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Abstract

The Biopharmaceutics Drug Disposition Classification System (BDDCS) can be utilized to predict 

drug disposition, including interactions with other drugs and transporter or metabolizing enzyme 

effects based on the extent of metabolism and solubility of a drug. However, defining the extent of 

metabolism relies upon clinical data. Drugs exhibiting high passive intestinal permeability rates 

are extensively metabolized. Therefore, we aimed to determine if in vitro measures of 

permeability rate or in silico permeability rate predictions could predict the extent of metabolism, 

to determine a reference compound representing the permeability rate above which compounds 

would be expected to be extensively metabolized, and to predict the major route of elimination of 

compounds in a two-tier approach utilizing permeability rate and a previously published model 

predicting the major route of elimination of parent drug. Twenty-two in vitro permeability rate 

measurement data sets in Caco-2 and MDCK cell lines and PAMPA were collected from the 

literature, while in silico permeability rate predictions were calculated using ADMET Predictor™ 

or VolSurf+. The potential for permeability rate to differentiate between extensively and poorly 

metabolized compounds was analyzed with receiver operating characteristic curves. Compounds 

that yielded the highest sensitivity-specificity average were selected as permeability rate reference 

standards. The major route of elimination of poorly permeable drugs was predicted by our 

previously published model and the accuracies and predictive values were calculated. The areas 

under the receiver operating curves were >0.90 for in vitro measures of permeability rate and 

>0.80 for the VolSurf+ model of permeability rate, indicating they were able to predict the extent 

of metabolism of compounds. Labetalol and zidovudine predicted greater than 80% of extensively 

metabolized drugs correctly and greater than 80% of poorly metabolized drugs correctly in Caco-2 

and MDCK, respectively, while theophylline predicted greater than 80% of extensively and poorly 

metabolized drugs correctly in PAMPA. A two-tier approach predicting elimination route predicts 

72±9%, 49±10%, and 66±7% of extensively metabolized, biliarily eliminated, and renally 

eliminated parent drugs correctly when the permeability rate is predicted in silico and 74±7%, 

85±2%, and 73±8% of extensively metabolized, biliarily eliminated, and renally eliminated parent 

drugs correctly, respectively when the permeability rate is determined in vitro.
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Introduction

Absorbed drugs are predominately eliminated from the body via metabolism or secretion of 

unchanged drug in the bile or the urine. Elimination is a multi-factorial process mediated in 

part by passive permeability, drug transport, and substrate specificity to transporters and 

metabolizing enzymes. Understanding which route predominates in the disposition and 

elimination of a drug can help pharmaceutical scientists anticipate potentially dangerous 

interactions with other drugs, endogenous molecules, and food. Additionally, processes 

associated with drug elimination can be utilized to aid in drug delivery. For instance, a drug 

that is eliminated in the bile can undergo enterohepatic recycling, exposing the drug to the 

liver and intestine multiple times, while a concern for extensively metabolized drugs may be 

susceptibility to extensive first pass metabolism.

In 1995, the development of the Biopharmaceutics Classification System (BCS) recognized 

that drug permeability can predict the extent of drug absorption1. Ten years later, Wu and 

Benet2 proposed the Biopharmaceutics Drug Disposition Classification System (BDDCS), 

which recognized that drugs exhibiting a high passive intestinal permeability rate were also 

extensively metabolized, while low permeability rate drugs were primarily eliminated as 

unchanged drug in the bile or the urine. This may be because highly permeable drugs are 

passively reabsorbed from the urine or the bile, and require metabolism to a more polar 

compound to be successfully eliminated from the body. BDDCS classifies drugs based on 

their extent of metabolism and solubility. BDDCS class 1 and 2 drugs are extensively 

metabolized, while poorly metabolized drugs, which are primarily eliminated as parent drug 

in the bile or the urine, populate classes 3 and 4. The BCS is used by the FDA and the EMA 

to grant biowaivers to certain highly permeable, highly soluble drugs3. Therefore, a number 

of assays are outlined to qualify a drug as highly permeable, including determining the in 

vitro permeability rate in monolayer-cultured epithelial cells4. Ideally, this principle could 

be applied to predict the extent of metabolism prior to in vivo studies. Recently, Varma et al. 

demonstrated that BDDCS class can be provisionally classified by in vitro permeability rate, 

measured in MDCK-II cells in their study, and solubility5. Cell-based in vitro permeability 

rate is typically measured in human colorectal adenocarcinoma cells (Caco-2) or Madin-

Darby canine kidney (MDCK) cells, epithelial cell lines that are cultured as monolayers. 

