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ABSTRACT

DNA damage is a natural hazard of life. The most
common DNA lesions are base, sugar, and single-
strand break damage resulting from oxidation, alky-
lation, deamination, and spontaneous hydrolysis. If
left unrepaired, such lesions can become fixed in
the genome as permanent mutations. Thus, evolu-
tion has led to the creation of several highly con-
served, partially redundant pathways to repair or mit-
igate the effects of DNA base damage. The biochem-
ical mechanisms of these pathways have been well
characterized and the impact of this work was re-
cently highlighted by the selection of Tomas Lindahl,
Aziz Sancar and Paul Modrich as the recipients of
the 2015 Nobel Prize in Chemistry for their seminal
work in defining DNA repair pathways. However, how
these repair pathways are regulated and intercon-
nected is still being elucidated. This review focuses
on the classical base excision repair and strand inci-
sion pathways in eukaryotes, considering both Sac-
charomyces cerevisiae and humans, and extends to
some important questions and challenges facing the
field of DNA base damage repair.

INTRODUCTION

Few systems are as crucial to sustaining life as DNA repair.
The genomes in the cells of all organisms are under con-
stant bombardment by genotoxic stresses, both exogenous
(e.g. ultraviolet and ionizing radiation, chemical combus-
tion products) and endogenous (e.g. reactive oxygen species,

nucleases). These agents can modify the chemical struc-
ture of DNA in ways that produce mutations in transcribed
RNA and replicated DNA, alter the ability of regulatory
elements to be recognized by DNA binding proteins, and
lead to cell death by blocking transcription and replication
(1,2). Lesions can occur to most parts of the DNA struc-
ture, ranging from minor and major chemical modifica-
tions, to single-strand breaks and gaps, to full double-strand
breaks. Chemical modifications are the most common le-
sions (3) while double-strand breaks are the most lethal
(4). In eukaryotes, these lesions may occur in both nuclear
and organellar (mitochondria, chloroplasts) genomes. The
constellation of extraordinarily well conserved DNA repair
pathways is responsible for removing these lesions and/or
mitigating their effects. Properly repairing the common base
lesions is important not only to abrogate their immediate
impacts, but also to prevent their conversion into more dele-
terious strand breaks. These repair and tolerance mecha-
nisms have important implications for human health and
disease, especially oncogenesis and degenerative disorders
associated with aging (5–7). This article reviews the most
common and mutagenic classes of lesions and the pathways
responsible for their repair, with a focus on the members of
the classical base excision repair (BER) pathway first delin-
eated by Tomas Lindahl (8), and recent work that has ex-
panded the impact and roles of this pathway. Finally, the
review concludes with a discussion of some current ques-
tions and challenges facing the field of DNA base damage
repair.
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BASE, SUGAR AND SINGLE-STRAND BREAK LE-
SIONS

DNA base lesions, which are chemical modifications to the
base of a nucleotide, are the most common type of genomic
damage: an estimated 120,000 base lesions occur in the 6.5
Gbp nuclear genome of human liver cells per day (3). Base
lesions may be accompanied more rarely by sugar modifica-
tions and single-strand breaks. These lesions can have seri-
ous consequences for numerous cellular processes, resulting
in genomic mutagenesis (i), transcriptional mutagenesis (ii),
and disruption of regulatory DNA elements (1). There are
four major classes of base lesions: oxidation, deamination,
alkylation, and hydrolysis. These lesions are detailed below
and are illustrated in Figure 1.

Oxidation

Reactive oxygen species (ROS; e.g. hydrogen peroxide, hy-
droxyl radical, superoxide anion) are critical components
of normal signaling pathways (9) yet they are also a signifi-
cant source of base damage (9). As a result, these chemical
species are very carefully regulated, deliberately produced
by oxidases and removed by scavengers. ROS can also orig-
inate from the environment, both directly and as an afteref-
fect of the reactions of antioxidants and xenobiotics (10). In
addition, hydroxyl radicals can be produced by ultraviolet
(UV) radiation in the UV-A band (315–400 nm) (11). Ra-
diolysis of water by ionizing radiation also produces ROS
in addition to reactive free protons and electrons which can
produce similar sets of base lesions (12). Thus, there are nu-
merous sources of ROS that can lead to formation of oxida-
tive lesions.

