et al. 2007; Martini et al.
2011; Tang et al. 2015). Fine-scale analysis of
crossover and noncrossover products in yeast,
mouse, human, and Arabidopsis support the
tenet that crossovers and noncrossovers arise
from distinct intermediates (Jeffreys and May
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Figure 1. Model of meiotic recombination. Schematic diagram showing the DNA intermediates of meiotic
recombination highlighting the major pathways and key transitions (for more comprehensive models, see
Martini et al. 2011; Kaur et al. 2015; Tang et al. 2015). Magenta lines indicate new DNA synthesis. During
double-Holliday junction (dHJ) formation along the crossover branch, only one possible mechanism for
engagement of the second double-strand break repair (DSB) end is shown, involving end-first displacement
of the extended invading strand and annealing (Allers and Lichten 2001b; Lao et al. 2008). Alternative models
include annealing of the second DSB end to an expanded D-loop, or a second strand invasion analogous to the
first DSB end (Szostak et al. 1983; Martini et al. 2011). Proteins implicated in each step are shown; prefixes
indicate proteins specific to a given organism: At, Arabidopsis thaliana, Ce, Caenorhabditis elegans; Dm, Dro-
sophila melanogaster; Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe (see main text for details).
Accompanying images show surface-spread mouse spermatocyte nuclei at the corresponding prophase stages,
immunostained for pertinent recombination factors. In all images, homolog axes are visualized using SYCP3
antibodies. MEI4 is a SPO11-accessory protein required for DSB formation (Kumar et al. 2010). PCNA,
Proliferating cell nuclear antigen.
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Figure 2. Chromosomal events of meiosis. The main stages of meiosis are shown for a single pair of homologous
chromosomes (green and purple lines). Black rings indicate cohesion complexes connecting the sister chroma-
tids. The synaptonemal complex is indicated by the triple-dashed line located between the homologs. Gray disks
represent the kinetochores. Spindle microtubules are shown as thin green lines. The Venus symbol indicates the
dictyotene stage at which prophase arrests in females. The images on the left-hand side show the corresponding
prophase-I stages in surface-spread mouse spermatocyte nuclei immunostained for homolog axes (SYCP3,
green) and the central region of the synaptonemal complex (SYCP1, red, but appears orange because of signal
overlap). The final image shows a metaphase-I nucleus stained with Giemsa.
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2004; Guillon et al. 2005; Mancera et al. 2008,
2011; Cole et al. 2010, 2014; Martini et al. 2011;
Drouaud et al. 2013; Rockmill et al. 2013;
Wijnker et al. 2013). However, this feature may
not be universal; for example, patterns of het-
eroduplex in Drosophila are consistent with both
crossovers and noncrossovers arising from a
common intermediate (Crown et al. 2014).

INTERHOMOLOG INTERACTIONS

In most organisms, recombination is coerced to
do work in meiosis, specifically to bring each
pair of homologous chromosomes into close
end-to-end juxtaposition and thereby facili-
tate their synapsis (Fig. 2) (e.g., Baudat et al.
2000; Romanienko and Camerini-Otero 2000;
Peoples et al. 2002; Tesse et al. 2003; Henderson
and Keeney 2004; Zickler and Kleckner 2015).
Interhomolog crossing-over occurs within the
context of the synapsed chromosomes. Cross-
overs combine with sister-chromatid cohesion,
which was established during premeiotic S
phase, to create connections called chiasmata
that supersede synaptonemal complexes and
are only resolved when cohesion between the
chromosome arms is cleaved at anaphase I. Chi-
asmata are essential for efficient homolog dis-
junction at the first meiotic division because
they allow homolog pairs to stably biorient on
the meiosis-I spindle in much the same way that
cohesion allows sister chromatids to biorient
on the mitotic spindle (Fig. 2) (Petronczki et
al. 2003; Hunter 2013).

Specific organizational features of meiotic
prophase chromosomes and their coupling to
meiotic recombination enable local DNA in-
teractions to effect the juxtaposition of whole
chromosomes. A central feature is the organiza-
tion of sister chromatids into linear arrays of
chromatin loops connected by a common cohe-
sin-based axis that is augmented by meiosis-
specific proteins (Zickler and Kleckner 1999;
Pelttari et al. 2001; Blat et al. 2002; Syrjanen
et al. 2014; Zickler and Kleckner 2015). This
organization produces semicondensed pro-
phase chromosomes with relatively rigid axes
that define the pairing and interaction faces of
each homolog pair. Direct physical and func-

tional coupling of recombination complexes
to the axes (Blat et al. 2002; Panizza et al.
2011; Borde and de Massy 2013) enables local
DNA interactions to juxtapose associated ho-
molog axes and ultimately bring about end-
to-end chromosome pairing. Locally, recombi-
national interactions mediate the formation of
visible bridges between pairs of axes, a subset of
which nucleate the polymerization of the syn-
aptonemal complex central region to lock in
nascent pairing interactions (Albini and Jones
1987; Zickler and Kleckner 1999, 2015). Mor-
phogenesis of homolog axes and synaptonemal
complexes define the stages of meiotic prophase
(Fig. 2). Axes develop during leptonema coin-
cident with DSB formation and homolog pair-
ing; during zygonema, synaptonemal complex-
es polymerize between aligned axes; when
synapsis is complete, meiocytes enter pachy-
nema and crossing-over occurs; finally, during
diplonema, synaptonemal complexes are disas-
sembled and bivalents connected by chiasmata
emerge (Hunter 2013).

To efficiently promote pairing, synapsis
and formation of chiasmata, recombinational
interactions during meiosis are biased to occur
between homologs, sharply contrasting somatic
recombination, which occurs almost exclusively
between sister chromatids (Fig. 1) (Kadyk and
Hartwell 1992; Johnson and Jasin 2000; Bzymek
et al. 2010; Lao and Hunter 2010; Humphryes
and Hochwagen 2014; Brown and Bishop 2015).
Although the precise mechanism of this meiotic
interhomolog bias remains unknown, coupling
of recombination to homolog axes also provides
a means for communication between sister
chromatids to limit intersister recombination.
In budding yeast, where interhomolog bias has
been most clearly elucidated, an important as-
pect of interhomolog bias is modulation of the
recombination complex by inhibiting Rad51
(which nonetheless retains an essential sup-
porting role) and switching to Dmc1-mediated
DNA pairing and strand exchange (Tsubouchi
and Roeder 2006; Niu et al. 2009; Cloud et al.
2012; Hong et al. 2013; Lao et al. 2013; Liu et al.
2014b). Evidence suggests that this feature may
be conserved, at least in Arabidopsis (Kurzbauer
et al. 2012; Da Ines et al. 2013). Local axis-based
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checkpoint signaling is also inferred to locally
remove a constraint to interhomolog strand ex-
change that is imposed by cohesin complexes
(Kim et al. 2010), and to limit use of the sis-
ter-chromatid template (Wan et al. 2004; Niu
et al. 2005; Goldfarb and Lichten 2010).

Feedback between homolog pairing and
recombination coordinates the two processes
such that synapsis is constrained to occur be-
tween homologous chromosomes, and pro-
gression of recombination beyond the nascent
strand-exchange step is prevented until synapsis
is ongoing (Hunter and Kleckner 2001). In this
way, the reversibility of pairing interactions is
maintained until homologous interactions be-
come stabilized by synapsis, thereby limiting
chromosome entanglement and facilitating the
resolution of interlocked chromosomes as syn-
apsis ensues (Storlazzi et al. 2010).

PROGRAMMED DSB FORMATION

In stark contrast to recombinational repair
in somatic cells, meiotic recombination is a
programmed event initiated by the deliberate
induction of DSBs throughout the genome.
Consequently, all chromosomes simultaneously
engage in recombination at multiple positions.
DSB formation is intimately associated with
meiotic chromosome architecture, and is sub-
ject to exquisite spatial and temporal regulation
(Keeney et al. 2014; Subramanian and Hochwa-
gen 2014; Lam and Keeney 2015; Székvölgyi
et al. 2015).

The DSB-forming machinery, centered
around the SPO11 transesterase, has been re-
viewed extensively (e.g., Keeney 2001, 2008;
Hunter 2006; Keeney and Neale 2006; Borde
and de Massy 2013; de Massy 2013; Yamada
and Ohta 2013; Lam and Keeney 2015; Székvöl-
gyi et al. 2015). Local determinants of DSB
location include cis-acting DNA sequences,
transcription factors, histone modifications,
and chromatin accessibility (Hwang and Hun-
ter 2011; Lichten and de Massy 2011; Tischfield
and Keeney 2012; Baudat et al. 2013; Yamada
and Ohta 2013; Fowler et al. 2014). DSB forma-
tion is facilitated by factors that are components
of the homolog axes (e.g., Schwacha and Kleck-

ner 1994; Mao-Draayer et al. 1996; Ellermeier
and Smith 2005; Goodyer et al. 2008; Kugou
et al. 2009; Daniel et al. 2011), and the ensuing
recombination complexes are visibly associated
with these structures (Zickler and Kleckner
1999). However, the DSB sites themselves map
to DNA sequences located in chromatin loops,
whereas axis-associated sequences define DSB
cold spots (Blat et al. 2002; Ito et al. 2014). These
observations inspired the “tethered loop-axis
complex” (TLAC) model, in which DSB sites
located in loops must interact with the axis to
trigger DSB formation (Blat et al. 2002). This
dependency is inferred to establish axis asso-
ciation of recombination complexes effectively
coupling interhomolog interactions at the DNA
and axis levels. Although direct proof remains
elusive, the TLAC model is supported by a num-
ber of observations. For example, essential DSB
factors localize to the axes before DSB activa-
tion (Panizza et al. 2011), and bridging pro-
teins, which connect DSB sites located in loops
with axis-associated DSB factors, have recently
been identified in budding and fission yeasts
(Miyoshi et al. 2012; Acquaviva et al. 2013; Som-
mermeyer et al. 2013).

