
Targeting the fatty acid transport proteins (FATP) to understand 
the mechanisms linking fatty acid transport to metabolism

Paul N. Black2, Angel Sandoval2, Elsa Arias-Barrau2, and Concetta C. DiRusso1,2,*

1Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA

2Department of Biochemistry, University of Nebraska, Lincoln, NE 68583, USA

Abstract

One principal process driving fatty acid transport is vectorial acylation, where fatty acids traverse 

the membrane concomitant with activation to CoA thioesters. Current evidence is consistent with 

the proposal that specific fatty acid transport (FATP) isoforms alone or in concert with specific 

long chain acyl CoA synthetase (Acsl) isoforms function to drive this energy-dependent process. 

Understanding the details of vectorial acylation is of particular importance as disturbances in lipid 

metabolism many times leads to elevated levels of circulating free fatty acids, which in turn 

increases fatty acid internalization and ectopic accumulation of triglycerides. This is associated 

with changes in fatty acid oxidation rates, accumulation of reactive oxygen species, the synthesis 

of ceramide and ER stress. The correlation between chronically elevated plasma free fatty acids 

and triglycerides with the development of obesity, insulin resistance and cardiovascular disease 

has led to the hypothesis that decreases in pancreatic insulin production, cardiac failure, 

arrhythmias, and hypertrophy are due to aberrant accumulation of lipids in these tissues. To this 

end, a detailed understanding of how fatty acids traverse the plasma membrane, become activated 

and trafficked into downstream metabolic pools and the precise roles provided by the different 

FATP and Acsl isoforms are especially important questions. We review our current understanding 

of vectorial acylation and the contributions by specific FATP and Acsl isoforms and the 

identification of small molecule inhibitors from high throughput screens that inhibit this process 

and thus provide new insights into the underlying mechanistic basis of this process.

INTRODUCTION

Fatty acids are enigmatic molecules that on the one hand are essential for cellular structure, 

function and signaling and on the other must be contained or their detergent properties will 

prove lethal to cells. Mother nature has therefore developed ways to compartmentalize, 

sequester and regulate the movement of these molecules between and within cells. Within 

the blood stream free fatty acids (FFA) are buffered and moved by serum albumin and, as 

complex lipids, by the lipoproteins. Within cells, the fatty acid binding proteins serve a 

similar function for the free carboxylic acids (see review by Newberry and Davidson within 

*Address correspondence to this author at the Department of Nutrition and Health Sciences, 316F Ruth Leverton Hall, Lincoln, 
Nebraska 68583-0806, USA; Telephone: 402-472-6504; cdirusso2@unlnotes.unl.edu. 

HHS Public Access
Author manuscript
Immunol Endocr Metab Agents Med Chem. Author manuscript; available in PMC 2015 
December 01.

Published in final edited form as:
Immunol Endocr Metab Agents Med Chem. 2009 September ; 9(1): 11–17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this issue), while fatty acids esterified in highly hydrophobic complex lipid species are 

partitioned into membranes or sequestered in lipid droplets.

Understanding how free fatty acids move across membrane barriers has proven to be a 

challenging biophysical and biochemical problem, which after 30 years of research is still 

only poorly understood and remains somewhat controversial. Within the present article, we 

will review the arguments for protein mediated transport and will make the case that some 

members of the FATP family serve this function. The hypothesis that FATPs function in the 

transport of long chain fatty acids into cells was based on their identification though 

functional cloning of the first family member and has been supported by molecular and 

biochemical studies from our lab using a yeast model system, as well as studies using more 

complex animal cell and gene knockout approaches. However, the main hypothesis remains 

unproven, in part, because these proteins also function in the activation of certain lipophilic 

molecules by catalyzing the thioesterification of these substrates with coenzyme A. Thus, 

we will discuss the roles of these proteins in transport, activation and further metabolism of 

fatty acids.