Oxidative attack on pyrimidines [cytosine (C), 5-
methylcytosine (5MeC), thymine (T)] can result in the
saturation of the double bond between pyrimidine carbons
5 and 6 to form hydrate (5-hydroxy-6-hydro, 6-hydroxy-5-
hydro) and glycol derivatives. The 5,6-dihydro derivatives
are formed exclusively by the free protons and/or electrons
generated by ionizing radiation. Carbon 5/6 hydrogens
can be substituted to form 5-hydroxy and 5,6-hydroxy
derivatives. C and 5MeC saturated lesions are especially
prone to deamination, leading to the uracil (U) and T
forms of the lesion, respectively. Uracil glycol rapidly
decomposes to 5-hydroxyuracil (13–15). An exception to
this instability is 6-hydroxy-5-hydrocytosine (13). Further
oxidation of C (and U) can also lead to alloxan and then
5-hydroxyhydantoin while further oxidation of T results
in 5-hydroxy-5-methylhydantoin. The 5-methyl group of
5MeC or T can be oxidized to 5-hydroxymethyl, 5-formyl,
and 5-carboxy C and U derivatives, respectively. The oxi-
dation of the 5-methyl group can be induced enzymatically
as part of an active demethylation pathway in eukaryotes
(16,17). Finally, any pyrimidine can be further oxidized
to urea. Pyrimidine radical reaction mechanisms and
products have been reviewed recently (12,18).

Oxidation of purines [adenine (A), guanine (G)] can pro-
duce ring-opened formamidopyrimidine derivatives, 8-oxo
derivatives, and 2-hydroxyadenine. 8-Oxoguanine can un-
dergo extensive further oxidation to the more mutagenic
lesions, guanidinohydantoin, spiroiminohydantoin, imida-

zolone, oxazolone, cyanuric acid, oxaluric acid and urea.
Purine oxidative reaction mechanisms and products are re-
viewed in (12,18,19).

Deoxyribose in DNA is also vulnerable to oxidation,
which usually results in base hydrolysis to form an abasic
(apyrimidinic/apurinic, or AP) site and/or a strand break in
addition to the modified sugar. Deoxyribose oxidation can
also result in a crosslink between the 5′ carbon of the sugar
and carbon 8 of an attached purine, forming a cyclic nu-
cleotide (12). There is a report from 1992 of oxidative con-
version of deoxyribose to ribose in vivo (20), but no subse-
quent validation has been reported. An abasic site may also
spontaneously form an O-glycosidic bond with an alcohol
(21).

Deamination

Deamination is the replacement of a nitrogen atom with
an oxygen atom, primarily of exocyclic amines. Both C and
5MeC have an exocyclic amine on carbon 4. Deamination
of these bases by a basic molecule produces U or T, respec-
tively (22); deamination of 5MeC to T within the impor-
tant regulatory CpG repeats likely makes up a large number
of the observed mutations in cancer genomes (23). Purine
deamination is mediated largely by the signaling radical ni-
tric oxide. Deamination of the exocyclic amine at carbon
6 of A produces hypoxanthine (inosine). Deamination of
the exocyclic amine at carbon 2 of G produces xanthine.
Uniquely, the internal nitrogen 1 of G can be replaced by
oxygen, producing oxanine (24).

Alkylation

Alkylation is one of the less common types of base le-
sions, but they are often the most mutagenic (25). Methyl
groups can be added to any available amine on both pyrim-
idines and purines as well as to the carbon 6 oxygen or
nitrogen of G or A (26). Lipid peroxidation products can
also react with an exocyclic amine and an adjacent internal
amine in C, A or G to produce exocyclic etheno adducts or
other adducts important for colon carcinogenesis including
2-propanoguanine (27,28). Xenobiotic metabolites (result-
ing from combustion products such as benzo(a)pyrene and
other aromatic polyphenols) are highly reactive and thus
able to form bulky base adducts (29,30).

Hydrolysis

Hydrolysis of the N-glycosidic bond to generate an aba-
sic site may occur spontaneously, via the action of a DNA
N-glycosylase, or as part of a radical reaction mechanism
(12). Hydrolysis of the sugar-phosphate backbone can also
occur through a radical reaction mechanism, as discussed
in Oxidation. The abasic site aldehyde is reactive and may
progress to an interstrand crosslink to a purine on the op-
posing strand (31,32).

