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Abstract

A wealth of experimental data exists describing the elementary building blocks of complex 

physiological systems. However, it is increasingly apparent in the biomedical sciences that 

mechanisms of biological function cannot be observed or readily predicted via study of constituent 

elements alone. This is especially clear in the longstanding failures in prediction of effects of drug 

treatment for heart rhythm disturbances. These failures stem in part from classical assumptions 

that have been made in cardiac antiarrhythmic drug development – that a drug operates by one 

mechanism via one target receptor that arises from one gene.

Introduction

A challenge of the current research era is to integrate data in physiological networks to 

reveal emergent mechanisms of disease and to facilitate prediction and development of 

therapeutic interventions. Computational modeling and simulation constitute some of the 

most promising methodologies to reveal fundamental biological principles and mechanisms, 

model effects of interactions between system components and predict emergent disease 

processes and treatment effects. At present, there is no reasonable, efficient and cost-

effective alternative experimental or clinical strategy that can achieve all of these goals. 

New computational methods are being developed that take advantage of high-performance 

computing technologies and strong interdisciplinary connections to experimentalists and 

clinicians to inform and verify the models 1. The resulting frameworks may ultimately be 

scaled up and automated for use in industry, academia and clinical medicine that can interact 

with other developing technologies including medium and high-throughput instrumentation 
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(such as PatchExpress, IonWorks), synthetic drug development 2 and therapy by utilizing 

data from patient induced pluripotent stem (iPS) cell-derived cardiomyocytes 3.

Failure to predict drug effects

In the specific context of cardiac arrhythmia therapy, the vital hindrance to pharmacological 

treatment of patients with electrical rhythm disturbances is a long failed history in predicting 

effective or harmful action of drugs. For example, the CAST 4 and SWORD 5 clinical trials, 

showed that common antiarrhythmics increased mortality and risk of sudden cardiac death 

in post-infarction patients. Almost thirty years after CAST began, there is still no available 

approach to differentiate potentially useful and potentially harmful drugs for treating 

arrhythmia .

The first necessary step for developing computational models to predict drug effects on 

excitable cells is modeling the kinetics of primary and off-target drug and metabolite 

interactions with subcellular targets. The bulk of antiarrhythmics target ion channels which, 

in response to changes in voltage, undergo conformational changes that result in changes to 

apparent affinities of drugs for their receptors. These interactions have recently been 

modeled at the atomic scale in simulated docking and molecular dynamics (MD) 

simulations, as well as at the level of the channel function on the millisecond timescale of 

channel gating 6–78–1011–1415. Drug channel models have also been incorporated into 

cellular level computational models to test their effects on cell level parameters to search for 

antiarrhythmic or overt proarrhythmic potential 12–14, 16–1819. Computational studies have 

also been carried out in tissue representations in one and two dimensions and even in high-

resolution reconstructions of human virtual ventricles 14, 20121–22. These computational 

studies have begun to improve understanding of antiarrhythmic drug actions across multiple 

spatial scales of the cardiac system, from molecule, to channel, to cell, to tissue, to heart.

Prediction of the structural determinants of drug interactions with discrete conformation 
states of ion channels in Rosetta

Structural modeling of ion channel interactions with drugs and other ligands is an important 

approach for current and future drug discovery efforts. Atomic scale modeling of drug 

receptor sites within an ion channel structure must be performed for multiple discrete 

conformational states to identify side chain and backbone atoms forming key drug-channel 

interactions. Such structural modeling of pore-forming and voltage-sensing domains of 

potassium and sodium channels has been successfully done using Rosetta-Membrane and 

Rosetta symmetry computational methods 23–25.