FATTY ACID TRANSPORT IN HISTORICAL PERSPECTIVE

Upon presentation to the cell, fatty acids must be transported across the cell membrane and 

trafficked to sites of utilization. The free fatty acid concentration in the extracellular space is 

generally extremely low. Therefore the efficient transport of long-chain fatty acids is 

expected to require specific membrane-bound and membrane-associated transport systems to 

accumulate these compounds against a concentration gradient. Many different cell types 

contain a specific repertoire of membrane-bound and membrane-associated proteins, which 

are hypothesized to govern fatty acid transport in response to differentiation, hormonal 

stimulus, or environmental stimulus, including changes in nutritional state, temperature, or 

oxygen availability (1-6)).

The kinetics governing the transport of fatty acids into the cell is consistent with a protein-

mediated process (7-13). In studies using model membranes, it has been demonstrated that 

uncharged fatty acids can flip between the two faces of the membrane, but remain 

membrane-bound (14). More recent studies have shown that as the radius of membrane 

curvature increases the flip of fatty acids between the two membrane faces becomes rate 

limiting (15). For fatty acids in the uncharged form, the flip of fatty acids between the two 

membrane leaflets in small unilammellar vesicles is very fast (t1/2 msec to sec). On the other 

hand, this step is slow for fatty acid anions (t1/2>2sec) (14). The movement of fatty acids out 

of the membrane is very slow unless there are specific enzymes or binding proteins, which 

in turn function to target the fatty acid into downstream metabolism and intracellular 

signaling. We hypothesize there is a cooperative interaction between factors involved in 

transmembrane movement and those involved in intracellular movement (e.g. FABP, Acsl, 

ACBP) that function to target the imported fatty acids to specific subcellular locations and 

metabolic fates. Based on our current understanding, proteins are likely to be involved in at 

least three aspects of this process: delivery of fatty acids to the membrane; in the 

transmembrane movement of the fatty acid from one leaflet to the other (particularly for 

fatty acid anions); and in the removal of fatty acids from the membrane.
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Specific membrane-bound and membrane-associated proteins have been identified that 

appear to function in one or more of the steps detailed above in the transport of fatty acids 

across the membrane. To date, four different membrane-bound or membrane associated 

proteins have been defined in eukaryotic cells that participate in the transport of exogenous 

long-chain fatty acids: CD36/fatty acid translocase (CD36/FAT; see article by Nassir and 

Abumrad in this series) (1), fatty acid binding protein – plasma membrane-bound 

(FABPpm) (16), fatty acid transport protein (FATP) (17, 18), and long chain acyl CoA 

synthetase (Acsl) (2, 19). The roles of FAT/CD36 and FABPpm have been recently 

reviewed by others and will not be detailed further herein (6, 20, 21); rather this review will 

focus on the FATP isoforms with some discussion on their association with different Acsl 

isoforms.

FATP, FATTY ACID TRANSPORT PROTEIN OR ACYL-COA SYNTHETASE?

Fatty acid transport protein (FATP1) was first identified in a functional cloning screen 

designed to identify proteins that resulted in elevated accumulation of the fluorescent fatty 

acid analogue C1-BODIPY-C12 (12). It was immediately recognized that FATP has a 

domain architecture similar to the acyl-CoA synthetases, which includes an ATP binding 

domain and a fatty acid binding domain (12, 22, 23). Thus began the controversy over 

whether or not FATP was a bona fide transporter or merely functioned in vectorial acylation 

as a fatty acid activating enzyme trapping fatty acid within the cell through metabolic 

utilization. Our lab exploited the molecular genetics of Saccharomyces cerevisiae to 

distinguish the functions of this protein in transport and activation (22, 24). Several clues 

indicated that the two functions might be separable. First, the fatty acid signature of the 

FATPs was divergent from the Acsl enzymes involved in activation of long chain fatty acids 

(24, 25). Indeed, several labs demonstrated that in yeast, deletion of the FATP homologue 

Fat1p did not affect long chain Acsl activity, but reduced activation of very long chain fatty 

acids (26, 27). These strains also accumulated very long chain fatty acids suggesting 

turnover of fatty acids >C20 in length was reduced. Deletion of the same gene rendered 

yeast strains unable to transport long chain fatty acids into the cells (22). Yeast do not 

import very long chain fatty acids so that function could not be tested. We further 

demonstrated through an extensive site-directed mutagenesis approach that variants could be 

identified that either affected activation or transport, separating the two functions (24).