Alternatively, permeability rate can be measured in the parallel artificial membrane 

permeability assay (PAMPA). Permeability rate is often expressed as an absorptive rate, in 

the apical to basolateral direction. We expect that the permeability rate measured in this 

direction will relevantly predict the extent of metabolism, as we hypothesize that 

reabsorption of high permeability-rate drugs across the apical membranes of the kidneys (i.e. 

from the tubule) or the liver (i.e. from the bile) result in poor excretion of unchanged drug 

and a high extent of metabolism. Permeability rate measurements vary significantly between 

laboratories due to differences in experimental conditions such as cell source, passage 

number, culture media, cell density, monolayer age, or transport buffer6. As a result, 
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permeability rate measurements should be carried out in single laboratories and compared 

with a reference standard to categorize if a drug is highly or poorly permeable. Metoprolol is 

widely used as a reference compound to define highly permeable or highly absorbed drugs7, 

but studies have suggested that it is too conservative8,9, resulting in incorrect classification 

of drugs that would otherwise be considered highly permeable and potentially subject to a 

biowaiver in BCS, or correctly classified as extensively metabolized in BDDCS. 

Furthermore, normalization of permeability rate to metoprolol’s permeability rate does not 

reduce the variability of quantitative measurements to predict absorption between 

laboratories10.

Recently, we published an in silico logistic regression model utilizing polarizability and 

predicted metabolic stability. This model successfully predicted the major route of 

elimination of poorly metabolized parent drugs, i.e., biliary versus renal11. When we tested 

extensively metabolized drugs on this model, we noted that many extensively metabolized 

drugs shared similar in silico properties with poorly metabolized drugs that are primarily 

eliminated as unchanged drug in the bile, i.e., a high polarizability or molecular weight and a 

low predicted metabolic stability. Although high molecular weight was historically 

predictive of biliary elimination, we showed that greater than 80% of orally administered 

drugs with MW > 380 Da, the molecular weight threshold that we calculated11, and greater 

than 80% of orally administered drugs with MW > 475 Da, the molecular weight threshold 

for anions calculated by Yang et al.12, were extensively metabolized. Although high 

molecular weight/polarizability and low predicted metabolic stability identify both biliarily 

eliminated and many extensively metabolized drugs, we expected that in vitro permeability 

rate measurements or in silico permeability rate predictions could differentiate poorly 

metabolized drugs, including those eliminated in the bile, from extensively metabolized 

drugs.

This study aims to demonstrate the utility of in vitro permeability rate measurements and in 

silico permeability rate predictions in defining the extent of metabolism using 22 in vitro 

permeability rate datasets drawn from the literature and BDDCS classification as defined by 

Benet et al.13 Additionally, we evaluate lipophilicity as a surrogate estimation of 

permeability rate. We aim to determine a less conservative permeability rate reference 

compound than metoprolol that produces the most accurate predictions of the extent of 

metabolism. Finally, we predict the major route of drug elimination by combining extent of 

metabolism predictions based on permeability rate with a logistic regression model11 

predicting the elimination route of unchanged drugs.

Methods

Datasets

Caco-2, MDCK, and PAMPA data were obtained from the literature5,14–31. We required 

experimental values in each dataset to be determined in the same laboratory. Datasets 

considering only one therapeutic drug class (e.g. fluoroquinolones) were not selected for 

analysis. To be included in our analysis, at least 4 extensively metabolized and 4 poorly 

metabolized drugs were required to be in the dataset. The data were reported as Papp (× 10−6 

cm/s) in the apical to basolateral direction. In silico permeability predictions were calculated 
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in ADMET Predictor™ (Simulations Plus, Inc.) with default settings at pH = 7.4 or in 

VolSurf+32,33 with default options at pH = 7.5 using the predefined models S+ MDCK and 

S+ Peff from ADMET Predictor™ (available from http://www.simulations-plus.com) or 

CACO2 from VolSurf+ (available from http://www.moldiscover.com). Measured octanol/

water partition coefficients (mLogP) were obtained from Benet et al.13, calculated octanol/

water partition coefficients (cLogP) were determined in ADMET Predictor and VolSurf+, 

and calculated cyclohexane/water partition coefficients were determined in VolSurf+. 

BDDCS class was assigned using the classifications assigned by Benet et al13. BDDCS 

classes 1 and 2 are extensively metabolized, while classes 3 and 4 are poorly metabolized. 

Drugs were removed from the permeability rate datasets when BDDCS class and therefore 

extent of metabolism was not categorized by the Benet et al. dataset. In vitro measured 

permeability rate, predicted in silico permeability rate, and measured or calculated LogP was 

assessed with bootstrapped area under the receiver operating characteristic (ROC) curve 

(AUC) for their abilities to differentiate the extent of metabolism (extensively versus poorly 

metabolized). AUCs > 0.8 are considered representative of significant differentiability, 

while values approaching 0.5 represent a lack of discrimination.