The process of modeling requires high-resolution structures of potassium and sodium 

channels that are used as templates for pairwise sequence alignments generated using the 

HHPred server26–28. The loops between transmembrane segments are modeled de novo if 

there are significant sequence differences between sequences of the ion channel of interest 

and the template ion channel structure. Several rounds of loop modeling28, 29 are performed 

and the lowest energy models are chosen as the best models for drug docking. Closed, open 

and inactivated states of ion channel pore-forming domain are generated based on available 

closed, open, and intermediate state templates from potassium and sodium channel pore-
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forming domain structures. Resting, intermediate, and activated states of the voltage-sensing 

domain are generated starting from available activated state templates from potassium and 

sodium channel voltage-sensing domain structures and new states are simulated using 

experimental data as constraints30–33.

Ligand docking simulations are performed using the Rosetta-Ligand method6, 7 composed of 

three stages, which progress from low-resolution conformational sampling and scoring to 

full atom optimization using the all-atom energy function. The lowest energy structures from 

docking simulations are selected as the best models. Experimental data for mapping of key 

residues important for drug-channel interactions are used to evaluate accuracy of channel - 

drug models (see Figure 1). Structural modeling of drug-channel interactions at atomic scale 

may lead to design of novel high-affinity and subtype selective drugs for treatment of 

cardiac and neurological disorders.

Prediction of the drug affinity to discrete ion channel states with molecular dynamics 
simulations

MD simulation is an essential tool for studying biological systems, with recent increases in 

computer power allowing simulations of realistic ion channel systems on timescales relevant 

to function (e.g. 34). A promising avenue for drug discovery is to carry out MD simulations 

using homology (or de novo) models of mammalian ion channels (as described above) based 

on available high-resolution structures. In cases where drug activity is well conserved 

between mammallian and bacterial channels (e.g. Nav channels: 3536), exploration of drug 

binding can be carried out directly using the structurally simpler bacterial channels. Figure 2 

shows a typical Nav ion channel system studied using the DE Shaw Anton supercomputer 

for periods of many microseconds to reveal channel conduction, selectivity, conformational 

changes associated with activity, and drug accessibility and binding 37, 38. Such long 

timescale exploration of an ion channel can provide a new level of understanding, especially 

when combined with quantitative and predictive free energy methods.

Free energy calculations performed with fully-atomistic MD models provide the best means 

to quantify drug binding. Equilibrium sampling of the protein and ligand as a function of 

separation, using Umbrella Sampling 39, can be used to yield a free energy profile for drug 

binding. Here a sequence of independent simulations are carried out to ensure sampling 

along the reaction coordinate, which can then be optimally combined via the Weighted 

Histogram Analysis Method 40. One may instead use Free Energy Perturbation 41, where 

one alchemically decouples the ligand from its surroundings in the dissociated reference 

state, and then couples it to the surroundings in the binding pocket, to yield an absolute (or 

standard) binding free energy. Much effort has gone into achieving accurate results using 

staged protocols that avoid overlapping atomic centers when repulsive interactions are 

turned on and off 42, 43. An easier task is to transform one ligand into another to give a 

relative free energy of binding (e.g. to explore different functionalities or mutants).

Each of these methods faces inherent challenges due to the difficulties in sampling all 

configurations of the ligand and the protein as they approach, as well as the flexible 

response, which may involve rapid local, or global conformational changes that occur on 

exceedingly long timescales. Methods have been developed to overcome these challenges, 
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such as “confine-and-release” (e.g. 44) or the “double decoupling method” (e.g. 45), where 

independent simulations restrain protein and ligand in conformation, position and/or 

orientation, to narrow the configurational space to be sampled, leading to improved 

statistical convergence 46 . Drug binding free energies are, however, ultimately reliant on the 

quality of the model. Today’s biomolecular force fields yield free energies that are in good 

agreement with experiments (e.g. 47), although require correct parameterization of drug 

compounds consistent with the protein and solvent force field (e.g. 48), and may still have 

limitations due to lacking explicit electronic polarizability, or unknown or changing 

protonation states 45. Such factors require careful attention for studies of drug binding that 

seek to be truly predictive and lead to improved rational ion channel drug design.