Global and local coupling to S-phase cell-
cycle kinases, together with a meiotic S-phase
checkpoint, confine DSB formation to replicat-
ed chromatids (Borde et al. 2000; Henderson et
al. 2006; Ogino et al. 2006; Sasanuma et al. 2008;
Wan et al. 2008; Blitzblau and Hochwagen 2013;
Murakami and Keeney 2014). Local feedback
regulation, involving kinase signaling by com-
ponents of the DNA-damage response, also
helps to optimize the DSB distribution by pro-
moting even spacing, and locally limiting DSBs
to one per four chromatids (Lange et al. 2011;
Zhang et al. 2011; Carballo et al. 2013; Cooper et
al. 2014; Garcia et al. 2015). As homolog pair-
ing ensues, feedback regulation locally attenu-
ates DSB formation, while delayed pairing ap-
pears to locally up-regulate DSBs (Kauppi et al.
2013; Lao et al. 2013; Thacker et al. 2014). Fi-
nally, full synapsis and satisfactory progression
toward crossing-over appears to shut down the
ability to make DSBs (Argunhan et al. 2013;
Rosu et al. 2013; Stamper et al. 2013; Thacker
et al. 2014).
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CROSSOVER CONTROL

Crossover Assurance and Interference

Despite the stochastic nature of crossing-over,
which to a first approximation can occur at
any site along the chromosomes, crossovers
are subject to tight regulation (Jones 1984; Jones
and Franklin 2006). Although large numbers
of DSBs form per nucleus, the total number of
crossovers is very low, typically in the range of
one per chromosome to one per chromosome
arm. Thus, the popular view that meiotic re-
combination “scrambles” the genome is mis-
leading. On the contrary, meiotic recombina-
tion is relatively conservative and as many as
half of all chromatids can emerge from meiosis
with parental haplotypes. However, each ho-
molog pair obtains at least one crossover, as a
prerequisite for accurate segregation, defining a
regulatory feature termed “crossover assurance”
(also known as the obligatory crossover). Also,
when a single chromosome pair experiences
multiple crossovers they tend to be widely and
evenly spaced—the classical phenomenon of
“crossover interference” that was already noted
in the first genetic map constructed by Alfred
Sturtevant in 1913 (1913a,b). Most models of
interference assume that an inhibitory zone is
established around DSB sites that have become
committed to crossing-over (Hillers 2004; Ber-
chowitz and Copenhaver 2010; Zhang et al.
2014b). Other DSBs within this zone of inhibi-
tion are prevented from becoming crossovers
and instead mature as noncrossovers.

Together, crossover assurance and inter-
ference dictate the lower and upper limits for
crossover numbers and underpin the phenom-
enon of crossover homeostasis: a low variation
in crossover numbers per meiosis despite much
larger variations in the numbers of recombina-
tional interactions (Martini et al. 2006; Rosu
et al. 2011; Cole et al. 2012; Yokoo et al. 2012).
Interference (intercrossover) distances are gen-
erally large relative to chromosome length,
which drives minimization of crossover num-
bers. In extreme cases, such as C. elegans, inter-
ference is effective over the entire length of the
chromosomes such that the combined output
of crossover assurance and interference is pre-

cisely one crossover per chromosome pair (Hill-
ers and Villeneuve 2003). Not only does mini-
mization of crossover numbers create a unique
regulatory challenge for meiotic cells, its rai-
son d’être remains unclear. Excess crossovers,
per se, do not appear to interfere with homolog
segregation (e.g., Seguela-Arnaud et al. 2015),
favoring the idea that limiting exchange has
an adaptive benefit, such as preserving favor-
able haplotypes and/or minimizing deleterious
nonallelic recombination.

The mechanisms responsible for crossover
assurance and interference remain elusive in
part because of the complexity of studying these
processes. Crossover assurance comprises tem-
porally and functionally distinct designation/
commitment and implementation/execution
steps. As such, perturbation of any biochemical
process required to implement crossing-over at
a designated site (such as dHJ resolution) will
reduce the efficiency of crossover assurance
without being informative about the crossover
designation process per se. Similarly, readouts
of crossover interference are not readily ame-
nable to high throughput screening and defin-
ing mutants that unambiguously perturb this
process has proven both challenging and labor
intensive (e.g., Zhang et al. 2014d). Moreover,
interpretation of mutant phenotypes is com-
plicated by the existence of a (typically minor)
class of crossovers that does not show an in-
terference distribution (Berchowitz and Copen-
haver 2010). Thus, mutants that specifically
diminish interfering crossovers (termed class I
events) can show an apparent loss of interfer-
ence caused by increasing prevalence of nonin-
terfering class II crossovers (Stahl 2012).

Assuming a model in which interference es-
tablishes an inhibitory zone around designated
crossover sites, a true interference mutant is
expected to show a hypercrossover phenotype
(Zhang et al. 2014d). However, hypercrossover
mutants do not a priori define genes involved in
crossover patterning. For example, hyperrecom-
bination is seen for a number of DNA helicase
mutants, but this is because of an interference-
independent defect in implementing noncross-
overs via synthesis-dependent strand annealing.
In these cases, the distribution of class I cross-
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overs remains largely unperturbed, whereas
class II events are increased at the expense of
noncrossovers (Rockmill et al. 2003; Youds
et al. 2010; Crismani et al. 2012; Yokoo et al.
2012; Seguela-Arnaud et al. 2015).

Despite these impediments, important ad-
vances in our understanding of crossover con-
trol have been made in recent years. Several
studies have established that the metric of cross-
over interference is the physical lengths of pro-
phase chromosomes (as opposed to genetic dis-
tance or genomic distance, i.e., bps of DNA)
(Martini et al. 2006; Drouaud et al. 2007; Petkov
et al. 2007; Zhang et al. 2014b). Thus, crossover
rates for the same chromosomes vary coordi-
nately with changes in axis lengths, which re-
flect differences in chromatin packaging with
respect to the size and density of chromatin
loops (Lynn et al. 2002; Hillers and Villeneuve
2003; Kleckner et al. 2003; Tease and Hulten
2004; Qiao et al. 2012b; Gruhn et al. 2013; Baier
et al. 2014). For example, in humans, variation
in the lengths of prophase chromosomes ac-
count for long-known differences in recombi-
nation rates between males and females. Oocyte
prophase chromosomes are about twice as long
as their spermatocyte counterparts, have short-
er, denser chromatin loops, and experience
�60% more crossovers (Gruhn et al. 2013).
However, interference distances (expressed as
mm of synaptonemal complex) are comparable
between the sexes (Petkov et al. 2007). Although
the basis for such variation in chromatin orga-
nization remains unclear, levels of cohesin sub-
units and other axis components may be impor-
tant (Novak et al. 2008; Mets and Meyer 2009;
Vranis et al. 2010; Murdoch et al. 2013).

A number of studies indicate that axis in-
tegrity and continuity are important for regu-
lating crossover rate and interference (Hillers
and Villeneuve 2003; Kleckner et al. 2004; Na-
beshima et al. 2004; Novak et al. 2008; Storlazzi
et al. 2008; Tsai et al. 2008; Joshi et al. 2009; Mets
and Meyer 2009; Thacker and Keeney 2009;
Zanders and Alani 2009; Qiao et al. 2012b; Li-
buda et al. 2013; Murdoch et al. 2013; Zhang
et al. 2014d). These data suggest that homolog
axes may be the conduits for transmission of
interference signaling, or at least that axis integ-

rity is important for spreading of interference
(e.g., Zhang et al. 2014d). However, it is notable
that mice lacking the major axis component,
SYCP3, show apparently normal interference
despite overt changes in axis length (de Boer
et al. 2007).

Crossover homeostasis is, at least in part, a
consequence of crossover interference (Martini
et al. 2006; Rosu et al. 2011; Cole et al. 2012;
Yokoo et al. 2012; Wang et al. 2015). When DSBs
are made at a low density relative to the effective
interference distance, a given recombination
site has a lower probability of being subject to
interference from an adjacent site, whereas, for a
high density of DSBs, the opposite is true such
that similar numbers of crossovers will emerge
in both cases (Zickler and Kleckner 2015).
These effects are locally manifested as changes
in the ratios of crossovers to noncrossovers ob-
served at assayed loci (Martini et al. 2006; Yokoo
et al. 2012; Lao et al. 2013). The other essential
component of homeostasis is crossover assur-
ance, which requires regulatory inputs at each
step of recombination. Preconditions for cross-
over assurance include forming sufficient num-
bers of DSBs and efficiently converting them
into stable interhomolog interactions (Martini
et al. 2006; Rosu et al. 2011; Kauppi et al. 2013;
Lao et al. 2013). Faced with conditions that de-
lay stable homolog engagement—such as inad-
equate DSB numbers, inefficient interhomolog
template bias, or delayed/defective progression
toward crossing-over—cells attempt to com-
pensate by continuing to form DSBs (Sourira-
jan and Lichten 2008; Argunhan et al. 2013;
Gray et al. 2013; Kauppi et al. 2013; Lao et al.
2013; Rosu et al. 2013; Stamper et al. 2013;
Thacker et al. 2014). Successful synapsis and
formation of crossover-competent joint mole-
cules are inferred to attenuate both DSB forma-
tion and interhomolog bias (Rosu et al. 2011,
2013; Kauppi et al. 2013; Stamper et al. 2013;
Thacker et al. 2014).