In addition to the first FATP, five other related mammalian genes (called FATP2 through 

FATP6) have been cloned and their proteins characterized. The FATPs differ in expression 

pattern, tissue distribution and subcellular location. FATP1 is found in muscle and adipose 

tissue; FATP2 in liver and kidney; FATP3 in liver and testes; FATP4 is relatively ubiquitous 

in fat metabolizing tissues and skin; FATP5 is exclusive to liver; and FATP6 is exclusive to 

heart (28, 29). Depending on the specific FATP, each protein functions in thioesterification 

of a lipophilic substrate with coenzyme A. FATP1, FATP2 and FATP4 have both Acsvl 

activity and transport long chain fatty acids when examined in yeast and several mammalian 

cells lines (11, 22, 24). FATP 5 is a bile-CoA ligase (30, 31). FATP6 in yeast activates very 

long chain fatty acids but does not transport fatty acids of any chain length (32). In contrast, 

the sole activity assigned this protein in heart cells, where it was first identified, is fatty acid 

transport (33). Figure 1 illustrates an overview of how the FATPs are likely to function, 
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alone or in concert with a long chain acyl CoA synthetase (Acsl) in fatty acid transport and 

activation. Studies that are presently underway are directed to address specificity, 

compartmentalization and selectivity in directing intracellular fatty acid trafficking. As 

detailed blow, targeted deletions in several of the FATP genes are consistent with roles in 

fatty acid transport and/or intracellular fatty acid trafficking.

TARGETED DELETIONS OF FATP GENES PROVIDE FEW CLUES AND 

MANY QUESTIONS REGARDING FUNCTION

Germline deletions in mice have been constructed for FATP1, FATP2, FATP4 and FATP5. 

Each, except the FATP4 deletion, was viable. Deletion of FATP1 did not alter fat 

metabolism or insulin sensitivity when the knockout mice were fed a standard chow diet 

(34). However, on a high fat diet the mice were protected from fat-induced insulin resistance 

and intramuscular accumulation of fatty acyl-CoA. Overexpression of FATP1 specifically in 

heart, resulted in lipotoxicity and cardiomyopathy without systemic disturbances in lipid 

metabolism or disturbances in insulin sensitivity (35). The cardiac dysfunction was 

attributed to excessive accumulation of lipids due to increased uptake and metabolism.

A deletion of FATP2/ACSVL1 in mice was engineered to specifically examine the effects of 

this protein in very long chain fatty acid metabolism since it was first identified as an Ascvl 

enzyme (36). It was hypothesized this protein was the peroxisomal Ascvl involved in the 

accumulation of very long chain fatty acids that are characteristic in patients affected with 

adrenoleukodystrophy. The FATP2 knockout mice were viable and had no obvious systemic 

or metabolic abnormalities apart from reduced peroxisomal Ascvl activity and VLCFA beta-

oxidation. However, the knockout mice did not accumulate very long chain fatty acids or 

develop symptoms characteristic of adrenoleukodystrophy. Fatty acid uptake was not 

examined in tissues from these animals.

FATP4 knockouts cause neonatal lethality that was attributed to a restrictive dermopathy 

that prevented expansion of the diaphragm and the pups died within hours of birth by 

asphyxiation (37, 38). The epidermal ceramides had altered fatty acid composition with a 

decrease in the C26:0 and C26:0-OH fatty acid side chains, which was considered a major 

cause of the epidermal malfunction (38). Davidson and coworkers recently rescued the skin 

phenotype and embryonic lethality using an FATP4 transgene driven by a keratinocyte-

specific promoter to evaluate the role of intestinal FATP4 in dietary lipid absorption (39). 

The growth and maturation of the mice was normal and they were examined for intestinal 

lipid absorption as adults. Fatp4−/−;Ivl-Fatp4tg/+ mice and wild type littermates displayed 

indistinguishable food consumption, growth and weight gain on either a low fat chow or 

high fat Western diet. There were no differences in intestinal triglyceride (TG) absorption or 

fecal fat loss, indicating loss of FATP4 did not reduce fatty acid uptake or metabolism 

across the GI track. Similarly, compounds identified as FATP4-specific inhibitors using a 

high throughput screening method did not reduce GI-specific fatty acid absorption in rodents 

(40).

