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Abstract

Purpose of review—Exposure to traffic-related air pollutants (TRAP) has been implicated in
asthma development, persistence, and exacerbation. This exposure is highly significant because
increasingly large segments of the population worldwide reside in zones that have high levels of
TRAP (1), including children since schools are often located in high traffic pollution exposure
areas.

Recent findings—Recent findings include epidemiologic and mechanistic studies that shed new
light on the impact of traffic pollution on allergic diseases and the biology underlying this impact.
In addition, new innovative methods to assess and quantify traffic pollution have been developed
to assess exposure and identify vulnerable populations and individuals.

Summary—This review will summarize the most recent findings in each of these areas. These
findings will have substantial impact on clinical practice and research by development of novel

methods to quantify exposure and identify at-risk individuals, as well as mechanistic studies that
identify new targets for intervention for individuals most adversely affected by TRAP exposure.
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Introduction

A recent comprehensive and systematic review of worldwide traffic emissions and health
science by a Special Panel convened by the Health Effects Institute (HEI) found sufficient
evidence that exposure to traffic-related air pollutants (TRAP) causes asthma exacerbation
in children (1). Within the complex mixture of gaseous and particulate components of
TRAP, diesel exhaust particles (DEP) are of particular concern with respect to health effects.
DEP are estimated to contribute up to 90% of the particulate matter (PM) derived from
traffic sources, are primarily ultrafine in size (< 100 nm), can be deposited in the nasal and
peripheral airways, and have been shown to induce oxidative stress and airway hyper-
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responsiveness, enhance allergic responses and airway inflammation (2—4). This exposure is
highly significant because in large cities in North America, up to 45% of the population
resides in zones that are most impacted by TRAP (1) and over 30% of schools are located in
high TRAP exposure areas (5). Evidence from our group and others suggests TRAP is also
associated with reduced lung growth and the development of asthma, though recent studies
have reported conflicting results (6—12). These inconsistent findings may be due to a lack of
knowledge regarding the mechanistic basis of TRAP health effects and the characteristics of
those most susceptibility to the harmful effects of TRAP exposure. Recent epidemiologic
and mechanistic findings have started to fill gaps in knowledge regarding the health impact
of TRAP exposure on allergic diseases, as well as the molecular mechanisms by which
TRAP leads to adverse effects on allergic diseases such as asthma. Further, new
methodologies for quantification of TRAP hold tremendous promise for rapid and reliable
identification of individuals at-risk due to high exposure.

Epidemiology of the health impact of TRAP on allergic disease

The prevalence and incidence of allergic diseases have been increasing worldwide since the
1960’s (13, 14). More recent investigators suggest that the asthma prevalence has plateaued
in developed countries, while in developing countries, where the prevalence was previously
low, allergic diseases are on the rise (15). Environmental changes are suspected to be the
major driver of this increasing trend (16), with air pollution identified as an important
extrinsic agent (17). Motor vehicles produce a complex mixture of air pollutants including
carbon monoxide, nitrogen oxides, particulate matter (PM) of varying size, polycyclic
aromatic hydrocarbons (PAHs - e.g. benzo(a)pyrene), volatile organic compounds (VOCs —
e.g. benzene, acetaldehyde) and other hazardous air pollutants (HAPs). Collectively referred
to as traffic-related air pollutants (TRAP), these are the primary source of intraurban
variability in air pollutant concentrations (1).

Asthma and Wheezing

There is sufficient evidence to suggest that TRAP can decrease lung function and trigger
asthma exacerbation and hospitalizations (14, 18). Recent large studies on TRAP and
respiratory outcomes substantiate these conclusions (Table 1). Findings from the Southern
California Children’s Health Study, a cohort of 11,365 schoolchildren in 16 communities,
indicate that exposure to higher local nitrogen dioxide (NO>) concentrations and close
residential proximity to a freeway increase asthma prevalence (19). Asthmatic children in
the cohort that lived in communities with higher levels of NO,, PM1g and PM; 5 had
increased chronic lower respiratory symptoms, phlegm, production, bronchitis, wheeze and
medication use (19). Living in areas with higher air pollution markers also affected lung
function and growth. Children aged 10-18 living within 500 meters of a freeway had
significant deficits in FEV1, FVC and maximal mid-expiratory flow rate compared to those
living more than 1500 meters away (19). A recent study of 5,443 Korean children aged 6-14
found that children living within 200 meters of a main road that was =254 meters long had
increased lifetime wheezing, lifetime asthma diagnosis and decreased lung function (20). A
meta-analysis of six cohorts in the European Study of Cohorts for Air Pollution Effects
(ESCAPE) that included 23,704 adults found that exposure to higher NO, increased the
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incidence of adult-onset asthma, although the results did not reach significance (21).
ESCAPE was also comprised of five birth cohort studies including 17,041 children. While
these birth cohorts did not find any significant associations between six traffic-related
pollution metrics and childhood asthma prevalence, the land-use regression (LUR) models
used to estimate exposures were carried out as long as 15 years after the asthma outcomes
were collected (10). During this time, campaigns to reduce air pollution could have reduced
exposure levels compared to those present when the asthma outcomes were collected. We
have also shown TRAP exposure levels at a child’s birth address to be associated with
wheezing (22-24) and recurrent night cough (25) in the first three years of life.