Incorporation of damaged nucleotides

While most base damage is introduced into DNA directly,
another source of lesions is from the incorporation of dam-
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Figure 1. Common base lesions. The basic chemical structures of the common base lesions that occur in DNA grouped by type. The basic nucleotides are
shown at the top, and lesions are displayed to indicate the same modification occurring to multiple bases. Hydrogens are omitted. IUPAC numbering for
pyrimidines and purines is illustrated at the top right.

aged bases from the nucleotide pool, particularly U and 8-
oxoguanine. Recent studies demonstrated that misincorpo-
ration of ribonucleotides in DNA is a relatively common
event, at a frequency of ∼4 for every 104 nucleotides inserted
in S. cerevisiae (33).

BASE DAMAGE REPAIR PATHWAYS

DNA base lesions pose a challenge for cells on an ongo-
ing basis. The interconnected and overlapping set of path-
ways collectively known as DNA repair is responsible for
either reverting the lesions back to the original form (re-
pair) or otherwise limiting the potential impact of the lesion
on cellular function (tolerance). Underscoring their critical
role, these pathways are very highly conserved throughout
all domains of life, and deleterious mutations in base dam-
age repair genes are associated with neurodegeneration and
cancer; for example, inherited mutations in the genes en-
coding the NTHL1 and MUTYH glycosylases have been
linked to colorectal cancer (34–36). Typically, lesions can
be repaired through multiple distinct, partially redundant
pathways (37,38). The human and budding yeast Saccha-
romyces cerevisiae pathways are schematized in Figure 2 and

reviewed in the following sections.

Direct lesion reversal

Certain lesions can be directly removed from a base while
leaving the DNA helix intact (Figure 2A). Many alkyl
adducts can be removed by the AlkB family of dioxygenases
(Human: ALKBH2, ALKBH3; S. cerevisiae: not present).
ALKBH2/3 removes alkyl groups (39–41) and exocyclic
adducts (42–44) at the nitrogen 1 position of purines and the
nitrogen 3 position of pyrimidines. The most highly muta-
genic alkylated base, O6-methylguanine, is reversed by O6-
methylguanine methyltransferase (human: MGMT; S. cere-
visiae: Mgt1), a ‘suicide protein’ which irreversibly transfers
the errant methyl group onto itself and is subsequently de-
graded (45). Photolyases (human: not present; S. cerevisiae:
Phr1) are light-dependent enzymes that directly reverse UV-
induced pyrimidine dimers (46). Photolyases were lost early
in the largely nocturnal mammalian lineage (47). While di-
rect reversal efficiently restores DNA to its original pris-
tine form, the majority of DNA damage is repaired through
more general pathways that have the capacity to recognize
and repair a spectrum of lesions.
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Figure 2. Base, sugar, and single-strand break lesion repair pathways. Base lesions can be processed by: (A) direct reversal; (B) nucleotide incision repair
(NIR), ribonucleotide excision repair (RER); (C) classical base excision repair (BER); (D) nucleotide excision repair (NER) or (E) endonuclease V–
mediated excision repair. Within the BER pathway (C), multiple semi-redundant pathways are available for processing abasic sites. Pathway choice depends
on the lesion, and some lesions can be acted on by multiple pathways. Squares (nucleosides) and connected circles (phosphates) represent a section of a
DNA molecule, with the base lesion indicated in red. De novo synthesized bases are shown in blue. The enzyme activity responsible for each step is noted.
The dashed segments indicate a fallback pathway. AP = apurinic/apyrimidinic site; dRP = deoxyribose phosphate.

Base excision and strand incision repair

The base excision repair (BER) pathway efficiently corrects
most non-bulky DNA base lesions that are not addressable
by direct reversal. Thus, BER is responsible for repairing the
vast majority of lesions that occur in DNA, and the path-
way is active in both nuclei and mitochondria. BER is initi-
ated by the recognition and hydrolysis of the damaged base
by a DNA N-glycosylase, leaving an abasic site (48). The
glycosylases are reviewed in depth below and their specific
substrates are summarized in Figure 3. The BER pathway
is illustrated in Figure 2C.