Optimal permeability rate reference standard determination and classification statistics

For analysis, extensively metabolized drugs were considered the positive class, while poorly 

metabolized drugs were considered the negative class. Drugs present in 3 or more datasets 

were evaluated for their effect on the sensitivity (ratio of true positives to all positives, 

representing how accurately extensively metabolized drugs are predicted), specificity (ratio 

of true negatives to all negatives, representing how accurately poorly metabolized drugs are 

predicted), positive predictive value (PPV, the ratio of true positives to predicted positives, 

representing how accurately high permeability rates describe extensively metabolized 

drugs), and negative predictive value (NPV, the ratio of true negatives to predicted 

negatives, representing how accurately low permeability rates describe poorly metabolized 

drugs).

Optimal permeability rate standards were selected for each cell line by choosing the drug 

giving the maximum average of sensitivity and specificity, with the requirement that 

sensitivity, specificity, negative predictive value, and positive predictive values must all be 

greater than 0.7.

Two-tier approach to predicting major elimination route

Two datasets5,16 (Varma, Skolnik) met the initial dataset inclusion criteria and included at 

least 4 drugs from each of the three major routes of elimination, as previously defined11. To 

expand the analysis, we included the Pham-The dataset that reports an average permeability 

rate from many sources34. As the logistic regression model can only usefully be applied to 

orally administered drugs11, we reduced each dataset to orally administered drugs only. We 

applied the previously defined logistic regression model11 using predicted metabolic 

stability and polarizability to poorly permeable compounds and calculated the accuracy and 

predictive ability of a two-tier classification approach (Figure 1).
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In silico permeability rate models were evaluated for their performance in the two-tier 

approach. Permeability rates were predicted in ADMET Predictor with the S+ MDCK model 

and the S+ Peff model and in VolSurf+ with the CACO2 model. 100×5 fold cross validation 

was performed as follows: the stratified dataset was randomly assigned to 5 groups 100 

times. For each of the 100 randomizations, a numeric permeability rate threshold giving the 

maximum average between sensitivity and specificity was calculated from 4/5 of the 

stratified data. The threshold was applied to predict the extent of metabolism of each 

compound and the previously published logistic regression model predicting the major route 

of elimination of poorly permeable drugs was applied. The performance of this process was 

tested on the remaining 1/5 of the stratified data. This process was repeated 5 times, using 

each progressive 1/5 of the data as a test set. After sampling through 100 randomizations, 

the threshold and the performance values were averaged to represent the selected numeric 

threshold and performances specific to each in silico model.

Improving permeability rate predictions

To detect regions of permeability rate with very high predictability, we selected a “low” 

permeability rate standard, such that drugs with permeability rates less than this standard 

were very likely to be eliminated unchanged (NPV > 0.8). We also selected a “high” 

standard, which reflected a permeability above which drugs were very likely to be 

extensively metabolized. We considered drugs that were present in all of the Pham-The, 

Skolnik, and Varma datasets, and that gave a high predictive value (PPV or NPV > 0.8) 

among the datasets predicting extent of metabolism.

Results

Dataset

Eleven Caco-2 datasets, 5 MDCK datasets, and 6 PAMPA datasets met the criteria for 

dataset inclusion, with in vitro permeability rate measurements obtained for 214 drugs. 

Supplementary Table I details the population of compounds by cell line and extent of 

metabolism. When biliarily eliminated drugs were listed as part of the dataset, the table 

details the population of compounds via the major routes of elimination.

In vitro permeability models

The area under the ROC curve is a metric that is independent of threshold selection (in this 

case, the permeability rate of the selected reference compound), but portrays the ability of a 

feature (e.g. permeability rate) to discriminate between two classes (e.g. poorly or 

extensively metabolized drugs). Table I reports the ROC AUCs of in vitro permeability rate 

measures and in silico permeability rate predictions as discriminators of the extent of 

metabolism when comparing extensively metabolized drugs to: all poorly metabolized 

drugs, drugs primarily eliminated as unchanged drug in the urine, and drugs primarily 

eliminated as unchanged drug in the bile. The last column exhibits the AUC when 

comparing the permeability rates of drugs primarily eliminated as unchanged drug in the bile 

to those eliminated as unchanged drug in the urine.
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Permeability standard selection and validation

The drugs that met the criteria for standard reference drug selection, listed in order of 

decreasing average between sensitivity and specificity were: labetalol, dexamethasone, and 

methylprednisolone for the Caco-2 cell line; zidovudine and labetalol for the MDCK cell 

line; and theophylline and metoprolol for PAMPA. The drugs selected as permeability rate 

reference compounds for each in vitro method and the mean classification statistical values 

are reported in Table II. Performance of the selected standards in alternative cell lines is also 

shown.