Allergic Sensitization and Eczema

Studies also support an increase of allergic sensitization and eczema with TRAP exposures
(Table 1). A 2014 review of epidemiologic data on the role of air pollution in eczema
concluded that a variety of air pollutants, including those related to TRAP such as PM and
nitrogen oxides, act as risk factors for the development or aggravation of eczema (26). A
study of 4,907 children aged 9-11 showed that lifetime eczema was significantly associated
with 3-year averaged concentrations of PM1g, NO,, NOx and CO (27). A Taiwanese study
of 317,926 middle school students demonstrated that flexural eczema was associated with
levels of CO and NOx (28). In the Southern California Children’s Health Study, children
living less than 75 meters from the main road were significantly more likely to have lifetime
diagnoses and symptoms of allergic rhinitis (AR) (20). The distance to the main road and the
length and proportion of the main road within 200 meters of the home were all associated
with allergic sensitization, defined as positive skin prick test (SPT) to an aeroallergen or
food (20). Our data and others have also shown high TRAP exposure in the first year of life
to increase the risk of aeroallergen sensitization by the age of four by 40-83% (29, 30).
Children exposed to high TRAP levels before age 1 also have an increased risk of
developing food allergy by age eight, particularly those that are not sensitized at age four
(30).

Insights from Birth Cohort Studies

To evaluate the impact of TRAP on asthma and allergy development, birth cohort studies are
needed (Table 1). A recent meta-analysis conducted a systematic review of birth cohort
studies to understand the association between early childhood TRAP and subsequent
allergies, asthma and allergic sensitization (12). While modest associations were observed
between asthma incidence/prevalence and wheeze and nitrogen oxides, PM, black carbon
(BC), and road proximity, there was substantial heterogeneity observed (likely due to
differences in study design, participants and exposure and outcome definitions) between the
studies (12). The meta-analyses showed no association with TRAP measures and
sensitization to indoor allergens (cat dog, or mold). While there was a significant association
between PM and sensitization to outdoor allergens (pollen and grass), there was again high
heterogeneity between studies (12). The associations between the markers of air pollution
(NO», BC, and road proximity) and hay fever and eczema were inconsistent. With respect to
timing of exposure and disease development, this review suggests that TRAP exposure is
associated with new onset asthma and may have an ongoing effect with a lag time of about 3
years (12). We recently reported that a child’s risk for persistent wheeze and asthma
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development varies depending on the timing and duration of TRAP exposure (31). Children
exposed to high levels of TRAP at time of birth were nearly twice as likely to experience
persistent wheezing at age seven; however, a longer duration of exposure to high levels of
TRAP (beginning early in life and continuing through age seven) was the only time period
of exposure related to asthma development (31).

Collectively, there is considerable evidence that TRAP plays a role in the development,
and/or symptoms of allergic disease. However, heterogeneity in both the definitions of
TRAP exposure and outcomes and unmeasured confounding limit the ability to draw firm
conclusions from the data. As discussed in the Bowatte et al. meta-analyses, there is
substantial variability in the exposure measurements across TRAP-related studies. Land use
regression (LUR) models are among the most common methods to assess TRAP exposures
(12). Other methods include passive samplers, central monitoring stations and proximity to
major roads. The most frequent markers of pollutants include PM, oxides of nitrogen,
carbon monoxide and ozone. PM may be further reported as BC, PMyg, or PM; 5. While this
vast variation in the definition of TRAP exposure limit the ability to conduct sound meta-
analyses, it highlights the importance of appropriate exposure assessment, as discussed
below.