Expression of FATP5 is restricted to liver where it is involved in bile acid recycling and 

fatty acid uptake as evidenced by studies in isolated cells and in the tissues of genetically 
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ablated mice (4, 30, 31). FATP5 deletion significantly reduced LCFA uptake by hepatocytes 

isolated from FATP5 knockout animals. Livers of these mice had reduced triglycerides and 

free fatty acids concomitant with a redistribution of lipids to other LCFA-metabolizing 

tissues. In keeping with its function as a bile-CoA ligase, bile acid recycling was reduced in 

FATP5 knock out animals. Interestingly, FATP5 deletion mice failed to gain weight on a 

high-fat diet, had reduced food intake and increased metabolic rate. These varying 

phenotypes point to the complexity involved in dietary and endogenous lipid trafficking and 

metabolism.

Given the various tissue distributions it is not surprising that the different FATP deletion 

mice had unique and relatively non-overlapping phenotypes. As reviewed above, FATP4 is 

essential for functioning of skin, FATP5 for bile acid recycling, and FATP1 for fatty acid 

trafficking in adipose tissue and muscle. However, none of the FATP proteins (or any other 

putative fatty acid transporter, e.g. CD36, FABPpm) thus far has been demonstrated to be 

essential for lipid uptake in the GI track by studying mice with targeted deletions. (28, 29)

REGULATION OF FATP-DEPENDENT FATTY ACID TRANSPORT

The levels of long-chain fatty acids in blood decrease in response to insulin, but it is unclear 

if this is due to a combination of decreased release and increased uptake (41). Insulin 

induces adipocyte differentiation (42) and during that process FATP1 and Acsl1 are strongly 

induced (11, 41). The increased expression of these proteins correlates with an increase in 

fatty acid uptake under the same conditions (11, 43, 44). On the other hand, in mature 

adipocytes insulin acts as a negative regulator of FATP1 expression (45) and as a positive 

regulator of Acsl1 expression (46). Yet insulin treatment has been reported to promote the 

translocation of FATP1 to the plasma membrane where it facilitates fatty acid uptake (41). 

Murine FATP1 mRNA levels are also increased during starvation, which correlates with low 

levels of insulin (45). This contrasting information seems to indicate that insulin potentiates 

FATP1 protein function while, at the same time, depresses FATP1 gene expression.

FATP1 has been linked directly to human dyslipidemia. A Swedish study examined FATP1 

variants in over 1,000 healthy men and women (47). It was reported that a G/A substitution 

at position 48 in intron 8 of FATP1 was associated with increased postprandial lipemia, 

including elevated triglycerides, and smaller LDL particles in homozygous A/A individuals. 

These findings suggest that through regulation of non-esterified fatty acid trafficking FATP1 

is involved in postprandial lipid metabolism and development of cardiovascular disease.

As with many fatty acid metabolic genes, expression of the FATP genes is controlled, in 

part, by PPAR transcription factor family members. In liver, treatment with a PPARα 

agonist induced the expression of a number of genes involved in fatty acid import, among 

them FATP1 (48, 49). PPARδ has been showed to induce lipid uptake and/or accumulation 

in adipose tissue, muscle, liver, macrophages and placental trophoblasts (50). Activation of 

PPARδ promotes adipocyte terminal differentiation, which correlates with an increase in 

FATP1 expression (48, 49, 51). In human placental trophoblast cells, PPARδ enhances fatty 

acid uptake and accumulation, and also increases the expression of FATP1 and FATP4 (52). 
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Treatment of pregnant mice with a PPARδ agonist alters placental morphology and induces 

FATP1 and −4 expression while decreasing expression of FATP-2, -3, and -6 (53).