High (metoprolol) and low (chlorothiazide) permeability rate standards were selected to 

provide more discriminating predictability in extreme permeability rate regions. The low 

permeability rate reference standards selected were: chlorothiazide, hydrochlorothiazide, 

nadolol, furosemide, atenolol, and pravastatin. Selecting chlorothiazide as the standard 

resulted in the highest predictive performance of drugs predicted to be eliminated in the bile 

(4/6, 3/7, and 8/22 in Varma, Skolnik, and Pham-The, respectively), with the highest 

retention (specificity) of renally cleared drugs, which are 100% predictive. Metoprolol was 

selected due to its historical relevance as a permeability rate reference compound, with 

evidence of high positive predictive values (Table II). Among all datasets including either 

metoprolol or chlorothiazide, 97±5% (n=20) of the compounds with permeability rate 

greater than that of metoprolol were metabolized, while 90±14% (n=8) of the compounds 

with permeability rates less than that of chlorothiazide were poorly metabolized. Table II 

shows the PPV and NPV of selected intermediate standards. For extensively metabolized 

drugs, the intermediate permeability rate standards (e.g. labetalol, zidovudine) approach the 

PPV of metoprolol, but for poorly metabolized drugs, the intermediate permeability rate 

standards do not approach the NPV of chlorothiazide. Selecting metoprolol and 

chlorothiazide as additional standards allowed us to consider the regions of permeability rate 

that are highly predictive (low and high permeability rates), as well as regions of 

permeability rate with a higher degree of uncertainty in the predictability (low-intermediate 

and high-intermediate permeability rates). Table III depicts the predictive values when a 

compound has a low-intermediate permeability rate (predicted to be poorly metabolized), 

bounded by the permeability rates of chlorothiazide and the selected reference compound, or 

high-intermediate permeability rate (predicted to be extensively metabolized), bounded by 

the permeability rates of the selected reference compound and metoprolol.

Two-tier Predictions

Table IV depicts the predictive values and accuracies for each elimination route and the 

accuracy of predicting the major route of elimination when utilizing a two-tier prediction. 

The in vitro two-tier prediction first uses a drug’s permeability rate as compared to a 

standard reference compound to predict the extent of metabolism, and then applies the 

previously published logistic regression model11 to predict the major route of elimination 

(biliary or renal) of compounds predicted to be poorly metabolized parent drugs. Figure 2 

provides a visualization of the permeability rates of drugs by elimination route, compared 

with selected high (metoprolol), intermediate (zidovudine, dexamethasone), and low 

(chlorothiazide) permeability rate standards, and shows the predicted excretion route of 

parent drug. The two-tier approach using in vitro permeability rate data and the selected 
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reference compounds as noted in group I in Table IVa resulted in an accuracy of 74±7%, 

85±2%, and 73±8% for extensively metabolized, biliarily eliminated, and renally eliminated 

drugs, respectively, while choosing alternative compounds, listed in group III in Table IVa 

resulted in an accuracy of 71±6%, 83±4%, and 73±12% for extensively metabolized, 

biliarily eliminated, and renally eliminated drugs, respectively. Group II represents the 

predictability of permeability rate in very high (≥ metoprolol) or very low (≤ chlorothiazide) 

permeability rate regions. Group IV depicts the accuracy and predictability when indinavir, 

which gave the highest accuracy among the three datasets, but did not meet initial standard 

reference selection criteria, was selected as an intermediate reference compound.

Table IVb shows the performance of the two-tier prediction approach using in silico models 

to predict permeability rate/extent of metabolism utilizing the numeric threshold selected via 

100×5 fold cross validation for each model, accurately predicting 72±9%, 49±10%, and 

66±10% of metabolized, biliarily eliminated, and renally eliminated compounds 

respectively, where the VolSurf+ CACO2 model resulted in the highest predictability for 

biliary and renal elimination, and comparable predictability of metabolized compounds with 

the ADMET Predictor models.

Extreme Outliers

Table V shows the compounds classified as extensively metabolized, but having a very low 

(< chlorothiazide) permeability rate in at least one dataset and compounds classified as 

poorly metabolized, but having a very high (> metoprolol) permeability rate in at least one 

dataset.