Kinetic models describing the interaction of drugs with cardiac ion channels

In order to accurately predict ion channel drug effects in higher dimensions, the intrinsic and 

explicit dynamical complexity of the drug kinetics is increasingly being considered in 

computational model representations (Figure 3). Early studies of drug effects on cardiac ion 

channels relied on pore-block models 20, which did not include the complex features of 

drug-channel kinetics that fundamentally emerge to alter cardiac rhythms in higher 

dimensions.

Predictive models of drugs on the cellular level action potential

Because drugs alter the action potential waveform, which in turn affects the potency of 

drugs, the strong bi-directional feedback loop between cellular level electrical activity and 

drug potency has been studies using modeling and simulation approaches 51. The kinetic 

interactions of drugs with ion channels are modified by cellular action potential properties 

including morphology, duration and frequency. Computational modeling allows for 

investigation of drug effects on action potentials (APs) over a wide range of therapeutically 

relevant ranges of drug concentration and clinically relevant pacing frequencies (typically 60 

– 220 beats per minute (BPM)). Arrhythmia susceptibility parameters can be tracked over 

the course of a simulation, including cell excitability (maximum upstroke velocity of the AP 

(V/s)), action potential duration (APD), cell refractoriness and APD restitution as described 

previously 52.

An additional complicating factor is the natural inter-subject variability in the 

electrophysiological activity of cardiac cells both within and between individuals. This 

variability has also been modeled, which should allow prediction of the response of specific 

cells (and cell populations) from specific hearts to disease and therapies 531854.

Although cellular level studies can plausibly suggest reduced or increased arrhythmia 

vulnerability, reentrant arrhythmias are fundamentally an emergent property of the cardiac 

system that can only be observed and studied in tissue. Thus, models have been developed to 

predict drug effects in higher dimensions that include spatial dimension and cellular 

coupling.
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Predictive models of drug effects on cardiac tissue

In cardiac tissue, electrotonic coupling leads to unpredictable emergent responses to drug 

application. An example is in a recent study, where mild depression of single cell cellular 

excitability was predicted in response to flecainide, suggesting its therapeutic potential to 

suppress ectopic arrhythmia triggers 55. No overt proarrhythmic potential was ever observed 

in cells. In tissue level simulations, the outcome was dramatically different. Substantial use-

dependent block with flecainide resulted in insufficient Na channel availability for 

successful conduction, a higher dimensional phenomenon that emerged as a result of 

increased electrotonic load in coupled tissue. Proarrhythmic conduction block sometimes led 

to development of tachycardia indicated by spiral wave reentry, verified experimentally in 

rabbit heart and in MRI-based human 3D ventricle models 55.

The general approach to predict effects of antiarrhythmic drugs and metabolites in 

ventricular cells and tissues is: (1) Drug-channel models will be incorporated into human 

computational ventricular cell and tissue models. (2) Simulations are run and the arrhythmia 

vulnerability parameters: APD restitution, Ca2+ dynamics, dispersion of repolarization and 

reentry wavelength can be tracked. (3) Sensitivity analysis is performed. (4) When possible 

simulations may be validated experimentally.

One-dimensional (1D) simulations

1D simulations are useful to coarsely identify parameter regimes of interest with a 

computationally tractable model. Regimes exhibiting compelling dynamics can then be 

investigated in higher dimensions. This improves efficiency and ensures that higher 

dimensional computationally expensive simulations will be constrained. In one dimension, 

the following parameters can be readily tracked in the simulation: Conduction velocity 
(CV): Antiarrhythmic drugs can reduce Na current by directly inhibiting Na channels, or by 

increasing APD sufficiently so that Na channels have insufficient recovery time during 

diastolic intervals. CV depression can cause conduction block and reentry. CV is typically 

calculated between two cells at the time of the maximum dV/dt on the upstroke of the action 