THE SEARCH FOR SMALL COMPOUND INHIBITORS

To further understand the roles of the FATP proteins in fatty acid uptake and intracellular 

trafficking, we devised a screening method for small compound inhibitors (P. N. Black and 

C. C. DiRusso, United States Patent 7,070,944) (9, 10). In designing this system we took 

advantage of a yeast strain that is deficient in fatty acid transport (Δfat1) and has reduced 

long chain acyl-CoA synthetase activity (Δfaa1). The strain was transformed with a plasmid 

encoding human FATP2, the intended target of the inhibitor screening. Using this procedure, 

a 2,080 compound library, SpectrumPlus (MicroSource), was screened to identify 

compounds that reduced the uptake of the fluorescent fatty acid analog 4,4-difluoro-5-

methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-C12). Primary and 

secondary screens were performed to eliminate false positives and a total of 28 compounds 

were selected as potential inhibitors of human FATP2-mediated fatty acid uptake (9). These 

compounds were further evaluated for specificity and efficacy in human intestine-derived 

Caco-2 cell line. Caco-2 cells express FATP2 and FATP4 and efficiently import fatty acids 

and incorporate them into higher lipids (11). Subsequently, these potential inhibitors were 

sorted into different groups according to structural features. As expected, one group was 

similar to fatty acids in having a long hydrocarbon chain. Two other groups were of 

particular interest because they included drugs used to treat schizophenia but that are also 

known to cause obesity, hypertriglycerdemia and type II diabetes (54-59). These included 

dibenazepines and phenothiazines such as clozapine and chlorpromazine, respectively.

The connection between antipsychotic medications and their unwanted metabolic side 

effects has been widely reported (reviewed in (58)), however the mechanism responsible for 

this close association has not been elucidated. Different mechanisms have been proposed 

including: binding of these drugs to serotonin, norepinephrine, dopamine, histamine and 

serotonin receptors; disruption of the hypothalamic regulation of glucose serum levels 

through hypothalamic dopamine antagonism; and unspecified direct effects on glucose 

metabolism. However, our identification of some of these drugs as fatty acid uptake 

inhibitors may indicate a more direct effect on fatty acid and complex lipid metabolism.

The correlations between antipsychotics and metabolic disorders vary, with the highest risks 

reported for chlorpromazine, clozapine and olanzapine (58-60). The association of the 

chronic use of the atypical antipsychotics with new-onset hyperlipidemia in adults with 

psychotic disorders has been established by considering the odds ratio between treated and 

untreated individuals as reference (61). The highest values correspond to clozapine at 1.82 

(95% confidence limit (CL) 1.61–2.05) and olanzapine at 1.56 (CL, 1.47–1.67). Patients 

treated with either of these compounds had noticeable increases in weight and adiposity with 

both short- and long-term treatment. Several studies developed using a variety of 

methodologies support these observations (58). A mean increase of 4.45 kg with clozapine 

treatment and 4.15 kg with olanzapine treatment has been reported for a 10-week 

comparison study (62); longer-term treatment with clozapine was associated with additional 

weight increases up to 7.5 kg reached over a mean duration of 25 weeks (63).
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The effect of these antipsychotic agents on serum lipid levels has also been examined. 

Statistically significant increases in mean plasma triglyceride levels from baseline were 

observed in diverse clinical studies with the most significant changes correlating with 

olanzapine and chlozapine (57, 58). On the other hand, perphenazine treatment was not 

associated with an increase in serum triglycerides and in at least one study, a significant 

decrease was recorded (64). The effects of clozapine treatment on total cholesterol levels are 

less clear and more difficult to interpret since there are discrepancies in studies reporting 

both statistically and non-statistically significant variations in cholesterol levels from 

baseline (65-68). In follow-up studies to our HTS screening trials we found that 

perphenazine, chlorpromazine and clozapine inhibited the uptake of the fluorescent fatty 

acid analog C1-BODIPY-C12 in Caco-2 cells with Kis in the high micromolar range (Table 

1).

So the question becomes, is there a direct correlation between fatty acid uptake inhibition 

and the drug induced metabolic side effects including hypertriglyceridemia and obesity? 

This is a difficult question to answer with the limited information at hand. Our studies were 

done using an immortalized human intestinal cell line while the clinical studies report effects 

on whole body metabolism. We do know that there is not a direct correlation between Ki of 

uptake inhibition and relative severity of obesity and hypertriglyceridemia. For example, 

while we targeted perphenazine, chlozapine and chlorpromazine in humanized yeast, they 

were less effective in Caco-2 cells. We found the inhibition of transport was perphenazine> 

chlozapine or chlomipirmine while clinical studies did not demonstrate a correlation 

between perphenzine treatment and elevated serum triglycerides.