In the absence of interference from neigh-
boring recombination sites, the crossover out-
come is specifically implemented with extreme-
ly high efficiency (Martini et al. 2006; Rosu et al.
2011; Lao et al. 2013). However, the processes
that ensure that a crossover outcome is triggered
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for at least one DSB site per chromosome pair
(the obligatory crossover) remain unknown.
Evidence from a variety of organisms indicates
that the patterning processes that designate
crossover sites occur before and independently
of synapsis (Page and Hawley 2001; Borner et al.
2004; Fung et al. 2004; Higgins et al. 2005; de
Boer and Heyting 2006; de Boer et al. 2006;
Zhang et al. 2014a). These data rule out the
idea that bidirectional polymerization of synap-
tonemal complex is the major mode of inter-
ference signaling (King and Mortimer 1990).
However, in C. elegans, subtle perturbation of
synaptonemal complex composition elevates
the crossover rate and attenuates, but does not
abolish, interference (Hayashi et al. 2010; Li-
buda et al. 2013). Crossing-over is also elevated
in the synapsis-defective zep1 mutant in Oryza
(Wang et al. 2010). Thus, synaptonemal com-
plex is clearly important for limiting crossing-
over in at least some organisms. Notably, in
budding yeast, although synaptonemal complex
is required for the majority of crossovers, it also
acts to suppress centromere-proximal crossing-
over (Chen et al. 2008).

Cytological analysis of crossover-specific
proteins (that mark class I crossovers) circum-
vents problems associated with genetic analysis
of interference, and permits the study of mu-
tants that are unable to complete meiosis. This
approach has been exploited in budding yeast
to identify an interference pathway involving
topoisomerase II, the axis component Red1,
and posttranslational modification of both pro-
teins by SUMO (small ubiquitin-like modifier)
(Zhang et al. 2014d). Importantly, this analysis
indicates that several mutants that show di-
minished interference when assayed genetically
have normal patterning of crossover markers
when assayed cytologically, and are, therefore,
unlikely to be involved directly in interference.
Involvement of topoisomerase II is compati-
ble with a model in which expansion of axis-
constrained chromatin drives crossover desig-
nation, which subsequently triggers chromatin
contraction that emanates from the crossover
site and spreads bidirectionally to inhibit cross-
ing-over at neighboring recombination sites
(Kleckner et al. 2004; Zhang et al. 2014b). Direct

evidence of the predicted mechanical properties
is currently lacking. However, consonant with
such effects is the observation that crossover
designation in C. elegans induces a local expan-
sion and elongation of the chromosome (Li-
buda et al. 2013).

Crossover/Noncrossover Differentiation

The crossover control processes described above
indicate that the outcome of meiotic DSB re-
pair is tightly regulated. In a number of or-
ganisms, the initial differentiation of crossover
and noncrossover pathways is temporally and
functionally coupled to the onset of synapsis
(Bojko 1985; Zickler et al. 1992; Hunter and
Kleckner 2001; Borner et al. 2004; Fung et al.
2004; Reynolds et al. 2013; Zhang et al. 2014a).
Moreover, in budding yeast, there appears to
be a 1:1 correlation between designated cross-
over sites (marked by crossover-specific mark-
ers) and initiation sites for polymerization of
synaptonamal complex (Fung et al. 2004; Hen-
derson and Keeney 2004). In other organisms,
these sites are also correlated, but synaptonemal
complex-initiation sites outnumber crossover
sites (Zickler et al. 1992; Zickler and Kleckner
1999; Brown et al. 2005; Gruhn et al. 2013;
Zhang et al. 2014a).

At the DNA level, the appearance of meta-
stable crossover-correlated joint molecules, the
SEIs, is coincident with formation of synapto-
nemal complexes (Fig. 1) (Hunter and Kleckner
2001; Borner et al. 2004). In budding yeast, both
transitions require the ZMM factors, which
include Zip1, Zip2, Zip3, Zip4, Msh4-Msh5
(the MutSg complex), Mer3, and Spo16 (also
defined as synapsis initiation factors [SICs])
(Fung et al. 2004; Hunter 2006; Lynn et al.
2007). The ZMMs act to stabilize nascent joint
molecules and coordinately promote polymer-
ization of synaptonemal complexes, ultimately
being required for the formation of class I cross-
overs. Although ZMMs were initially defined
as crossover-specific factors in budding yeast,
it seems likely that in most organisms a much
larger fraction of all recombinational interac-
tions benefit from at least transient stabilization
by some or all of the ZMM factors, perhaps as

Meiotic Recombination

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a016618 9



a prerequisite for crossover designation. For ex-
ample, in mouse, plants, C. elegans, and Sorda-
ria, initial numbers of MutSg immunostaining
foci greatly outnumber final crossover numbers
(de Vries et al. 1999; Edelmann et al. 1999b;
Kneitz et al. 2000; Higgins et al. 2008b; Yokoo
et al. 2012; De Muyt et al. 2014; Zhang et al.
2014c).

The ZMMs define a functionally diverse set
of proteins that act on distinct facets of recom-
bination and chromosome synapsis. MutSg
(Msh4–Msh5) and Mer3 interact directly with
DNA to stabilize nascent joint molecules.
MutSg is related to the MutS-family of DNA
mismatch-repair proteins, and binds specifi-
cally to model D-loops and Holliday junctions
(HJs) in vitro (Snowden et al. 2004). In vivo
analysis supports the inference that MutSg sta-
bilizes joint molecules by embracing the in-
volved duplexes (Borner et al. 2004; Snowden
et al. 2004; Jessop et al. 2006; Oh et al. 2007).
MutSg (and other ZMMs) also appears to pro-
tect joint molecules from being dissociated by
the anticrossover activity of the Sgs1–Top3–
Rmi1 complex (see below) (Jessop et al. 2006;
Oh et al. 2007; Kaur et al. 2015; Tang et al. 2015).
Mer3 is a DNA helicase that can promote het-
eroduplex extension during D-loop formation
and unwinds a number of DNA structures in
vitro (Nakagawa and Kolodner 2002; Mazina
et al. 2004). In vivo, Mer3 is required for efficient
formation of SEIs, limits chromosome entan-
glement, and promotes efficient synapsis (Na-
kagawa and Ogawa 1999; Borner et al. 2004;
Chen et al. 2005; Mercier et al. 2005; Tanaka
et al. 2006; Sugawara et al. 2009; Wang et al.
2009; Guiraldelli et al. 2013). Localization stud-
ies in Sordaria reveal numerous pairs of oppos-
ing Mer3 foci associated with coaligned chro-
mosome axes, suggesting that recombination
complexes have a defined architecture at this
stage, with Mer3 engaging both ends of a
DSB. In this scenario, one DSB end engages
the homolog, associating with its axis; while
the second DSB end remains associated with
its axis of origin (Storlazzi et al. 2010).

Whether the other ZMM members directly
interact with DNA is unknown. Zip2-related
proteins share homology with the XPF family

of structure-selective endonucleases, although
the active site motif is not conserved (Macaisne
et al. 2008). Moreover, in Arabidopsis, the Zip2-
relative SHOC1 interacts with an ERCC1-relat-
ed protein called PTD (parting dancer), imply-
ing formation of an XPF–ERCC1-like complex
that might bind nascent joint molecules (Ma-
caisne et al. 2011). In budding yeast, Zip2 forms
a functional unit together with Zip4, predicted
to be an extensive TPR-repeat protein (Perry
et al. 2005; Tsubouchi et al. 2006), and the
small coiled-coil motif protein, Spo16 (Shino-
hara et al. 2008). Although the putative Zip2–
Zip4–Spo16 complex is important for synap-
sis in budding yeast, mutation of Zip2 and
Zip4 homologs in both plants and mouse caus-
es relatively minor synapsis defects, although
synapsis is inferred to initiate from fewer sites
than in wild type (Chelysheva et al. 2007; Ku-
romori et al. 2008; Macaisne et al. 2008; Yang
et al. 2008; Shen et al. 2012). Thus, synapsis
initiation appears to be less strictly coupled to
crossover designation in organisms other than
yeast.

Budding yeast Zip3 is a RING-domain E3
ligase inferred to catalyze SUMO conjugation
and is required for the normal localization of
all other ZMMs (Agarwal and Roeder 2000;
Cheng et al. 2006; Shinohara et al. 2008). Zip3
and the proline isomerase Fpr3, ensure that syn-
apsis is rendered dependent on recombination
and the Zip2–Zip4–Spo16 complex (Mac-
queen and Roeder 2009). This layer of regula-
tion may be absent from other organisms as
mutation of Zip3-related proteins—ZHP-3,
RNF212, and HEI10—do not cause overt syn-
apsis defects (Jantsch et al. 2004; Ward et al.
2007; Bhalla et al. 2008; Chelysheva et al. 2012;
Wang et al. 2012a; Reynolds et al. 2013; Qiao
et al. 2014). Also, although yeast Zip3 localizes
primarily to crossover sites, other family mem-
bers show dynamic localization patterns along
synaptonemal complexes. Abundant focal/lin-
ear staining patterns are observed as synapsis
ensues, followed by the loss of most staining,
with retention/concentration only at designat-
ed crossover sites (Agarwal and Roeder 2000;
Henderson and Keeney 2004; Jantsch et al.
2004; Bhalla et al. 2008; Chelysheva et al. 2012;
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Wang et al. 2012a; Yokoo et al. 2012; Reynolds
et al. 2013; De Muyt et al. 2014; Qiao et al. 2014).