Assessment of TRAP exposure

Given the increasingly evident health impact of TRAP, methodologies to accurately assess
exposure are needed. While TRAP affects air quality on urban and regional scales, their
impact is greatest on a local scale, particularly near roadways, as their concentrations are
significantly elevated within approximately 300 to 500 m of their source (32). Further
influencing individuals’ TRAP exposure is its temporal variability combined with complex
and variable personal behavior including time spent indoors/outdoors (33). In order to meet
the intrinsic challenge of accurately assessing TRAP exposure for epidemiologic studies
both modeling and personal measurement approaches have been proposed. Herein, we
briefly review approaches to TRAP exposure assessment for epidemiologic studies with an
emphasis on recent methodologic advances. An overview of each approach and their
strengths and limitations is also provided in Table 2.

Modeling Approaches

While regulatory air monitoring provide valuable data to link regional and temporal
variability of air pollutants to population-level health outcomes including increased
cardiopulmonary morbidity and mortality, (34-37) these networks are unable to capture the
high spatial variability of TRAP concentrations within an urban area. Measuring proximity
(i.e. distance) to major roadways is a straightforward approach to estimate TRAP exposure,
though this method does not account for traffic density and other geographic and land-use
characteristics which impact TRAP concentrations. (38) An alternative approach, dispersion
modeling, has not been extensively utilized in epidemiologic studies due to the required data
(e.g. meteorology, traffic volume and makeup) and expertise required for its use (33).

Among the most frequently used method to estimate TRAP exposure in epidemiologic
studies is land use regression (LUR) modeling (38—41). In the most straightforward LUR
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approach a single pollutant from the TRAP mixture is measured at multiple stationary sites
within a defined study region and characteristics of the area surrounding each sampling site
(e.g. elevation, nearby roads, traffic) are used as predictors of the measured concentrations
in a linear model. The resultant LUR model is then applied to estimate pollutant
concentrations at non-sampled locations including schools and homes where significant
geographic predictor variables can be determined. First described by Briggs et al, (42) LUR
models are now among the most commonly used techniques in epidemiologic studies of
respiratory health (10, 11, 38, 40, 43-49). While initial LUR models were most often
developed for NO, and, less commonly, PM, more recent models have been developed for
additional traffic pollutants including elemental components of PM, ultrafine particles,
VOCs, PAHSs, and black carbon (50-54). The temporal variability of TRAP concentrations
have also been incorporated into LUR models through the addition of mobile or continuous
monitoring allowing for short-term and daily estimates of TRAP exposure for study
participants (44, 55-58). New data inputs for LUR models, including satellite-derived
pollutant measurements (59, 60) and the development of hybrid models combining LUR
with Bayesian Maximum Entropy and other statistical approaches have also improved the
accuracy of TRAP exposure assessment (61, 62) In studies with available participant-
reported time spent in locations outside the home, LUR models have been used to derive
time-weighted estimates of exposure based on location (40) More recent application of this
time-weighted approach have utilized smartphones and GPS-derived location data to
improve estimates of TRAP exposure by combining LUR or other modeled TRAP estimates
with individuals’ location through space and time (63)

Personal Approaches

Despite advances in modeling TRAP and the incorporation of GPS to improve estimates of
individual-level exposure, personal monitoring remains the ‘gold-standard’ for TRAP
exposure assessment. While there have been limited applications of personal monitoring in
air pollution epidemiology, usually in the context of short-term panel studies, (64—66)
assessing long-term exposure by personal sampling is not routinely conducted due to a
current lack of wearable devices and the associated cost, time, and participant burden of
personal monitoring (67). However, new technological advances and the miniaturization of
personal sensor technology for PM and black carbon will lead to increased applications of
personal monitoring technology in epidemiologic studies (68—70). Another potential
approach to assessing personal exposure to TRAP is the use of a measured biomarker of
exposure in a biological specimen (e.g. urine or blood). While measuring PAH metabolites
as biomarkers of TRAP exposure has been conducted primarily in occupational settings,
more recent studies have identified PAH metabolites specific to environmental traffic
exposure making this approach more feasible for applications in environmental
epidemiology (71-73).