We considered the regions of high permeability rate in each dataset that were uniquely 

occupied by extensively metabolized drugs and the regions of low permeability rate that 

were uniquely occupied by poorly metabolized drugs as a proportion of the extensively 

metabolized drugs or poorly metabolized drugs in the dataset, respectively. On average, 

60±30% of the extensively metabolized drugs and 45±32% of poorly metabolized drugs 

occupied their respective unique permeability rate regions (p<0.01). We additionally 

considered the range of permeability rates occupied by metabolized compounds or poorly 

metabolized compounds. Metabolized compounds covered 75.9±56.3 × 10−6 cm/s on 

average, while poorly metabolized compounds covered 24.6±24.7 × 10−6 cm/s on average 

(p<0.0001), and the permeability rate range metabolized drugs covered was greater than the 

range of poorly metabolized compounds for every dataset.

Lipophilicity

Extensively metabolized compounds are significantly more lipophilic than poorly 

metabolized compounds (Figure 3). However, when poorly metabolized compounds are 

separated into major routes of elimination, there is no significant difference in mLogP or 

cLogP calculated in VolSurf+ between extensively metabolized compounds and compounds 

primarily eliminated as unchanged drug in the bile, although 21% of the metabolized 

compounds have a mLogP greater than the maximum mLogP (4.02) of biliarily eliminated 

compounds. There was a significant difference in the cLogP calculated by ADMET 

Predictor for extensively metabolized and biliarily eliminated drugs, but the area under the 
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ROC curve = 0.63. The Pearson correlation coefficient of permeability rate to mLogP is 

0.48±0.26.

Discussion

As our lab has proposed, in vitro measurements of permeability rate can predict when 

extensive metabolism is a major route of drug elimination. Varma et al. 5 demonstrated this 

principle while developing a provisional BDDCS classification based on in vitro measures. 

As permeability rate measurements between laboratories are notoriously variable, we 

wanted to extend the analysis to many datasets amongst Caco-2 and MDCK cell lines and 

PAMPA. We used BDDCS classes previously curated from clinical data by Benet et al.13 to 

represent the extent of metabolism. In vitro permeability rate is differentiable among 

extensively and poorly metabolized compounds as demonstrated by the AUCs > 0.8 shown 

in Table I, and this differentiability persists when poorly metabolized drugs are 

deconstructed into their major routes of elimination of parent drug. As expected, in vitro 

permeability rate does not discriminate between the major elimination routes of poorly 

metabolized compounds. In silico permeability rate predictions can provide a prediction of 

the extent of metabolism quickly, but with less differentiability (Table I).

We proposed that an alternative compound to metoprolol could serve as a permeability rate 

reference compound, such that drugs with permeability rates greater than the selected 

standard are predicted to be extensively metabolized in humans, while lower permeability 

rate drugs are predicted to be eliminated primarily unchanged in the bile or the urine. As a 

conservative reference, metoprolol is ineffective at identifying many metabolized 

compounds by their permeability rate. While compounds with permeability rates greater 

than metoprolol are almost certainly metabolized, using metoprolol’s permeability rate as a 

standard in Caco-2 or MDCK studies predicts many extensively metabolized drugs as 

eliminated as unchanged drug, as indicated by low sensitivity values of 28% in MDCK and 

52% in Caco-2 (Table II). Our goal in choosing a reference standard, then, was to increase 

the negative predictive value, or the proportion of compounds with a low permeability rate 

relative to the reference that are truly poorly metabolized, while preserving the positive 

predictive value as much as possible. Our analysis indicated that labetalol or zidovudine 

might best serve the purpose of a single permeability discriminator for Caco-2 or MDCK 

cells, and theophylline might best serve the purpose of a single permeability discriminator 

for PAMPA. Although labetalol was not selected as the optimal standard reference 

compound for permeability rate studies in MDCK cells, it met the criteria for a standard 

reference compound for both MDCK and Caco-2 cell lines. Labetalol has previously been 

proposed as an alternative permeability rate standard35, and has been used as a reference 

standard in studies to predict BCS class22,28, but we are unaware of any studies that have 

rigorously tested its performance in multiple laboratories as a standard predictor of 

metabolism. In Caco-2 and MDCK cells, using labetalol, zidovudine, dexamethasone, or 

methylprednisolone as a reference compound results in correctly identifying a higher 

proportion of extensively metabolized drugs (an increase in sensitivity) than metoprolol, 

while increasing the negative predictive value, the confidence that a poorly permeable drug 

is poorly metabolized. The standards appear transferable between Caco-2 and MDCK cells, 

while these standards perform poorly for PAMPA. This difference is understandable as 
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Caco-2 and MDCK are biological membranes that include uptake and efflux transporters 

and tight junctions for paracellular transport. However, there is little difference in predictive 

performance of the cell lines or PAMPA (Table IIa), assuming that the experimenter selects 

a standard substrate recommended for that system.