With the exception of mammalian HEI10,
a function that appears to be shared by Zip3-
family proteins is the stabilization of recom-
bination factors at designated crossover sites
(Agarwal and Roeder 2000; Shinohara et al.
2008; Yokoo et al. 2012; Reynolds et al. 2013;
De Muyt et al. 2014). For example, in mouse,
only a subset of the abundant RNF212 com-
plexes detected along newly synapsed chromo-
somes actually localize with recombination sites
marked by MutSg (Reynolds et al. 2013). Sites
of stable RNF212–MutSg colocalization persist
and ultimately go on to recruit crossover-spe-
cific factors and mature into crossovers, whereas
the majority of RNF212 and MutSg complexes
are lost from the chromosomes. Thus, the dif-
ferentiation of crossover and noncrossover
pathways seen at the DNA level (Hunter and
Kleckner 2001; Borner et al. 2004) is under-
pinned by differential stabilization of recombi-
nation factors at the protein level.

Whether selective localization of RNF212
(and other Zip3-family proteins) to precross-
over sites represents the crossover designation
process, per se, or is a downstream manifesta-
tion of that process is unclear. In mouse, normal
patterning of RNF212 and MutSg, dissociation
of these factors from synapsed chromosomes,
and progression of DSB repair require HEI10
and the cyclin-related protein, CNTD1 (see be-
low) (Holloway et al. 2014; Qiao et al. 2014).
Mouse HEI10 is not detected along chromo-
somes at early stages of synapsis, but ultimately
concentrates at crossover sites where it super-
sedes RNF212 (Fig. 1) (Qiao et al. 2014). Al-
though Zip3 and RNF212 are inferred to cata-
lyze SUMO conjugation, human HEI10 has
been implicated as a ubiquitin E3-ligase (Toby
et al. 2003; Cheng et al. 2006; Reynolds et al.
2013; D Kulkarni and N Hunter, unpubl.).

Together, these observations suggest a mod-
el in which association of RNF212 with recom-
bination sites is limited by a process involving
HEI10-mediated ubiquitylation (Qiao et al.
2014). At most recombination sites, the absence
of RNF212 renders factors such as MutSg un-
stable leading to their dissociation or degrada-

tion. Consequently, nascent joint molecules are
destabilized and dissociated by DNA helicases
(see below) to promote a noncrossover out-
come. At designated crossover sites a positive-
feedback loop, involving SUMOylation, pro-
motes the mutual stabilization of RNF212 and
MutSg, which in turn stabilizes nascent joint
molecules to facilitate dHJ formation. Finally,
HEI10 accumulates at these sites, where it acts to
displace RNF212 and MutSg to allow the final
steps of crossing-over to be implemented (Qiao
et al. 2014).

Identification of COSA-1 as a cyclin-related
protein that is essential for crossing-over in
C. elegans implies that CDK-driven phosphory-
lation is another facet of crossover regulation
via posttranslational protein modification (Yo-
koo et al. 2012; Holloway et al. 2014). Consis-
tently, in mouse, CDK proteins localize to sites
of meiotic recombination (Ashley et al. 2001);
CDK4 concentrates at DSB sites as chromo-
somes synapse and is succeeded by a much
smaller number of CDK2 complexes that local-
ize specifically at crossover sites (CDK2 also
concentrates at telomeres). C. elegans COSA-1
also accumulates specifically to crossover sites,
and is required for the local retention and con-
centration of ZHP-3 and MSH-5 (Yokoo et al.
2012). The phenotypes of mice lacking the
COSA-1 ortholog, CNTD1, are remarkably sim-
ilar to those of Hei10 mutants (Holloway et al.
2014). Moreover, in somatic cells, human HEI10
interacts with cyclin B1 and can down-regulate
cyclin B levels (Toby et al. 2003; Singh et al.
2007). These data suggest that phosphorylation,
driven by a CNTD1/COSA-1–CDK complex,
and ubiquitylation, targeted by HEI10, are cou-
pled to effect crossover regulation.

Additional complexity to the regulatory
circuitry defined by mammalian RNF212–
HEI10 is suggested by the existence of multiple
RNF212 spliceforms, and an RNF212 ortholog
(RNF212B) (Kong et al. 2008; Reynolds et al.
2013). Similarly, the C. elegans genome en-
codes multiple ZHP-3-related proteins; howev-
er, it lacks an obvious HEI10 ortholog (M Zetka,
personal communication). Curiously, Sordaria
and plants encode only a single HEI10-like pro-
tein, with localization characteristics of both
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RNF212 and HEI10 in mammals (Chelysheva
et al. 2012; Wang et al. 2012a; De Muyt et al.
2014). Similarly, budding yeast contains a single
Zip3 homolog. Despite this variation and com-
plexity, the relationships between Zip3-family
proteins, selective stabilization of MutSg, and
crossing-over appear to be conserved (Agarwal
and Roeder 2000; Henderson and Keeney 2004;
Jantsch et al. 2004; Bhalla et al. 2008; Chely-
sheva et al. 2012; Wang et al. 2012a; Yokoo
et al. 2012; Reynolds et al. 2013; De Muyt
et al. 2014; Qiao et al. 2014).

Pro-Crossover Role of the Synaptonemal
Complex

Although not essential for interhomolog DSB
repair, synaptonemal complex is required for
efficient interhomolog crossing-over in most
organisms (Zickler and Kleckner 2015). In mu-
tants lacking components of the synaptonemal
complex central region recombination stalls at
an intermediate stage and, in mouse, markers
such as CDK2, HEI10, RNF212, and MutLg fail
to localize to designated crossover sites (Sym
et al. 1993; Borner et al. 2004; de Vries et al.
2005; Reynolds et al. 2013; Qiao et al. 2014).
Synaptonemal complex is inferred to act locally
to stabilize procrossover factors and at later stag-
es may facilitate the exchange of homolog axes
that must accompany exchange at the DNA level
(Storlazzi et al. 1996; Borner et al. 2004; de Boer
et al. 2007; Shinohara et al. 2008; Qiao et al.
2012a; Voelkel-Meiman et al. 2015). As de-
scribed above, an inhibitory role for synaptone-
mal complex that limits crossovers has also been
demonstrated (Chen et al. 2008; Hayashi et al.
2010; Wang et al. 2010; Libuda et al. 2013). In
Arabidopsis, synapsis has been shown to help
ensure the fidelity of meiotic recombination,
probably by limiting nonallelic recombination
(Higgins et al. 2005).

Recombination-Associated DNA Synthesis

De novo DNA synthesis must accompany all
recombinational repair, to allow DSB ends to
anneal during noncrossover formation, and
for the formation of dHJs during crossover for-

mation (Fig. 1) (Lao et al. 2008). Recombina-
tion-associated DNA synthesis is assumed to be
distinct from replicative DNA synthesis in that it
is: (1) primed by the 30 terminus of the invading
DSB end; (2) uncoupled from lagging strand
synthesis; and (3) only limited synthesis is re-
quired, sufficient to replace the sequences re-
moved by DSB resection (Haber 2013).

The molecular details of the DNA synthe-
sis associated with meiotic recombination re-
main poorly characterized. Classic electron mi-
croscope (EM) autoradiography studies showed
that DNA synthesis is indeed associated with
sites of meiotic recombination (Carpenter
1981; Moses et al. 1984). Mapping of newly syn-
thesized DNA in budding yeast confirmed the
predicted patterns and timing of DNA synthesis
associated with crossover and noncrossover
products. Crossover-correlated synthesis occurs
on either side of the assayed DSB site, whereas
synthesis associated with noncrossovers spans
the DSB site. Also, crossover-associated synthe-
sis tracts were longer and occurred later than
those associated with noncrossovers (Fig. 1)
(Terasawa et al. 2007). These observations are
consonant with data from a variety of organisms
showing that gene-conversion tracts associated
with crossovers are generally much longer than
those associated with noncrossovers (Jeffreys
and May 2004; Guillon et al. 2005; Cole et al.
2010, 2014; Drouaud et al. 2013; Wijnker et al.
2013).

Mutant phenotypes implicate a number of
replication factors in meiotic recombination. In
budding yeast, pol3-ct, an allele of the lagging-
strand polymerase Pold, reduces crossing-over
and results in shorter gene-conversion tract
lengths, indicative of shorter stretches of hetero-
duplex (Maloisel et al. 2004). In vitro, D-loop
extension by Pold requires the proliferating cell
nuclear antigen (PCNA) replicative clamp (Li
et al. 2009). Consistently, pol30-201, an allele
of budding yeast PCNA confers a phenotype
similar to that of the pol3-ct mutation, with
shorter heteroduplex tracts and reduced cross-
ing-over (Stone et al. 2008). These phenotypes
suggest that the extent of initial DNA synthesis is
an important aspect of crossover/noncrossover
differentiation that may influence the stability
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of nascent D-loops, the efficiency of second-end
capture to form a dHJ, and/or the structure of
the ensuing dHJs and their propensity to be re-
solved specifically into crossovers (Fig. 1).

Additional mutant phenotypes are consis-
tent with the idea that the mode and processivity
of DNA synthesis associated with crossing-over
is distinct from that associated with noncross-
overs. In Arabidopsis, a hypomorphic mutation
in the replication factor C (RFC) clamp-loader
complex diminishes class I crossovers (Wang
et al. 2012b). Given that one role of RFC is po-
lymerase switching during Okazaki fragment
initiation (switching Pola primase for Pold)
(Maga et al. 2000; Mossi et al. 2000), Wang et
al. (2012b) suggested that lagging-strand syn-
thesis might occur during crossover formation,
where it could function to stabilize the expand-
ing D-loop to promote dHJ formation. Howev-
er, the primary function of RFC in recombina-
tion-associated DNA synthesis could be to load
PCNA.