Mechanistic insights into TRAP effects on the pathogenesis of allergic

disease

Although there is strong evidence that TRAP exposure contributes to childhood asthma (1,
6, 7, 24) the mechanistic basis of TRAP effects on asthma has been elusive. The molecular
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and cellular pathways triggered by exposure to TRAP and their impact on allergen-induced
immune responses have been studied in human studies as well as in reductionist models in
vitro and in animal models in vivo.

DEP induces epithelial stress responses

As the main barrier against airway pathogens and pollutants, lung epithelial cells are
commonly used to study the toxicity of different traffic related pollutants and their
components and have been reviewed elsewhere (74, 75). The inability of epithelial cells to
effectively detoxify DEP results in release of pro-inflammatory cytokines including
cytokines involved in Ty17 differentiation (IL1B, IL6) and neutrophil chemokines, such as
IL8 (CXCLS8). DEP-mediated induction of IL8 is dependent on p38 MAP kinase and NF-kB
signaling (76). Upstream, I1L8 secretion has been shown to be dependent on the EGFR
pathway, as DEP induces secretion of endogenous EGFR ligands, and neutralizing
antibodies against TGFa, heparin-binding EGF or amphiregulin decrease IL8 secretion by
primary bronchial epithelial cells following DEP exposure (77). Since TGFa neutralizing
antibodies or TNFa-converting enzyme (TACE; ADAM-17) inhibitors significantly
decrease IL8 generation following DEP exposure, a model by which cleavage of pro-TGFa
by TACE leads to EGFR signaling has been proposed (78, 79). A similar cascade of events
has been demonstrated for allergen (house dust mite)-mediated induction of GM-CSF by
human bronchial epithelial cells, underscoring that these pathways are part of a broad
epithelial stress response (Figure 1).

DEP exposure promotes TH17 responses including increased Ty2/TH17 double-producing

cells

Although asthma has long been characterized as a disease of dysregulated T2 immune
responses to environmental allergens, accumulating evidence suggests a role for Ty17 cells,
especially severe steroid resistant asthma (80, 81). Immunohistochemistry on bronchial
biopsies from asthmatics reveals increased IL-17A+ cells in patients with severe asthma
compared to mild asthma or controls (82). In both adults and children, serum IL-17A is
significantly higher in severe asthmatics compared to mild asthmatics or controls (83-85).
Recent evidence demonstrates that that DEP exposure promotes asthma by enhancing T17
immune responses, and anti-IL17A treatment alleviates the negative effects of DEP on
asthma in a mouse asthma model (4). Similarly, in children, TRAP exposure is associated
with increased serum IL17A levels and increased asthma severity (4). In mice, DEP
exposure results in accumulation and persistence of allergen specific T2/T{17 cells in the
lungs, potentiating secondary allergen recall responses (86). These cells rapidly produce
both T2 and TH17 cytokines upon re-exposure to antigen. The induction and persistence of
these resident memory cells in the lungs following TRAP exposure may be responsible, in
part, for the long lasting impact of early life TRAP exposure into later lifestages; and may
contribute to persistence of asthma into adolescence. Recent studies have demonstrated that
dual-positive T2/T17 cells and IL-17A were present at a higher frequency in the BALF
from steroid resistant asthmatic patients (87). These Ty2/TH17 cells were resistant to
dexamethasone-induced cell death and the Ty2/TH17 predominant subgroup of patients
manifested the most severe form of asthma (87). Thus, these double-producing cells may be
an excellent biomarker of severe, steroid resistant patients that would benefit from additional
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or alternate treatment. In a murine model, transfer of allergen-specific Ty2/Ty17 double-
producing cells to naive mice resulted in inflammation and exacerbated asthma (88).

Mice exposed to DEP alone develop airway neutrophilia, but do not present any of the
hallmarks associated with asthma such as eosinophilia, T2 cytokine release, mucus
production or airway hyperresponsiveness (AHR) (2, 4, 89). However, chronic exposure to
low doses of DEP over a 3-month period results in emphysema and accumulation of T cells
(89). DEP exposure promotes accumulation of Trgg, TH17 cells and neutrophils (2, 4). The
observed increase in Treg and Th17 cells may result in part from the ability of DEP to
promote T17, Ty22, and Treg differentiation through the aryl hydrocarbon receptor (AhR)
(90, 91). Indeed, exposure to DEP and related polycyclic aromatic hydrocarbons (PAH) has
been shown to increase Ty22 cells in an Ahr-dependent manner (92, 93). Ahr signaling
requires dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), also
known as hypoxia-inducible factor beta (HIF1B). Accordingly, a crosstalk between the
hypoxia-inducible factor 1-alpha (HIF1a) and Ahr pathways has been proposed, as both
might compete for ARNT binding (94). In T-cells, HIF1a driven glycolysis supports Ty17
differentiation by promoting expression of RORyt, whereas in conditions supporting Treg
differentiation HIF1a favors Foxp3 induction (95, 96). The respective contributions and
interactions of DEP-induced Ahr signaling and oxidative stress related HIF1a signaling
have not been explored.