Abasic sites can be processed by one of two subpath-
ways. The first subpathway, called single-nucleotide BER
(SN-BER; also termed ‘short patch’) is initiated by an AP
lyase. The AP lyase cleaves the DNA backbone on the 3′
side of the abasic site by �-elimination (AP �-lyase), which
leaves a 3′-deoxyribose phosphate and 5′-phosphate, or by
�,�-elimination (AP �,�-lyase), which excises the deoxyri-
bose and leaves 3′- and 5′-phosphates (49). Both of these
products block DNA polymerase activity. Removal of the
3′-deoxyribose phosphate (dRP) can be catalyzed by as
little as a basic tripeptide, but is typically carried out by
an AP endonuclease (49). Removal of the 3′-phosphate is
catalyzed by the DNA 5′-kinase/3′-phosphatase, polynu-
cleotide kinase/phosphatase (human: PNKP; S. cerevisiae:
Tpp1) (50,51). The sequential action of an AP �-lyase and
DNA 3′-phosphatase can also process 3′-dRP as an alter-
native to AP endonuclease (52,53). The result is a clean
1-nucleotide gap, which is then directly filled by a DNA
polymerase and sealed by a DNA ligase (54). The second
subpathway, called long patch BER (LP-BER), is initiated
by an AP endonuclease (human: APEX1, APEX2; S. cere-

visiae: Apn1, Apn2), which cleaves the DNA backbone on
the 5′ side of the abasic site (49). This incision leaves a 3′-
hydroxyl group that can directly serve as a substrate for
DNA polymerase � (human: POLB, S. cerevisiae: POL4).
The polymerase fills the removed base and several bases
downstream, displacing the strand on the 3′ side of the
cut site (55). This displaced strand, which is terminated by
the 5′-dRP, is removed by the flap endonuclease (human:
FEN1; S. cerevisiae: Rad27) at its base and a DNA lig-
ase seals the nick, leaving a fully repaired segment of DNA
(48). An AP endonuclease–cleaved abasic site can also be di-
rected into SN-BER through the 5′-dRPase activity of poly-
merase � (56). The mechanism controlling the switch be-
tween subpathways is unclear though it has been proposed
that the human BER scaffold protein XRCC1 plays a role
(57,58). Cellular ATP concentration, cell cycle phase, and
chemistry of the 5′ terminus may also influence subpathway
choice (59,60). The AP lyase activities, which promote SN-
BER, are associated with the subset of glycosylases that rec-
ognize oxidative lesions (49,61–63). This subpathway may
be favored for oxidative lesions which occur in clusters (54).
Attempting LP-BER in such a cluster could result in poly-
merase stalling, mutagenesis, or converting the original sim-
ple base lesion into a more serious double-strand break
(64,65).

Other processes produce lesions that may enter the BER
pathway as intermediates. Bases can spontaneously hy-
drolyze from the DNA backbone to generate abasic sites
with certain base lesions more prone to hydrolysis than
other bases. Oxidative attack on deoxyribose can cause base
hydrolysis and sugar damage (12), which are effectively pro-
cessed by the coordinated actions of AP endonuclease, AP
lyases and 3′-DNA phosphatases (66,67). Complex single-
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Figure 3. Substrate specificities of base excision repair glycosylases. Each square represents a DNA base lesion, with the row indicating the original base
and the column indicating the particular lesion, grouped by shared features. ‘Unmod’ = unmodified. Refer to Figure 1 for lesion abbreviations. Coloration
within each box indicates the glycosylase families that recognize the lesion and excise it from DNA, according to the legend at the top-right. The matrix
at the bottom-right illustrates the specificity of the glycosylase families with respect to the base opposite from a lesion; –– indicates single-stranded DNA.
Note that this diagram does not account for differences in enzyme kinetics between or within families. Example: OGG (yellow) excises guanine-derived
formamidopyrimidine, 8-oxoadenine, and 8-oxoguanine when these lesions are opposite to cytosine.

strand breaks can occur through the action of abortive
topoisomerase or DNA ligase activity [via adenosine 5′-
monophosphate (AMP)] adjacent to a lesion, which become
trapped by covalent linkage to an end-group phosphate.
Tyrosyl–DNA phosphodiesterases and aprataxin deadeny-
lase, respectively, are able to reverse these polymerase-
blocking groups (68,69). Resolution of these structures al-
lows BER to complete repair. These end-trimming path-
ways were reviewed in depth recently (70).

Classical BER has been joined by two recently discov-
ered strand incision repair pathways that feed into LP-
BER: (i) nucleotide incision repair (NIR) and; (ii) ribonu-
cleotide excision repair (RER) (Figure 2B). NIR is initi-
ated by AP endonuclease, which is able to cleave the DNA
backbone 5′ to pyrimidine lesions (71–77). As AP endonu-
cleases are highly abundant, NIR can constitute the ma-
jor repair activity against a subset of pyrimidine base le-
sions (74). RER is initiated by the RNase H2 complex
(human: RNASEH2A-RNASEH2B-RNASEH2C; S. cere-
visiae: Rnh202-Rnh203), which incises the strand 5′ to the
misincorporated ribonucleotide (78). RNase H1 (human:
RNASEH1; S. cerevisiae: Rnh1) has recently been shown
to also incise 3′ to the ribonucleotide, producing a single-
nucleotide gap (79), leaving open the possibility of feeding
into SN-BER for completion of repair. Advances in RER
and other repair pathways for ribonucleotides have been re-
viewed in depth (80).