Arabidopsis and Oryza possess multiple
paralogs of the replication protein A (RPA) com-
plex subunits and several rpa mutant alleles
have been shown to specifically reduce class I
crossovers, whereas overall DSB repair remains
efficient (Osman et al. 2009; Li et al. 2013). In
budding yeast, meiotic DSB repair shows a
general dependence on RPA (Soustelle et al.
2002), but RPA phosphorylation modulates
crossover patterning (Bartrand et al. 2006). Dro-
sophilia HDM (Hold’em) encodes an OB-fold
protein related to RPA70 that is required for
a majority of crossover and interacts with the
joint-molecule resolving endonuclease com-
plex, MEI9–ERCC1–MUS312 (Joyce et al.
2009). In mammals, the RPA1-related MEIOB
protein and associated factor, SPATA22, form
an RPA-associated complex that is required for
intermediate steps of recombination and nor-
mal synapsis (La Salle et al. 2012; Ishishita et al.
2013, 2014; Luo et al. 2013; Souquet et al. 2013).
MEIOB–SPATA22 is inferred to act after initial
strand exchange, perhaps to promote strand
annealing in both SDSA and dHJ pathways, act-
ing analogously to the budding yeast Rad52
protein (Lao et al. 2008; Luo et al. 2013). A 30-
50 exonuclease activity associated with MEIOB

has led to the proposal that MEIOB–SPATA22–
RPA also mediates digestion of 30-flaps that may
form on annealing of DSB ends, as a conse-
quence of excess DNA synthesis relative to
DSB resection (Fig. 1) (Luo et al. 2013).

The MCM complex has essential functions
in the initiation of replication and acts as the
replicative helicase during elongation (Boch-
man and Schwacha 2009). However, roles in a
variety of other chromosomal processes have
been invoked, including checkpoint signaling
and DNA repair (Forsburg 2004; Shukla et al.
2005; Bailis et al. 2008). Unexpectedly, a hypo-
morph of Drosophila mcm5 specifically reduces
crossing-over without perturbing DSB repair
(Lake et al. 2007). Three additional MCM-
related proteins in Drosophila, REC/MCM8,
MEI217, and MEI218, are also required for
crossing-over and rec mutants have shorter
gene conversion tracts suggesting that a meiotic
MCM complex, Mei-MCM, comprising REC–
MEI217–MEI218 and perhaps MCM5, enhanc-
es the processivity of recombination-associated
DNA synthesis (Manheim et al. 2002; Matsu-
bayashi and Yamamoto 2003; Bhagat et al.
2004; Blanton et al. 2005; Kohl et al. 2012). Sup-
pression of the rec/mcm8 crossover defect by
mutation of the BLM helicase ortholog,
MUS309, led Sekelsky and colleagues to propose
that mei-MCM is the functional analog of the
MutSg complex, which is absent from the Dro-
sophila genome (Kohl et al. 2012). Consistent
with this idea, absence of MCM8 or MCM9 in
species that possess MutSg confers a general de-
fect in DSB repair, but not the crossover-specific
phenotype seen for Drosophila mei-MCM mu-
tants (Lutzmann et al. 2012; Crismani et al.
2013).

Alternative DNA polymerases are involved
in a variety of damage-repair processes and me-
diate damage tolerance by facilitating the bypass
of template lesions (Goodman and Woodgate
2013). Several studies have suggested a role for
such polymerases in meiotic recombination
(Leem et al. 1994; Plug et al. 1997; Garcia-
Diaz et al. 2000; Uchiyama et al. 2004; Arbel-
Eden et al. 2013; Rattray et al. 2015). Notably,
the nucleotide-excision repair factor, DNA po-
lymerase b, localizes to synaptonemal complex-
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es in mouse spermatocytes and is required for
normal synapsis and DSB repair (Plug et al.
1997; Kidane et al. 2010). Moreover, the early
defects of Polb-deficient spermatocytes imply
an unanticipated function for DNA Polb in
DSB processing (Kidane et al. 2010).

The translesion synthesis (TLS) DNA poly-
merases allow the replication machinery to by-
pass template lesions (Goodman and Woodgate
2013). In budding yeast, deficiency for the three
TLS factors Rev1, Polz (zeta), and Polh (eta)
reduces the frequencies of both allelic and non-
allelic gene conversion (Arbel-Eden et al. 2013).
Moreover, direct interaction between Rev1, Polz,
and components of the DSB-forming machinery
(Spo11, Mei4, Rec114) is suggested by yeast two-
hybrid interactions (Arbel-Eden et al. 2013).
Further support for a role of TLS polymerases
in meiosis comes from the observation that Polz
also makes a major contribution to the elevated
mutation rate that is associated with meiotic
recombination (Arbeithuber et al. 2015; Rattray
et al. 2015). Recruitment of alternative DNA
polymerases to damage sites is mediated by
ubiquitylation of PCNA at K164 (Dieckman
et al. 2012). In mice expressing a K164R substi-
tution allele, chromosome synapsis and cross-
over differentiation appear to occur normally,
but meiosis arrests during pachytene, which
may reflect defective DSB repair (Roa et al.
2008).

RESOLVING, DISSOLVING, AND
UNWINDING JOINT MOLECULES TO
IMPLEMENT CROSSOVER AND
NONCROSSOVER FATES

The last 15 years have witnessed major advances
in our understanding of joint-molecule resolu-
tion in eukaryotes (Schwartz and Heyer 2011;
Bizard and Hickson 2014; Matos and West 2014;
Wyatt and West 2014). During meiosis, joint-
molecule resolution must achieve efficient im-
plementation of crossing-over to promote accu-
rate homolog disjunction, and the timely and
efficient resolution of all remaining joint mole-
cules to allow chromosomes to cleanly separate
(De Muyt et al. 2012; Zakharyevich et al. 2012).
These two biological imperatives are achieved

through precise spatial and temporal regulation
of joint-molecule-processing enzymes (Fig. 1).

Differential Timing and Regulation of
Crossover and Noncrossover Formation

In budding yeast, crossover and noncrossover
pathways of joint-molecule processing show dif-
ferential dependence on the transcription factor,
Ndt80, which defines a late-pachytene transi-
tion that commits cells to crossing-over and
meiotic divisions (Allers and Lichten 2001a;
Winter 2012). ndt80 mutants arrest in pachytene
with unresolved joint molecules and very low
levels of crossovers, whereas noncrossovers
form at wild-type levels (Allers and Lichten
2001a). Thus, the joint molecules that accumu-
late in ndt80 mutants give rise primarily to cross-
overs, indicating the existence of an Ndt80-acti-
vated, crossover-biased resolution factor. This
inference is consonant with the early designation
of crossover sites, described above. Although
Ndt80 regulates the transcription of hundreds
of genes, expression of just one protein, the
polo-like kinase Cdc5, is sufficient to induce
joint-molecule resolution and crossing-over
(Clyne et al. 2003; Sourirajan and Lichten 2008).

MutLg and EXO1 Define a Crossover-Specific
Resolving Factor

In budding yeast, plants, and mammals, the vast
majority of crossovers is dependent on two con-
served endonuclease activities defined by the
mismatch-repair factors, MutLg (comprising
MLH1 and MLH3) and EXO1, and the struc-
ture-selective endonuclease, MUS81–EME1/
Mms4 (Mus81–Mms4 in budding yeast) (Ba-
ker et al. 1996; Hunter and Borts 1997; Wang
et al. 1999; Khazanehdari and Borts 2000; Kirk-
patrick et al. 2000; Tsubouchi and Ogawa 2000;
Lipkin et al. 2002; Wei et al. 2003; Jackson et al.
2006; Berchowitz et al. 2007; Higgins et al.
2008a; Holloway et al. 2008; Jessop and Lichten
2008; Nishant et al. 2008; Oh et al. 2008; Za-
kharyevich et al. 2010; Hunter 2011; Zakharye-
vich et al. 2012; Ranjha et al. 2014; Rogacheva
et al. 2014). Joint-molecule formation occurs
normally in budding yeast exo1 and mlh1/3
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mutants, but crossing-over is specifically di-
minished, indicating that Exo1 and MutLg
define the anticipated crossover-specific resolu-
tion factor (Zakharyevich et al. 2010, 2012).
EXO1 is a member of the XPG/Rad2 nuclease
superfamily and plays a major role in meiotic
DSB resection in addition to its role in DNA
mismatch repair (Keelagher et al. 2010; Zakhar-
yevich et al. 2010). Importantly, the nuclease
activity of EXO1 is not required for its mei-
otic crossover function, although interaction
with MutLg is important (Zakharyevich et al.
2010). Consistent with a late function in meiot-
ic recombination, MutLg localizes specifically
to future crossover sites in a number of organ-
isms, including humans (Kolas and Cohen
2004), and has become an invaluable marker
for the cytological analysis of crossing-over.
Like other MutL-family members, MutLg is
an endonuclease and this activity is essential
for its procrossover function, consistent with
a direct role in dHJ resolution (Nishant et al.
2008; Zakharyevich et al. 2012; Ranjha et al.
2014; Rogacheva et al. 2014). Moreover, MutLg
preferentially binds to HJs in vitro, although
targeted incision of joint molecules has not
yet been demonstrated (Ranjha et al. 2014).