For the compounds that both inhibit fatty acid uptake in isolated cell systems and increase 

triglycerides in patients, we question why inhibition of fatty acid import would result in 

weight gain and obesity, processes that would require fatty acid accumulation in adipocytes. 

The answer might lie in the affinity and specificity of the drug for particular fatty acid 

transport proteins that govern fatty acid distribution between various tissues. If adipocytes, 

for example, were relatively insensitive to a specific compound then they might accumulate 

fat that is not being oxidized by muscle resulting in weight gain; while sensitivity of 

myocytes to fatty acid uptake inhibition by the same compounds might increase demand for 

glucose as an energy source by these cells, thus disrupting insulin regulation. Our 

investigations on both the FATP proteins and the inhibitory compounds are ongoing with the 

goal of providing a mechanistic understanding of these processes. We plan to define 

structure-activity relationships (SAR) between these compounds and the FATPs with the 

goal of generating rationally designed molecules that interact specifically with either 

neuroreceptors or a fatty acid transport protein. The results of these studies may lead to 

drugs useful to treat psychotic disorders without causing metabolic disorders as well as to 

other drugs useful to treat obesity-related disorders.

CONCLUSIONS

Members of the FATP family are multifunctional proteins that have overlapping as well as 

distinct functions in lipid metabolism. There is substantial evidence supporting a role for 

FATP1, FATP2 and FATP4 in both fatty acid transport and very long chain fatty acid 
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activation. It is unclear at present whether or not these proteins will be beneficial targets as 

pharmacological inhibitors. However, small compound inhibitors hold great promise as tools 

to uncover mechanisms of fatty acid transport and activation dependent upon these proteins. 

FATP5 is probably a minor player in fatty acid transport but plays a major role in bile acid 

recycling. Much work remains to be done on FATP3 and the cardiac-specific FATP6 to 

further define their roles in fatty acid metabolism.
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Figure 1. 
Overview of FATP and Acsl functions in fatty acid transport and intracellular trafficking. 

The movement of fatty acids (FFA) across the plasma membrane (PM) through vectorial 

acylation requires FATP alone or in combination with an Acsl; the resulting product is acyl 

CoA. FFA may also move across the membrane by a diffusion process that may involve 

intracellular fatty acid binding proteins. Prior to any type of metabolic transformation, this 

fatty acid must also be activated to form acyl CoA. As illustrated this may proceed in the 

endoplasmic reticulum (ER) through specific FATPs or Acsls individually or through an 

FATP/Acsl complex. As illustrated acyl CoA is the crucial intermediate that is required for 

b-oxidation and synthesis of complex lipids and triglycerides (TAG). As part of normal lipid 

turnover or lipolysis of TAG is the formation of FFA, which must be reactivated to enter the 

metabolic pools. Acyl CoA is shown as a single pool, but in all likelihood these pools are 

compartmentalized, for example as is the case for those involved in acyl chain modification 

(elongation and desaturation). The role of the different FATP and Acsl isoforms is thought 

to promote both specificity and selectivity to these processes.
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Table 1

IC50 values and 95% Confidence Intervals (95% CI) for C1-BODIPY-C12 uptake in the yeast strain expressing 

hsFATP2 (“humanized yeast”) and in Caco-2 cells.

Yeast expressing hsFATP2P Caco-2 cells

Perphenazine 23.4μM
(95% CI, 19.5μM - 27.9μM)

79.0μM
(95% CI, 72.8-μM – 85.6μM)

Clozapine 98.8μM
(95% CI, 70.4μM – 138.5μM)

537.1μM
(95% CI,174.8μM – 1652.2 μM)

Clomipramine 74.6μM
(95% CI, 46.1μM – 120.8μM)

231.4μM
(95% CI, 212.4μM – 250.2μM)

Chlorpromazine 37.8μM
(95% CI, 30.5μM – 46.9μM)

258.7μM
(95% CI, 194.3μM – 340.1μM)
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