DEP exposure exacerbates allergen-induced T2 responses

Numerous studies have demonstrated that exposure to either particulate matter or DEP can
exacerbate allergic airway responses (97). We recently demonstrated that co-exposure to
HDM and DEP promotes a mixed Ty2/TH17 response with increased T2 and TH17 cells,
as well as double-producing IL13+/IL17A+ Ty cells (2, 4). Thus, DEP exposure exacerbates
TH2 responses. Mechanisms by which DEP exposure increases allergen-induced Th2
differentiation have been reviewed elsewhere (98). A recent study using co-cultures of OVA
transgenic CD4+ T cells and bone marrow derived dendritic cells (BMDC) pre-exposed to
OVA with or without TRAP, demonstrated increased IFNy, IL4, IL13, and IL17 levels in
culture supernatants of OVA+TRAP exposed BMDC compared to BMDC exposed to OVA
alone (99) supporting that TRAP exposure directly impacts dendritic cells. Further, TRAP
upregulated Ty cytokine levels, IgE production, and allergic airway inflammation in mice in
a Jagged1- and Notch-dependent manner and TRAP-induced Jaggedl expression was
mediated by the AhR, which bound to and activated AhR response elements in the Jagl
promoter (99). AhR blockade or its lineage-specific deletion in CD11c+ cells abrogated the
augmentation of airway inflammation by TRAP. Thus, TRAP promotes allergic airway
inflammation by upregulating the expression of components of the Notch pathway in human
monocytes and murine DCs (99). Of note, TSLP released by epithelial cells upon DEP
exposure, promotes Jaggedl and OX40 ligand expression by PBMC-derived DC, favoring
TH_2 differentiation (100).

The impact of early life TRAP exposure

The timing and duration of traffic-related air pollution (TRAP) exposure may be important
for childhood wheezing and asthma development. This was examined in a recent article

Curr Opin Pediatr. Author manuscript; available in PMC 2016 December 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Brandt et al.

Page 8

examining the relationship between TRAP exposure and longitudinal wheezing phenotypes
and asthma at age seven in a birth cohort (31). High TRAP exposure at birth was
significantly associated with both transient and persistent wheezing. In contrast, only
children with high average TRAP exposure continuously from birth through age seven were
at significantly increased risk for asthma (aOR = 1.71, 95% CI 1.01-2.88). Early-life
exposure to TRAP is associated with increased risk for persistent wheezing, but only long-
term exposure to high levels of TRAP throughout childhood was associated with asthma
development. In mice, post-natal exposure to HDM and/or DEP followed by a secondary
exposure to HDM 4 weeks later induced AHR only in mice that were co-exposed to HDM
and DEP but not in mice that were only exposed to HDM (86). In another study where
neonatal OT-1I mice were repeatedly pre-exposed to TRAP before being co-exposed to
OVA as adults, a secondary OVA recall response generated AHR only in mice previously
co-exposed to TRAP and OVA as neonates (101). This was associated with the
accumulation of CD4+ T-cells expressing IL4 or IL17A in the lungs. Collectively, these data
strongly suggest that TRAP exposure promotes disease persistence. Indeed, in the Cincinnati
Childhood Allergy and Air Pollution Study (CCAAPS) birth cohort, early TRAP exposure
was associated with persistent wheeze while early and sustained exposure to TRAP was
associated with asthma development (31). DEP exposure has been shown to enhance
allergen specific memory, thereby potentiating secondary allergen recall responses and
promoting the development of allergic asthma (86).