A General Role for MUS81 Enzymes in Meiotic
Joint Molecule Processing

MUS81–EME1/Mms4 is an XPF-family endo-
nuclease capable of cleaving a variety of
branched DNA structures in vitro including
30-flaps, D-loops, and nicked-HJs, favoring sub-
strates with a nick or gap adjacent to the branch
point that is ultimately incised (Schwartz
and Heyer 2011; Mukherjee et al. 2014). Gene-
tic studies provide compelling evidence that
MUS81 enzymes can process meiotic joint mol-
ecules in vivo, although the exact substrate(s)
remains uncertain (Boddy et al. 2001; Osman
et al. 2003; Cromie et al. 2006; Berchowitz et al.
2007; Higgins et al. 2008a; Holloway et al. 2008;
Jessop and Lichten 2008; Oh et al. 2008; Hick-
son and Mankouri 2011; Oke et al. 2014). The
cleavage patterns observed with joint molecule
substrates in vitro and the predominant role
of Mus81–Eme1 in promoting crossovers in

fission yeast has led to a sequential D-loop nick-
ing model that specifically produces crossovers
(Osman et al. 2003; Gaskell et al. 2007). How-
ever, MUS81–EME1/Mms4 is responsible for
only a minority of crossovers in most organisms
(�5%–25%), although its activity is generally
important for efficient joint molecule resolu-
tion (Jessop and Lichten 2008; Oh et al. 2008).
Analysis in budding yeast reveals an early func-
tion for Mus81–Mms4 in the efficient for-
mation of interhomolog joint molecules, in
addition to a late function in joint-molecule
resolution (De Los Santos et al. 2003; Oh et al.
2008; Matos et al. 2011). A general, early func-
tion for Mus81–Mms4 is further supported by
the increased frequency of gene conversions and
longer gene-conversion tracts seen in mus81/
mms4 mutants (De Los Santos et al. 2003; Oke
et al. 2014). These phenotypes are suggested
to derive from aberrant processing of 30-flaps
formed when extended DSB ends anneal
(Fig. 1). Aberrant processing in the absence of
Mus81–Mms4 may result in longer heterodu-
plex tracts through assimilation of the 30-flap, or
because uncleaved flaps provoke reinvasion of
the template chromosome. The late resolution
function of Mus81–Mms4 involves its hyper-
activation by Cdc5-mediated phosphorylation
(Matos et al. 2011; Matos and West 2014).

The STR/BTR Ensembles Are Master
Regulators of Meiotic Joint Molecule
Metabolism

The third major joint-molecule-processing
enzyme in meiosis is the STR “dissolvase” com-
plex in budding yeast, or the analogous BTR
complex in metazoans (Bizard and Hickson
2014). These complexes comprise RecQ heli-
cases, Sgs1/BLM, their cognate type-I topo-
isomerases, Top3/TOPIIIa, and accessory fac-
tors Rmi1/RMI1–RMI2. In isolation, Sgs1/
BLM can migrate HJs and unwind protein-
free D-loops (Karow et al. 2000; van Brabant
et al. 2000; Bachrati et al. 2006; Cejka and Ko-
walczykowski 2010; Fasching et al. 2015), but in
combination with the single-strand passage ac-
tivity of Top3–Rmi1/TOPIIIa–RMI1–RMI2,
the STR/BTR complexes perform a unique re-
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action to dissociate dHJs into component du-
plexes. This convergent branch migration and
decatenation reaction yields exclusively non-
crossover products and has been termed disso-
lution to distinguish it from endonuclease-me-
diated resolution (Wu and Hickson 2003; Wu
et al. 2006; Bussen et al. 2007; Singh et al. 2008;
Xu et al. 2008; Cejka et al. 2010; Bocquet et al.
2014). Consistent with this activity, STR/BTR
has potent anticrossover activity in vivo and
is required for efficient homolog separation at
meiosis I (Jessop et al. 2006; Oh et al. 2007;
Chu and Hickson 2009; Bzymek et al. 2010;
Holloway et al. 2010; Mankouri et al. 2011;
Seguela-Arnaud et al. 2015). However, the de-
catenase activity of Top3–Rmi1/TOPIIIa–
RMI1–RMI2 is not limited to dHJ dissolution,
but is also required for the dissociation of
D-loops formed by Rad51-mediated strand ex-
change (Fasching et al. 2015). These in vitro
data imply that topological complexity impedes
simple unwinding of D-loops. Consistent with
a general requirement for a decatenase activity
in vivo, Top3–Rmi1 is required for all functions
previously defined for Sgs1 during meiotic re-
combination (Kaur et al. 2015; Tang et al. 2015).
These include channeling joint molecules into
physiological crossover and noncrossover path-
ways, and suppressing nonallelic recombina-
tion by dissociating the products of promiscu-
ous strand exchange. In the absence of STR,
intersister joint molecules and aberrant “mul-
ti-chromatid” structures comprising three and
four interconnected chromosomes become
prominent intermediates (Oh et al. 2007). Con-
sequently, joint-molecule resolution and for-
mation of both crossovers and noncrossovers
becomes deregulated, acutely dependent on
Ndt80 and the structure-selective endonuclea-
ses (Mus81–Mms4, Slx1–Slx4 and Yen1,
discussed further below), and independent of
MutSg and MutLg, which define the class I
crossover pathway (Jessop et al. 2006; Oh et al.
2007, 2008; Jessop and Lichten 2008; De Muyt
et al. 2012; Zakharyevich et al. 2012; Oke et al.
2014; Kaur et al. 2015; Tang et al. 2015). Thus,
STR plays both a procrossover role, specifically
facilitating formation of class I crossovers, and
promotes noncrossover formation via synthe-

sis-dependent strand annealing (Fig. 1). Similar
inferences have been made for the C. elegans
BLM ortholog, HIM-6 (Schvarzstein et al.
2014). Consistent with this conclusion, in bud-
ding yeast, the high levels of crossovers seen
when all three structure-selective endonucleases
(Mus81–Mms4, Slx1–Slx4 and Yen1) are ab-
sent are dependent on both MutLg and Sgs1
(De Muyt et al. 2012; Zakharyevich et al.
2012). At designated crossover sites, the anti-
crossover function of STR is thought to be an-
tagonized by MutSg and other ZMM factors
(Jessop et al. 2006; Oh et al. 2007; Chelysheva
et al. 2008; Kaur et al. 2015; Seguela-Arnaud
et al. 2015; Tang et al. 2015). Thus, the concerted
action of stabilizing and destabilizing activities
guides dHJ formation along the class-I cross-
over pathway.

Top3–Rmi1/TOPIIIa–RMI1–RMI2, but
apparently not Sgs1/BLM, is also required dur-
ing joint-molecule resolution to remove re-
combination-dependent chromosome entan-
glements (Hartung et al. 2008; Kaur et al.
2015; Tang et al. 2015). This late role of
Top3–Rmi1/TOPIIIa–RMI1–RMI2 is abso-
lutely essential for chromosome separation
and again consistent with topological complex-
ity in meiotic joint molecules that can only be
eliminated with the aid of a decatenase activity.

SLX4-Associated Endonucleases
and the GEN1/Yen1 Resolvase

Three other structure-selective endonucleases
make variable contributions to meiotic joint-
molecule processing depending on the context
and the organism. SLX1 comprises an UvrC-
intron (URI)-endonuclease domain and car-
boxy-terminal PHD-type zinc finger character-
istic of the URI–YIG family of endonucleases
(Dunin-Horkawicz et al. 2006). Nuclease activ-
ity depends on interaction with the scaffold
protein, SLX4 (also called BTBD12), which
mediates transition from an inactive SLX1 ho-
modimer to an active SLX1–SLX4 complex
(Gaur et al. 2015). Recombinant SLX1–SLX4
complexes from budding yeast and human
can cleave Y-junctions, 50-flaps, and HJs (Fricke
and Brill 2003; Munoz et al. 2009; Svendsen
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et al. 2009). In metazoans, SLX4 also interacts
with MUS81–EME1 and XPF–ERCC1 to as-
semble and regulate composite nuclease en-
sembles (budding yeast Slx4 interacts with
XPF–ERCC1 ortholog, Rad1–Rad10, but not
Mus81–Mms4) (Flott et al. 2007; Fekairi et al.
2009; Munoz et al. 2009; Svendsen et al. 2009;
Castor et al. 2013; Wyatt et al. 2013).

In budding yeast slx1/4 single mutants,
slight delays in joint-molecule resolution can
be inferred but meiotic recombination is largely
unperturbed. Only when SGS1 is also mutated,
does Slx1–Slx4 become essential for resolu-
tion of a subset of joint molecules (De Muyt
et al. 2012; Zakharyevich et al. 2012). In mouse,
Slx4/Btbd12 mutation delays meiotic DSB re-
pair, and while final crossover numbers are nor-
mal, the fraction of events that are processed via
the class-I pathway defined by MutLg appears
to be increased (Holloway et al. 2011). SLX4
orthologs are important for crossing-over in
Drosophila and C. elegans (Yildiz et al. 2002;
Saito et al. 2009). The crossover function of
Drosophila SLX4 ortholog MUS312 involves
not SLX1, but the XPF–ERCC1-family nucle-
ase, MEI9–ERCC1, which is responsible for the
vast majority of crossovers in this organism
(Andersen et al. 2009). In C. elegans, XPF-1
also promotes crossing-over, functioning in par-
allel with a second pathway defined by MUS81
and SLX1 (Agostinho et al. 2013; Bellendir and
Sekelsky 2013; O’Neil et al. 2013; Saito et al.
2013). However, even when both pathways are
mutated, �50%–70% of normal crossover lev-
els can still form indicating the existence of a
third major pathway of joint molecule resolu-
tion in C. elegans meiosis. SLX1 also plays an
intriguing and unanticipated anticrossover role
to suppress exchange in the central regions of
C. elegans chromosomes (Saito et al. 2013).