Additionally, there are a number of acceptable standards for the cell lines (Caco-2, MDCK). 

While the methodology we used provides confidence that these standards are preferable 

alternatives to metoprolol, discrepancies exist in the drugs used to develop each dataset. 

Therefore, this list is not exhaustive, and while we have provided a ranking of performance, 

any of the standards listed may be acceptable choices.

Metoprolol was selected naively as an alternative to theophylline in PAMPA, but remains a 

more conservative reference compound. While using less stringent reference compounds 

compared to metoprolol penalizes the positive predictive value of high permeability rate 

drugs and the specificity, the proportion of poorly metabolized drugs correctly identified, 

they still result in >90% positive predictive value and >80% specificity for the selection cell 

line (Table II).

Including additional reference compounds provides more informative predictions. When the 

permeability rate of drugs was broken into 4 sectors with permeability rate relative to high 

(metoprolol), intermediate (labetalol, zidovudine, dexamethasone, or methylprednisolone), 

and low (chlorothiazide) standards, an interesting pattern emerged. We noted that in many 

cases (14/18 combinations of reference standard with in vitro method) a single segregation 

by intermediate permeability references resulted in greater specificities than sensitivities 

(Table II). While only around 50% of the low-intermediate permeability drugs were 

correctly identified as poorly metabolized (NPV), greater than 85% of the high-intermediate 

permeability rate drugs are extensively metabolized (PPV) (Table III). In addition, a smaller 

proportion of poorly metabolized drugs populated the low permeability rate regions unique 

to poorly metabolized drugs than uniquely highly metabolized dugs populated the high 

permeability regions. Finally, the range of permeability rates for metabolized compounds 

vastly exceeds the range observed for non-metabolized drugs. These may indicate that while 

highly permeable drugs require metabolic elimination, as we have hypothesized35, high 

permeability rate may not be mandatory for drug metabolism. Rather, a drug with a low-

intermediate permeability rate is equally likely to be eliminated unchanged or by 

metabolism. As new molecular entities follow a similar distribution of extent of metabolism 

(extensive or poor metabolism)35, we expect that in vitro permeability rate will be an 

indicator of the extent of the metabolism for future compounds.

When predicting the major route of elimination of orally administered drugs with a two-tier 

approach, the uncertainty in each tier is naturally multiplicative, and therefore excellent 

results (>80% accuracy) are difficult to obtain. We were able to obtain accuracy >79% in all 

three datasets when indinavir was used as the reference compound (Table IV). However, 

accuracy is skewed by the success of predicting the highly populated extensively 

metabolized drugs, while zidovudine and dexamethasone provide more balanced accuracy 

across the major routes of elimination. On the other hand, indinavir provides well-balanced 

and higher predictive values, and may be a useful reference compound. It was only present 
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in the Varma (MDCK), Skolnik (Caco-2), and PhamThe datasets and therefore did not meet 

the minimum number of datasets per cell line as a selection criteria for standard reference 

compounds. It would therefore be useful to consider indinavir as a reference compound in 

future studies.

While the previously defined model11 almost always correctly assigns renally and biliarily 

eliminated drugs, extensively metabolized drugs invade low-permeability rate compounds. 

For this reason, there may be little value in assessing metabolic clearance of low-

permeability rate compounds in vitro. Renally cleared compounds are unlikely to be 

metabolized in vitro, while biliarily eliminated compounds may be metabolized in 

microsomes11 and may be confounded with lower-permeability rate metabolized 

compounds. By utilizing a high, intermediate, and low standard, regions of uncertainty can 

be better characterized, and regions of high predictive value can be prioritized. Therefore, if 

the permeability rate is greater than metoprolol, it is safe to assume that the drug is 

extensively metabolized. If the drug has a very low permeability, i.e. less than 

chlorothiazide, the drug is very likely poorly metabolized, and the in silico model predicting 

biliary elimination may be applied. In the three datasets considered, all of the low 

permeability rate compounds predicted as renally eliminated were correctly predicted. When 

the compound exhibits a permeability rate between chlorothiazide and metoprolol, the 

intermediate “best standard” can predict the extent of metabolism, followed by the in silico 

model for a prediction, although in vivo experiments may still be required, particularly if the 

drug is predicted to be eliminated in the bile. This is, however, still an improvement in 

predicting which compounds are likely to be eliminated as unchanged drug in the bile.