The recent broadening of the range of lesions processed
through BER, as well as the discovery of strand incision as a
major alternate first step in the repair of many classic BER
substrates, suggests that the term ‘base excision repair’ is no
longer appropriate. Perhaps a more suitable term is ‘base
excision and strand incision repair’ (BESIR), which more
closely reflects the range of activities of the pathway compo-
nents. The enzymes most critical for the initiation and pro-
cessing of lesions in BESIR, the glycosylases, AP endonu-
cleases, end-trimming enzymes, polymerases, and ligases are
reviewed in the following sections.

Alkylpurine–DNA glycosylases. The alkylpurine–DNA
glycosylases (human: MPG; S. cerevisiae: Mag1) are
responsible for excising methylated purines (especially
3-methyladenine) (81–86), purine exocyclic adducts (e.g.
1,N6-ethenoadenine) (87,88), deaminated purines (e.g. hy-

poxanthine, xanthine, oxanine) (89,90), the 8-oxoguanine
oxidation product cyanuric acid (91), uracil (86) and
O-glycosidic additions to deoxyribose (21). Many of these
substrates can be excised from both double-stranded and
single-stranded DNA (86,90). Mag1 can also remove A
mispaired with C (87). Intriguingly, MPG is able to catalyze
the reverse reaction, forming an N-glycosidic bond with a
free base, potentially allowing the correctly-paired base to
be directly swapped (92). The biological relevance of this
activity would be dependent on the relative concentrations
of free bases in the nucleus, and it could be counterpro-
ductive if an incorrect base were inserted which was not
excisable by MPG.

These glycosylases do not possess lyase activity and their
resulting abasic sites can be processed both by SN- and LP-
BESIR subpathways (63). Mag1 expression is inducible by
the DNA damage checkpoint pathway (93–97) while MPG
transcript levels are cell-cycle regulated (98). MPG has been
identified both in the nucleus and mitochondria (99) while
Mag1 is restricted to nuclei (100). MPG activity is enhanced
by XRCC1 and a component of nucleotide excision re-
pair, HR23 (101,102). MPG can bind to PCNA along with
APEX1. APEX1 may stimulate MPG turnover by displac-
ing MPG from the abasic site products, though the evidence
to support this mechanism is mixed (103–105). MPG can
also form a dimer with methylcytosine binding domain pro-
tein 1 (MBD1), which sequesters MPG at methylated CpG
promoters. Upon alkylative attack on G, MBD1 dissoci-
ates from both MPG and the DNA allowing MPG to redis-
tribute throughout the genome (85). This mechanism may
provide an alkylation-responsive reservoir for rapid mobi-
lization to repair alkylation damage.

Endonuclease III-like glycosylases. The endonuclease III-
like N-glycosylase family (human: NTHL1; S. cerevisiae:
Ntg1, Ntg2) is responsible for repairing a wide array
of oxidative lesions in double-stranded DNA, primar-
ily oxidized pyrimidines (e.g. 5-hydroxycytosine, cytosine
hydrates, thymine glycol) (61,106–116), ring-fragmented
purines (108,117–119), and 8-oxoguanine opposite a purine
(120,121). There are several differences between these pro-
teins with respect to substrate specificity. For example, Ntg1
and NTHL1 do not process 5-hydroxycytosine as efficiently
as Ntg2 processes this lesion (74,106). Ntg1, however, is
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better at processing cytosine hydrates than is Ntg2. Ntg2
and NTHL1 can excise certain 8-oxoguanine oxidation
products while Ntg1 does not (91,119,122). Ntg1 can pro-
cess dihydrothymine while Ntg2 cannot (114). This fam-
ily of enzymes possesses AP �-lyase activity which directs
lesions into the SN-BESIR subpathway described above
through a coordinated reaction mechanism, but this fam-
ily can also contribute to the processing of abasic sites gen-
erated spontaneously or by monofunctional glycosylases
(55,62,123,124).