potential. Drug concentration for conduction block (CB): Conduction block is potentially 

proarrhythmic because it can cause dispersion of repolarization; if unidirectional block 

occurs, reentrant arrhythmias can ensue. CB can precipitate wavebreak in the transition to 

fibrillation 56. Thus, simulations of conduction block over a range of physiological 

frequencies and drug concentrations can be simulated with escalating drug concentrations 

can be applied until block occurs. Calculation of the vulnerable window to unidirectional 
conduction block: It has been long known that a period of vulnerability exists whereby 

electrical stimulation can initiate self-sustaining spiral waves 57,58 capable of degeneration 

into fibrillatory rhythms. Starmer et al. 59–61, developed an approach to systematically 

determine the likelihood of arrhythmia induced by spontaneous ventricular stimuli with 

drugs. One-dimensional tissue simulations are useful to assess the “vulnerable window” to 

unidirectional block and retrograde conduction, which suggests reentrant arrhythmia in 

higher dimensions 61, 60. The procedure is described in 55. Quantification of Arrhythmia 
Probability: The vulnerable window (VW) is not sufficient to predict arrhythmia risk - the 

refractory period must also be considered. The Starmer metric was developed to quantify 

arrhythmia risk and can be applied in the absence or presence of simulated drugs 59.
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Pause-induced or short-long-short arrhythmia trigger

Torsades de pointes arrhythmias my be triggered by specific pacing anomalies including 

pauses or short-long-short pacing sequences – especially in the setting of acquired long-QT 

syndrome resulting from IKr block 62. A sinus pause sets the stage for exaggerated 

heterogeneous action potential prolongation in response to the subsequent stimulation. Such 

prolongation may even include early afterdepolarizations (EAD). This can lead to triggered 

ectopy and set the stage for the clinically observed “cascade effect” leading to torsades de 

pointes. Simulations can allow for tracking the extent of APD prolongation following a 

pause and/or EAD development after a pause following steady state pacing 63–65–13, 66–68.

Two-dimensional (2D) simulations

2D simulations can be undertaken to predict if proarrhythmic phenomena observed in lower 

dimensions cause reentrant arrhythmias and/or spiral wave breakup. The change in voltage 

in space and time are tracked in the simulation 69. An example of model prediction of drug 

effects from our group shows 2D stable reentry induced by flecainide after static pacing (S1) 

followed by an S2 within the vulnerable window (computed in 1-dimension for efficiency) 

is shown in Figure 3. Arrhythmia vulnerability parameters as described for one-dimensional 

tissue can be tracked in two dimensions 55707172. In two dimensions, reentry wavelength and 

period can also be tracked to investigate head-tail interactions.

Simulation in high-resolution image based reconstructed geometrically realistic human 
ventricular models

High-dimensional drug simulations have been recently undertaken as computational 

resources are increasingly accessible 1, 2021–22. The Trayanova lab recently debuted 

simulations of drug effects in multiple MRI-based anatomically detailed 3-dimensional 

models of the human ventricles. An example is shown for flecainide-induced reentry in 

Figure 4. 3D ventricles were paced from the apex at a rate of 120 BPM with high dose 

flecainide (2 μM). An ectopic stimulus inside the vulnerable window (phase maps are 

shown) approximately halfway up the ventricles initiated a persistent figure-of-eight 

reentrant wave with flecainide, demonstrated the proarrhythmic potential off flecainide with 

an ectopic stimulus applied with the vulnerable window.

Future directions for modeling and simulation in pharmacology: Why do promising drugs 
fail?