Prenatal TRAP exposure has been linked to asthma as well (102-105). Mothers who lived
near highways during pregnancy are more likely to have children with asthma (103).
Prenatal exposure to PAHs is associated with increased risk of allergic sensitization and
early childhood wheeze (102, 105). A limited number of mechanistic studies have assessed
the impact of in utero TRAP exposure on the development of allergic disorders. In one
recent study, offspring of mice exposed to DEP were hypersensitive to OVA and developed
increased OVA sensitization, airway inflammation, Th2/Th17 responses, and AHR
compared to offspring with no prior in utero DEP exposure (106). Further, prenatal DEP
exposure induced expression of genes downstream of AhR and this upregulation persisted 1
month after birth, even though mice were no longer exposed to DEP. Thus, in utero DEP
exposure appears to result in a primed state where the neonate is hypersensitive to
subsequent allergen exposure. Interestingly, the Th2 and Th17 cytokines were produced
primarily by natural killer (NK) cells and other non-CD3+ T-cells. Repeated treatment with
anti-NK1.1 prior to OVA challenge resulted in decreased airway inflammation (106). The
importance of NK cells in allergic airway responses is supported by a recent study using
NK-deficient mice (107). The respective contribution of NK cells and other innate cells to
DEP exacerbation of adaptive immune responses offers a promising new avenue of research.

Conclusion

As discussed above, there is considerable evidence that exposure to TRAP is associated with
childhood asthma symptoms and exacerbations (6, 7, 10, 24, 108, 109) and recent evidence
suggests that TRAP is also associated with reduced lung growth and the development of
asthma (31). Herein, we have reviewed the recent epidemiologic and mechanistic findings
have started to fill gaps in knowledge regarding the health impact of TRAP exposure on
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allergic diseases, as well as new methodologies for quantification of TRAP that hold
tremendous promise for rapid and reliable identification of individuals at-risk due to high
exposure (Figure 2). These new methodologies will enable accurate assessment of exposure
in real time such that interventions could be designed and implemented early in the course of
exposure in vulnerable populations. The impact of TRAP exposure on allergic disease is
complicated by the presence of additional host (genetic, obesity, co-morbidities, nutritional
status) and environmental factors, which undoubtedly will affect the observed impact.
Additional studies are needed to fill the remaining gaps including identification of the key
host factors associated with enhanced susceptibility to TRAP exposure. These studies will
have tremendous health impact and ultimately lead to design, testing, implementation, and
dissemination of interventions to prevent the impact of TRAP exposure on asthma
development, progression, and persistence.
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Key Points

»  Exposures to TRAP decrease lung function, trigger asthma exacerbation, and
contribute to the development and aggravation of asthma, eczema, allergic
rhinitis and sensitization.

»  Exposure models incorporating novel data and methodology and new
technology, including smartphones and personal sensors, have led to improved
exposure estimates in epidemiologic studies.

e DEP can persist in the murine lungs for months after exposure, in association
with chronic Ty17 inflammation, without triggering immune features of asthma.

»  DEP exacerbates allergen-induced innate and adaptive T2 responses and
promotes disease persistence through increased accumulation of pathogenic
memory T2/TH17 cells.
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Figure 1. Mechanistic insights into DEP effects on asthma pathogenesis
Lung epithelial cells recognize polycyclic aromatic hydrocarbons present in diesel exhaust

particles (DEP) via the aryl hydrocarbon receptor (AhR), promoting cytochrome P450
family 1 A1 (CYP1A1) mediated detoxification. Failure to detoxify results in oxidative
stress and release of repair cytokines (amphiregulin, TGFa), which signal through the
epidermal growth factor receptor (EGFR), p38 mitogen-activated protein kinase and NF-xB
to induce secretion of chemokines, as well as cytokines involved in Ty17 and T2
differentiation (TSLP). DEP promotes allergic airway inflammation by upregulating the
expression of the Jagged1/Notchl pathway in dendritic cells (DC) in an AhR dependent
manner in concert with allergens.

Curr Opin Pediatr. Author manuscript; available in PMC 2016 December 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Brandt et al.

Traffic-Related Air
Pollution (TRAP)

Exposure

Assessment

Modeling

*Proximity

*LUR

Personal

Epidemiology
INCREASED
Asthma symptoms/

exacerbation

Asthma persistence
Asthma development

Figure 2. Overview
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Timing and Duration of
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*Disease symptoms
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Epithelial Cells: *Stress response
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double producers

Dendritic Cells/Monocytes:
*Induction of Notch pathway

Host factors
Other exposures
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More accurate assessment of TRAP exposure will enable the design of epidemiologic and
mechanistic studies aimed at discovery of biomarkers to identify the individuals most at-risk
from the harmful effects of TRAP exposure and the design of novel targeted interventions.
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