Two-tier performance was evaluated with permeability rate in reference to the standard with 

the highest average sensitivity and specificity among all datasets in the cell line containing 

the standard. Therefore, zidovudine was selected as the MDCK cell line standard for the 

Varma dataset. Labetalol was the highest ranking permeability rate standard for Caco-2, but 

was not available in the Skolnik dataset, so the second highest ranking standard, 

dexamethasone, was selected. We selected dexamethasone as the standard reference 

compound for the Pham-The dataset as the permeability rate of labetalol was greater than 

that of metoprolol. This only occurred in one other dataset (Zhu), of the eight datasets, 

including the Pham-The dataset. It is important to note that the permeability rates given in 

the Pham-The dataset are an average from several datasets and therefore do not meet our 

initial selection criteria and may not be representative of permeability rates in a single lab. 

Additionally, the Zhu dataset29 had the greatest percentage of outliers in its dataset (13% of 

the orally administered drugs).

While threshold independent evaluations of in silico permeability rate predictions indicated 

that the VS+ CACO2 model could significantly differentiate extensively from poorly 

metabolized compounds and the MDCK model approached significant differentiability, the 

loss of differentiability compared to in vitro methods may contribute to the poor sensitivity, 

specificity and predictive values in the two-tier approach compared to in vitro methods. We 

therefore recommend that initial permeability rate studies be conducted in vitro.
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As we have recognized previously11, molecular weight is an inadequate predictor of biliary 

excretion, as biliarily eliminated drugs encompass only 12% of orally administered drugs 

with MW > 380 Da and 20% of orally administered drugs with MW > 475 Da and this 

number drops significantly when including non-orally administered drugs. However, 

combining in vitro permeability rate and the logistic regression model vastly improves the 

success rate, achieving up to 67% predictability for biliary excretion being the major route 

of elimination when comparing permeability rate to a conservative reference (i.e. 

chlorothiazide).

Despite the success of this two-tier approach, we noted that there were BDDCS class 1 and 2 

drugs with reported very low permeability rates (< chlorothiazide), and BDDCS class 3 and 

4 drugs with reported very high permeability rates (> metoprolol). We therefore reviewed 

these compounds for discrepencies between the listed BDDCS classes, and conflicting 

literature (Table V). This table indicates the number of times the compound was an outlier 

per the number of datasets containing the compound and the reference compound 

(Cholorothiazide in part A, Metoprolol is part B). Notably, in the BDDCS classification 

publication, extensively metabolized compounds were not limited to compounds 

metabolized by metabolic processes subsequent to absorption, such as cytochrome P450 or 

phase II metabolism, as was initially proposed2,3, but was extended to all extensively 

metabolized drugs (≥70% metabolism). Therefore, drugs such as sulfasalazine, which is 

metabolized by bacteria in the gut, may not follow the high permeability/extensive 

metabolism relationship. No extensively metabolized drugs appear to have been 

misclassified by BDDCS. Of the high permeability rate poorly metabolized drugs, there 

were five BDDCS class 3 and 4 compounds (clonidine, flecainide, metoclopramide, 

phenazopyridine, and pindolol) that may have been misclassified, and may be extensively 

metabolized. Interestingly, 4/5 of these compounds (all except metoclopramide) were listed 

with intermediate fractions excreted unchanged in the urine (35<fe<65), which may indicate 

multiple elimination routes and variable reports regarding the major elimination route. Other 

notes reported in Table V indicate additional possibilities of incorrect prediction due to 

permeability rate. We note that many of the outlier compounds have a low frequency of 

incorrect prediction based on permeability rate (e.g. atenolol is only an outlier in 1/16 

datasets), and subsequent evaluations of permeability rate may indicate that the compound in 

question is correctly identified by permeability rate. More than half of the outlier drugs 

(10/19) were found in the Zhu et al. dataset29.

Lipophilicity

Using both measured and calculated LogPs, we have shown that while extensively 

metabolized drugs are more lipophilic than poorly metabolized drugs, this relationship 

deteriorates by considering biliarily eliminated drugs as a subgroup of the poorly 

metabolized drugs (Figure 3). While there is a significant difference in the LogP calculated 

by ADMET Predictor of extensively metabolized versus biliarily eliminated compounds, the 

area under the ROC curve = 0.63, indicating no differentiability. Indeed, for the measured 

LogP or the VolSurf+ calculated LogPs (where the nonpolar phase is either octanol or 

cyclohexane), there is no significant difference in lipophilicity between metabolized and 

biliarily eliminated drugs, and biliarily eliminated drugs are significantly more lipophilic 
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than renally eliminated drugs. Additionally, some groups have found no difference between 

the lipophilicity of biliarily and non-biliarily eliminated compounds12,36, while others found 

that biliarily eliminated compounds are more hydrophilic37,38. Uncontested, urinary 

excretion is negatively correlated with lipophilicity39. High lipophilicity is often considered 

a surrogate for high passive membrane permeability, and it has been observed that highly 

lipophilic compounds have high affinity for metabolizing enzymes/are extensively 

metabolized by cytochrome P45039–41 and UGTs42. We found a modest correlation between 

the measured LogP and in vitro permeability rates, though with a large standard deviation. 