GEN1/Yen1 (Yen1 in budding yeast) was
identified as a Rad2/XPG endonuclease family
member with HJ-resolving activity in vitro
(Furukawa et al. 2003; Ishikawa et al. 2004; Ip
et al. 2008). GEN1/Yen1 meets the criteria for a
bona fide HJ-resolvase, cutting via concerted
symmetrical cleavages analogous to the arche-
typal prokaryotic RuvC resolvase (Ip et al. 2008;
Rass et al. 2010). Although GEN1/Yen1 are not

essential for resolving recombination interme-
diates in mitotically cycling cells, Yen1 partially
suppresses the recombination and damage-sen-
sitivity phenotypes of mus81 mutants (Blanco
et al. 2010; Ho et al. 2010; Tay and Wu 2010;
Agmon et al. 2011). Similarly, Yen1 is not nor-
mally important for meiotic recombination,
but its function becomes essential specifically
when Mus81–Mms4 is absent (Matos et al.
2011; De Muyt et al. 2012; Zakharyevich et al.
2012). Yen1 is subject to inhibitory phosphor-
ylation and only activated very late in meiosis, at
the second division (Matos et al. 2011). Thus,
GEN1/Yen1 may define the resolvase of last re-
sort that can be called on to resolve rare joint
molecules that escape Mus81–Mms4.

The SMC5/6 Complex Facilitates Joint
Molecule Formation and Resolution

SMC5 and SMC6 form a large ring-like structure
characteristic of the “structural maintenance
of chromosome” proteins and combine with
up to six non-SMC subunits (Nse1-6 in budding
and fission yeasts) to form the SMC5/6 complex
(Jeppsson et al. 2014). The SMC5/6 complex is
essential for chromosome metabolism, promot-
ing normal replication, cohesion, repair, and
segregation. A primary role for SMC5/6 occurs
following chromosome replication, where it
helps alleviate topological entanglement of sis-
ter chromatids, working in concert with to-
poisomerases (Torres-Rosell et al. 2007; Tapia-
Alveal et al. 2010; Kegel et al. 2011). Specifically,
SMC5/6 is suggested to embrace nascent inter-
twinings between sister chromatid to create to-
pologically isolated domains that help to limit
supercoiling stress ahead of replication forks
(Kegel et al. 2011).

In budding yeast meiosis, Smc5/6 influ-
ences early and late steps of recombination.
Similar to cells lacking STR function, mutation
of the Smc5/6 complex increases the levels of
intersister and multichromatid joint molecules
and the expense of interhomolog dHJs (Copsey
et al. 2013; Lilienthal et al. 2013; Xaver et al.
2013). Analysis in both budding and fission
yeasts shows that additional aberrant joint-mol-
ecule structures arise when Smc5/6 is defective
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(Wehrkamp-Richter et al. 2012; Copsey et al.
2013). Notably, in fission yeast, a subset of the
joint molecules that accumulates in an nse6D
mutant contain single-stranded DNA and is
suggested to contain hemicatenane structures
(Wehrkamp-Richter et al. 2012).

In addition to its early role, Smc5/6 is also
essential for resolution of a subset of joint mol-
ecules and mutants show a complete block to
chromosome segregation (Farmer et al. 2011;
Wehrkamp-Richter et al. 2012; Copsey et al.
2013; Lilienthal et al. 2013; Xaver et al. 2013).
However, crossovers and noncrossovers are only
slightly reduced in budding yeast smc5/6 mu-
tants and remain dependent on the physiolog-
ical pathways defined by STR and MutLg (Cop-
sey et al. 2013; Lilienthal et al. 2013; Xaver et al.
2013). These observations are consistent with
the idea that Smc5/6 influences alternative re-
solvase pathways defined by the structure-selec-
tive endonucleases, Mus81–Mm4, Slx1–Slx4,
and/or Yen1. Although the relationship be-
tween Smc5/6 and the structure-selective endo-
nucleases appears to be complex, existing evi-
dence indicates that Smc5/6 acts locally at
recombination sites to recruit and regulate the
activity of at least one resolvase, Mus81–Mms4
(Wehrkamp-Richter et al. 2012; Copsey et al.
2013; Xaver et al. 2013).

The Nse2/Mms21 component of the bud-
ding yeast Smc5/6 complex is a SUMO E3 ligase
(Zhao and Blobel 2005). Intriguingly, the early
and late functions of the Smc5/6 complex are
separated by the ligase-defective mms21-11 al-
lele, which causes aberrant joint molecule for-
mation, but is proficient for resolution (Xaver
et al. 2013). Application of the temperature-sen-
sitive smc6-56 allele confirms that the early and
late functions of the Smc5/6 complex are sepa-
rable: aberrant joint molecules caused by early
inactivation of Smc5/6 function can still be re-
solved if Smc5/6 function is restored at the time
of resolution (Lilienthal et al. 2013; Xaver et al.
2013).

Collectively, yeast studies point to models in
which the Smc5/6 complex embraces DNA to
demarcate the borders of ongoing recombina-
tion events, where it influences joint molecule
formation and resolution involving Mus81–

Eme1/Mms4 and perhaps other factors, such
as Mph1 and its cofactors Mhf1–Mhf2 (see be-
low), which interact genetically and physically
with Smc5/6 (Chen et al. 2009; Chavez et al.
2011; Xue et al. 2015).

Whether the meiotic functions of the Smc5/
6 complex defined in yeast are conserved in
metazoans is currently unclear. In C. elegans,
smc-5/6 mutations are required for efficient
meiotic DSB repair, but defects appear to be spe-
cific to intersister recombination (Bickel et al.
2010). This phenotype may reflect the limited
role of MUS81 in meiosis in C. elegans (Bellendir
and Sekelsky 2013). In Arabidopsis, analysis of
an mms21 mutant reveals phenotypes consistent
with defective joint molecule processing includ-
ing anaphase bridges, chromosome missegrega-
tion, and fragmentation (Liu et al. 2014a). In
mammals, SMC5/6 localizes to synaptonemal
complex, consistent with a role in meiotic re-
combination (Gomez et al. 2013; Verver et al.
2014), but mutant analysis is currently lacking.

Implementing Noncrossover Formation

As discussed above, the STR/BTR complexes
are essential for the physiological noncrossover
pathway, indicating that active disassembly of
extended D-loops is required for efficient syn-
thesis-dependent strand annealing (Chelysheva
et al. 2008; Kaur et al. 2015; Seguela-Arnaud
et al. 2015; Tang et al. 2015). Analysis in Arabi-
dopsis and S. pombe reveals that orthologs of
the FANCM (Fanconi anemia of complementa-
tion group M) DNA translocase also promote
noncrossover formation (Crismani et al. 2012;
Knoll et al. 2012; Lorenz et al. 2012). FANCM
limits the formation of class-II crossovers in-
volving Mus81–Eme1, but functions in paral-
lel to STR/BTR suggesting that these enzymes
act on distinct DNA substrates (Seguela-Ar-
naud et al. 2015). Analogous to STR/BTR and
FANCM, the DEAH-family helicase, RTEL
(regulator of telomere length) limits MUS81-
dependent crossovers in C. elegans, but is
thought to act via a distinct mechanism, by lim-
iting interhomolog strand invasion as opposed
to implementing interhomolog noncrossover
formation (Youds et al. 2010; Rosu et al. 2011).
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CLINICAL SIGNIFICANCE OF MEIOTIC
RECOMBINATION

Aneuploidy, Crossing-Over, and Advancing
Maternal Age

Human reproduction is prone to errors: �15%
of couples are affected by infertility and, even
for fertile couples, around a quarter of all preg-
nancies will end in miscarriage. At least a third
of miscarriages are caused by fetal aneuploidy
(trisomy or monosomy) that derives from de-
fects in meiosis. Aneuploidy is also the leading
single cause of congenital birth defects, occur-
ring at a frequency of �0.3% (Nagaoka et al.
2012; Herbert et al. 2015). Less than 5% of hu-
man aneuploidies originate from errors in the
male germline, consistent with the relatively low
levels of aneuploidy detected in sperm (Tem-
plado et al. 2013). In sharp contrast, an estimat-
ed 20% to 70% of eggs are aneuploid (Nagaoka
et al. 2012). Although the factors that contrib-
ute to the high rate of aneuploidy in the human
female germline are clearly complex, two key
factors have been identified: suboptimal cross-
ing-over and advancing maternal age.

In humans, the association between altered
crossover patterns and ensuing aneuploidy has
been known for more than 20 years (Fisher et
al. 1995; Hassold et al. 1995; Lamb et al. 1996;
Hassold and Hunt 2001; Oliver et al. 2008). Two
patterns are observed, a simple failure to cross-
over and suboptimal placement of crossovers,
located either close to telomeres or close to the
centromeres. Crossover failure creates an obvi-
ous risk for missegregation because unconnected
homologs cannot attain a stable bipolar orienta-
tion on the meiosis-I spindle (Fig. 2). Distal
crossovers are an aneuploidy risk because they
are less efficient at promoting biorientation than
more proximal exchanges (Lacefield and Murray
2007; Sakuno et al. 2011). In addition, connec-
tion of homologs by a single distal crossover is
dependent on the short stretches of cohesion
between the exchange point and the telomeres.
Such “weak” chiasmata may be susceptible to
premature resolution (Hassold et al. 1995; Koeh-
ler et al. 1996; Lamb et al. 1996; Ross et al. 1996).

Cohesion between sister centromeres is im-
portant for the monopolar behavior of sister-

kinetochore pairs that enables homolog bi-
orientation on the meiosis-I spindle. In addi-
tion, centromeric cohesion must be maintained
until the second meiotic division when sister
kinetochores now biorient on meiosis-II spin-
dles (Fig. 2) (Watanabe 2012). Centromere-
proximal crossovers are associated with the pre-
mature separation of sister chromatids at meio-
sis I, suggesting that centromeric cohesion is
compromised by local crossing-over (Koehler
et al. 1996; Lamb et al. 1996; Hassold and Hunt
2001; Rockmill et al. 2006). The local disruption
of cohesion seen at chiasmata supports this idea
(e.g., Kleckner 2006; Garcia-Cruz et al. 2010).