Computational approaches can and should be used to probe the mechanisms of drug 

failures 73. This is an area of vital importance, since understanding the mechanisms drug 

failure are essential to rule out compounds in early preclinical drug screening. Sequential 

component dissection can be used in model frameworks to reveal the mechanisms of drug 

failure. A recent investigation focused on the mechanisms of failure of the once promising 

antiarrhythmic drug flecainide, the subject of the cardiac arrhythmia suppression trial 

(CAST), which startlingly showed increased mortality with flecainide over placebo. We 

used a computational process to first confirm experimental findings: no overt proarrhythmic 

potential was ever observed in cells55. In tissue level simulations, the outcome was 

dramatically different. Substantial use-dependent block by flecainide (an intrinsic dynamical 
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property of channel block) resulted in failed impulse conduction, a higher dimensional 

phenomenon that emerged as a result of increased electrotonic load in coupled tissue. 

Proarrhythmic conduction block led to development of tachycardia indicated by spiral wave 

reentry, which we verified experimentally 55. This emergent phenomenon was linked back 

to the fundamental mechanism - the drug kinetics of unblock, identified as the basic 

mechanism of failure. Computationally based models of cells and tissues can be constructed 

to predict emergent drug effects on cellular and tissue electrical activity, and then be 

deconstructed via component dissection to reveal mechanisms.

Conclusions

Computational pharmacology models are being developed that may serve as prototypes that 

are expandable, scalable and have potential for automation so that they can ultimately 

interact with other developing technologies including high throughput measurements (such 

as PatchExpress 74–79, Ionworks 80–85), drug design via new developments in synthetic 

biology 2, and even personalized medicine via drug screening in patients’ own induced 

pluripotent stem (iPS) cell-derived cardiomyocytes 3. All of these developing technologies 

are innovative and fantastic, but they focus only on constituent elements of the system. They 

can’t each alone solve the fundamental problem – that the effects of multifaceted drug 

interactions are emergent. But, these technologies in conjunction with the computational 

based methods under development to predict emergent effects of drugs on excitable rhythms 

may form an interactive technology driven process that can be used in industry for drug and 

disease screening, in academia for research and development and in the clinic for patient 

oriented medicine.
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Figure 1. 
Docking of lidocaine in the Rosetta model of Nav1.5 channel pore. View of Nav1.5 - 

lidocaine model from the extracellular side of the membrane. Each domain is colored 

individually and labeled. Side chains of key residues for lidocaine binding are shown in 

space-filling and stick representation (Yarov-Yarovoy Laboratory).
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Figure 2. 
Fully-atomistic model of the bacterial NavAb ion channel (~120,000 atoms; protein as 

ribbons, lipid tails as chains, water as sticks and ions as balls; Boiteux, C., I. Vorobyov and 

T. W. Allen. 2013. Submitted.).
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Figure 3. 
An example for a Markov model representation of drug free and drug bound states for a 

model of the voltage gated Na channel (drug bound states are in green). In construction of a 

Markov based kinetic model representation of drug channel interactions, each drug free state 

in the model typically has a corresponding drug associated state. This assumption derives 

from the modulated receptor hypothesis, where any channel state can be drug-bound, 

although drugs exhibit distinct affinities for discrete states 49. Measured affinities and drug 

diffusion rates from experiments are used to constrain the drug “on” and “off” rates in the 

model. Measured diffusion rates (D) are used to inform drug on rates “kon” = [drug] * D 

and affinities (Kd) to discrete conformations that determine drug off rates “koff” = Kd * D. 

Model rate constants are then further constrained by optimization to data and microscopic 

reversibility 50.
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Figure 4. 
Flecainide in a 2D tissue model. Phase maps for flecainide (2 μM) (scale on top: red is 

wavefront, and blue is repolarized (though not necessarily recovered from drug block)). 

Right panels are activation isochrones. A premature impulse applied in the wake of the 

preceding wave (i) before or (ii) in the vulnerable window (from 14.
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Figure 5. 
Reentry in 3D models of the human ventricle from the Trayanova Lab 14. (A) Phase maps of 

a sustained figure-of-eight reentry with 2 μM flecainide at 120 BPM in response to an S2 

within the vulnerable window.
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