The active sites of CYP enzymes are localized on the cytosolic side of the endoplasmic 

reticulum, while the active site of UGT enzymes are localized on the lumenal side of the 

endoplasmic reticulum43. The binding region of P-glycoprotein (P-gp), a transporter 

responsible for biliary efflux, is located in the transmembrane region44. Increased 

lipophilicity has been hypothesized to be required for successful permeation across 

membranes encasing UGT enzymes within the endoplasmic reticulum42, or P-gp within the 

plasma membrane37. However, due to the localization of CYP enzymes and other 

transporters, it is unlikely that increased lipophilicity in metabolism and biliary excretion is 

due to enzyme or transporter access across a membrane. The presumed relationship between 

permeability rate and lipophilicity might indicate that highly lipophilic drugs are 

metabolized due to reabsorption from the bile or urine. However, as biliarily eliminated 

compounds are highly lipophilic, it is more likely that lipophilicity, while slightly correlated 

with permeability, actually represents increased hydrophobic interactions that allow 

metabolized compounds and biliarily eliminated compounds to interact with metabolizing 

enzymes39 and transporters36, respectively. Considering the large variability in the 

relationship between mLogP and in vitro permeability rates, as well as overlapping 

lipophilicities of metabolized and biliarily eliminated compounds, lipophilicity is not an 

appropriate predictor of permeability rate and/or extent of metabolism.

Conclusions

In vitro permeability rate of compounds compared to reference compounds such as labetalol, 

dexamethasone, or methylprednisolone are acceptable predictors of the extent of metabolism 

in Caco-2 cells; zidovudine or labetalol are acceptable predictors of the extent of metabolism 

in MDCK cells; and theophylline or metoprolol serve as appropriate references for PAMPA. 

Highly permeable drugs, especially those with permeability rates greater than metoprolol are 

very likely to require metabolic elimination, and while extensively metabolized drugs tend 

to be more highly permeable than poorly metabolized drugs, high permeability rate may not 

be required for a compound to be metabolized. The major route of elimination of a drug 

intended for oral administration may be predicted using a two-tier approach by predicting 

extent of metabolism using permeability rate, and parent drug excretion of poorly 

metabolized drugs with a logistic regression model incorporating calculated metabolic 

stability and polarizability. This two-tier approach correctly predicts 72±9%, 49±10%, and 

66±7% of extensively metabolized, biliarily eliminated, and renally eliminated parent drugs, 

respectively when permeability rates are predicted in silico, but 74±7%, 85±2%, and 73±8% 

of extensively metabolized, biliarily eliminated, and renally eliminated parent drugs, 

respectively when permeability studies are carried out in vitro. Thus, in silico permeability 

rates can predict extensively metabolized and renally eliminated parent drugs reasonably 
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well, but to have confidence in predicting biliary excretion of an NME, a simple in vitro 

permeability study appears necessary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two-tier approach to predicting major route of elimination utilizing in vitro permeability 

rate to determine extent of metabolism and the previously defined logistic regression model 

to predict major route of elimination of poorly metabolized drugs. aLogistic regression 

model including calculated polarizability and metabolic stability published by Hosey et 

al.:11  When Π(x) >0.237, the drug is predicted to be 

eliminated in the bile.

Hosey and Benet Page 17

Mol Pharm. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Two-tier predictions of major elimination route using in vitro permeability rate and in silico 

predicted elimination route of parent drug, segregated by the actual elimination route. Points 

within the grey boxes represent accurately predicted drugs. The number of correctly 

predicted drugs is labeled within the bounds of the permeability rate reference standard 

compounds for each elimination route.
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Figure 3. 
The measured and calculated logarithms of partition coefficients by major route of drug 

elimination.
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Table III

Predictive values of intermediate regions of permeability rates

Reference NPV of permeability rates [Chlorothiazide, 
Reference)

N= PPV of permeability rates [Reference, 
Metoprolol)

N=

Labetalol 0.59±0.27 7 0.87±0.07 7

Zidovudine 0.63±0.25 6 0.77±0.29 5

Dexamethasone 0.50±0.19 6 0.85±0.08 9

Theophylline 0.38±0.25 4 0.83±0.26 11

Methylprednisolone 0.52±0.19 5 0.86±0.10 5

Salicylic Acid 0.55±0.17 4 0.94±0.06 4

Hydrocortisone 0.48±0.11 5 0.88±0.12 9

N represents the number of datasets including both the reference compound and chlorothiazide or metoprolol
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