Inherent variability during meiotic pro-
phase in human oocytes also appears to con-
tribute to the highly elevated risk of aneuploidy
seen in females (Lenzi et al. 2005). Although
oocytes form �60% more crossovers than sper-
matocytes, their distribution appears to be
less well regulated, resulting in an estimated
�10% of oocytes that contain an achiasmate
chromosome pair (Cheng et al. 2009). More-
over, crossover rate varies significantly between
individuals and has a strong heritable compo-
nent (Broman et al. 1998; Kong et al. 2002, 2008,
2014; Lenzi et al. 2005; Coop et al. 2008; Chowd-
hury et al. 2009; Fledel-Alon et al. 2011). In-
triguingly, correlations between female cross-
over rate and fecundity have emerged from
population studies. Mothers inheriting a higher
crossover rate have slightly more children (Kong
et al. 2004; Stefansson et al. 2005; Coop et al.
2008). Moreover, the crossover rate appears to
increase with advancing maternal age. Specifi-
cally, more crossovers are detected in children
born to older mothers, implying that oocytes
that give rise to viable offspring in older mothers
tend to have more crossovers (Kong et al. 2004;
Coop et al. 2008; Campbell et al. 2015; Ottolini
et al. 2015). Extra crossovers are proposed to
buffer against the effects of advancing maternal
age, in particular, the erosion of sister-chroma-
tid cohesion (discussed below). Thus, crossover
rate may be under selection in human popula-
tions.

Both common and rare human alleles have
now been linked to heritable variation in cross-
over rate (Stefansson et al. 2005; Kong et al.
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2008, 2014; Chowdhury et al. 2009; Fledel-Alon
et al. 2011; Campbell et al. 2015). These include
alleles of genes known to regulate meiotic re-
combination: the crossover regulators, RNF212,
HEI10 (CCNB1IP1), and MSH4 (described
above); RAD21L and REC8, which encode mei-
osis-specific cohesin subunits (Uhlmann 2011);
and the DSB regulator, PRDM9 (Baudat et al.
2013).

Selection for oocytes with higher crossover
numbers is inferred to be a manifestation of the
maternal-age effect—the exponential increase
in oocyte-derived aneuploidy that begins after
�35 years of age (Hassold and Hunt 2001).
Advancing maternal age is the major risk factor
for human aneuploidy because of the dete-
rioration that occurs during the extremely pro-
tracted dictyotene stage that is peculiar to oo-
genesis (Herbert et al. 2015). Meiosis in females
initiates during fetal development, but arrests
around birth after crossing-over has been com-
pleted and synaptonemal complexes have disas-
sembled (Fig. 2). Resumption of meiosis and
completion of the first division occurs only in
the mature oocytes that are about to be ovulat-
ed. These oocytes will have been in the dictyo-
tene stage for somewhere between �11 and
50 years (menarche through menopause). Thus,
chiasmata must be maintained for decades in
resting oocytes. In contrast, spermatocytes pro-
ceed directly into the meiotic divisions.

Although aging clearly impacts oocyte
chromosome segregation via multiple pathways
(Hassold and Hunt 2001; Selesniemi et al. 2011;
Nagaoka et al. 2012), a number of studies indi-
cate that progressive weakening of sister-chro-
matid cohesion is likely to be a major mecha-
nism (Wolstenholme and Angell 2000; Jeffreys
et al. 2003; Jessberger 2010, 2012; Nagaoka et al.
2012). Mouse studies indicate that cohesion is
not replenished during dictyotene (Revenkova
et al. 2010; Tachibana-Konwalski et al. 2010)
and that both cohesion subunits and factors
that function to protect centromeric cohesion
until meiosis II are depleted in older animals
(Hodges et al. 2005; Liu and Keefe 2008; Chiang
et al. 2010; Lister et al. 2010; Shomper et al. 2014;
Yun et al. 2014). Although definitive proof of
analogous “cohesion exhaustion” in aging hu-

man oocytes has been harder to obtain, the
weight of evidence suggests that this is the case
(Angell 1991; Angell et al. 1994; Pellestor et al.
2003; Garcia-Cruz et al. 2010; Fragouli et al.
2011; Tsutsumi et al. 2014; Ottolini et al. 2015).

The effects of cohesin depletion in aging
oocytes appear to be several-fold. Chiasmata
may be prematurely lost, or become terminal-
ized, both of which will impact the ability of
homologs to biorient at meiosis I (Ross et al.
1996; Lacefield and Murray 2007; Sakuno et al.
2011; Watanabe 2012). Diminished centro-
meric cohesion weakens the normally tight as-
sociation of sister kinetochores, increasing the
frequency and stability of aberrant sister bi-
orientations on the meiosis-I spindle, thereby
elevating the risk of premature separation of
sister chromatids (Watanabe 2012; Tachibana-
Konwalski et al. 2013). Angell inferred that pre-
mature separation of sister chromatids is the
major route to nondisjunction (Angell 1991;
Angell et al. 1994), a proposal that is strongly
supported by more recent studies (Pellestor
et al. 2003; Fragouli et al. 2011; Handyside
et al. 2012; Hou et al. 2013; Ottolini et al.
2015). Unexpectedly, it appears that achias-
mate homologs, which were predicted to under-
go canonical meiosis-I nondisjunction, instead
tend to biorient their sister chromatids on
the meiosis-I spindle, thereby evading the spin-
dle-assembly checkpoint (LeMaire-Adkins and
Hunt 2000; Kouznetsova et al. 2007; Nagaoka
et al. 2011; Ottolini et al. 2015). The ensuing
separation of sister chromatids at meiosis I is
followed by segregation of nonsister chromatids
at meiosis II in a process termed reverse meiosis
(Ottolini et al. 2015). Aneuploidy may result
from nondisjunction of the nonsister chroma-
tids in meiosis II, whereas successful disjunction
effectively rescues the original defect, producing
a euploid ovum. Finally, nonexchange chroma-
tids appear to be selected against via an un-
known mechanism that preferentially segregates
them into the polar body at meiosis II (Ottolini
et al. 2015). Thus, suboptimal crossing-over,
which is established in fetal oocytes, impacts
events that occur decades later, affecting chro-
mosome segregation during both meiosis-I and
meiosis-II divisions in unexpected ways.
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Meiotic Recombination and Genomic
Disorders

Nonallelic meiotic recombination between low-
copy dispersed repeats is frequent and generates
reciprocal chromosome rearrangements that
are generally deleterious. For example, copy-
number variants resulting from the reciprocal
deletion and duplication products of nonallelic
recombination are associated with dozens of
recurrent human disorders (Stankiewicz and
Lupski 2002; Shaw and Lupski 2004; Sharp
et al. 2005; Turner et al. 2008; Abyzov et al.
2015; Martin et al. 2015). These include hered-
itary neuropathy with liability to pressure pal-
sies and Charcot–Marie–Tooth disease type 1A
(Chance et al. 1994), Prader–Willi syndrome/
Angelman syndrome and 15q11q13 duplica-
tion (Long et al. 1998), velocardiofacial syn-
drome and dup22(q11.2q11.2) (Edelmann et
al. 1999a), Smith–Magenis syndrome and Po-
tocki–Lupski syndrome (Potocki et al. 2000),
and Williams–Beuren syndrome and dup7
(q11.23) (Somerville et al. 2005). Other rear-
rangements, such as translocations, may create
gene imbalances that are incompatible with fe-
tal development, as seen for most aneuploidies.
Thus, selection for higher crossover rates to
enhance the fidelity of meiotic chromosome
segregation may be countered by selection to
preserve genomic stability.

Defective Recombination and Infertility

Meiotic recombination represents a huge mu-
tational target and variants of recombination
genes are likely to contribute to infertility. How-
ever, infertility defies conventional pedigree-
based genetic analysis. A number of variants
in recombination genes have been identified in
infertile individuals, but causal relationships
have proven hard to establish (e.g., Miyamoto
et al. 2003, 2008, 2012; Stouffs et al. 2005; Mar-
tinez et al. 2007; Hikiba et al. 2008; Xu et al.
2010; Ji et al. 2012; Ghalkhani et al. 2014; Llano
et al. 2014; Sazegari et al. 2014). However, a
recent survey of azoospermic men revealed
that 1% carried mutations in the X-linked
TEX11 gene (encoding the Zip4 ortholog) and

causality could be confirmed by functional
analysis in the mouse (Yang et al. 2015). Thus,
rare and spontaneously arising mutations in
meiotic recombination genes are likely to be a
significant factor for human infertility.

CONCLUDING REMARKS

The centrality to sexual reproduction and he-
redity places meiotic recombination at the
forefront of biological research. Many pressing
and outstanding questions remain. For exam-
ple: why does DSB formation require a dozen
or more accessory proteins; how are elastic
DNA interactions bolstered to bring homologs
into close juxtaposition; how is recombination
functionally integrated with chromosome mor-
phogenesis and the progression of meiotic pro-
phase; how are crossover sites selected and how
is exchange implemented with high efficiency
at these sites; why do crossover numbers tend
to be minimized and what conditions might
select for altered recombination rates; why is
recombination less well regulated in human fe-
males; and what contribution does defective
recombination make to human infertility? De-
spite intrinsic challenges to studying meiosis,
the advances made in recent years, highlighted
here and in the associated collection of reviews
(Subramanian and Hochwagen 2014; Brown
and Bishop 2015; Herbert et al. 2015; Lam
and Keeney 2015; Székvölgyi et al. 2015; Zickler
and Kleckner 2015), promise rapid progress
toward answering these and other important
questions.
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