NTHL1 activity on its own is over 100 times slower than
is the activity of the bacterial counterpart, endonuclease III
(125), and the rate-limiting step is release from the lyase-
cleaved abasic site (126). APEX1 enhances release from
that product (112). This mechanism may protect the toxic
strand-break intermediate in a ‘passing the baton’ or ‘hand-
off’ substrate channeling mechanism (127). Other binding
partners (e.g. XPG, YB-1, XRCC1) enhance the activity of
NTHL1 though the precise mechanism behind the enhance-
ment is unknown (102,112,125,128).

Ntg1 and Ntg2 are the result of a genome duplication in
the evolutionary history of S. cerevisiae (129,130), and they
have segregated certain characteristics that the single orig-
inal enzyme possessed. NTHL1 and Ntg1 localize to both
the nucleus and mitochondria and are involved in repairing
both genomes while Ntg2 is strictly nuclear (106,114,131–
136). On the other hand, NTHL1 and Ntg2 both contain a
conserved iron-sulfur center but this feature is absent from
Ntg1 (61,108,137). This iron-sulfur center is redox-active in
vivo and has been hypothesized to be involved in DNA dam-
age sensing. In brief, electrons can be transported over long
distances through the �-orbitals of the DNA base pair stack
between bound redox-active proteins containing iron-sulfur
centers, a process called DNA-mediated charge transport.
Reduction of the iron-sulfur center allows dissociation of
the repair enzyme from the DNA. DNA lesions can disrupt
the base stack, retarding charge transport. This condition
causes the repair protein to remain bound to the DNA and
slide along the helix until it encounters the lesion (138–141).
Little is known about the transcriptional regulation of this
family of proteins but NTHL1 is upregulated in S phase
(118) and the Ntg1 promoter has a conserved (within yeast)
promoter element necessary for oxidative stress induction
(142).

Endonuclease VIII-like glycosylases. The endonuclease
VIII-like N-glycosylase family (Human: NEIL1, NEIL2,
NEIL3; S. cerevisiae: not present) is responsible for repair-
ing a wide array of oxidative lesions primarily in single-
stranded DNA. Most of the substrates of this enzyme fam-
ily overlap with those of NTHL1 (74,115,117,119,143–156).
NEIL1 and NEIL3 can also process 8-oxoguanine oxi-
dation products in telomere-associated quadruplex DNA
(157,158), NEIL3 can process thymine glycol in the same
structures and is additionally able to process lesions near
strand breaks which are refractory to NTHL1 and the 8-
oxoguanine DNA glycosylase, OGG1 (159,160). NEIL1
can excise the internally deaminated G, oxanine (161).
NEILs are also involved in repair of some interstrand
crosslinks (162).

This family of enzymes possesses AP lyase activity. In
contrast to NTHL1, NEIL1 and NEIL2 are AP �,�-lyases
(146,147) while NEIL3 employs the typical �-elimination
mechanism (119). The �,� mechanism directs NEIL1 or
NEIL2-excised lesions into the SN subpathway, but there
is also evidence that these lesions can undergo LP repair
(163). NEIL1 or NEIL2, together with PNK, can provide
backup dRPase activity to clean up after other AP �-lyases
(53).

NEILs provide specialized repair activities in the cell.
NEIL1 participates in pre-replication repair, in which
NEIL1 recognizes lesions within the single-stranded region
of the replication fork prior to being read by the DNA poly-
merase. NEIL1 excises the base and creates a strand break,
forcing the polymerase to stall and backtrack so that the le-
sion can be repaired (164,165). NEIL2 associates with RNA
polymerase II and CSB to allow repair of lesions encoun-
tered as transcription is progressing (143,157,166). There is
some evidence from in vitro activity assays, immunoprecip-
itation, and HEK293 cell culture experiments that NEIL1
and NEIL2 can compensate for one another, but this ability
appears to be limited (165,167,168).

NEIL1 is strongly upregulated during S phase (146) as
well as under oxidative stress (169). In contrast, expres-
sion levels of NEIL2 are constant throughout the cell cy-
cle (147) but are still responsive to oxidative stress (170),
perhaps reflecting the distinct roles of these repair factors
in replication and transcription. Both NEIL1 and NEIL2
have been found in mitochondria as well as in the nucleus
(171,172). NEIL2 has been identified in association with mi-
crotubules but the relevance of this interaction is unknown
(173). As with NTHL1, NEIL2 activity can be stimulated
by the scaffold protein XRCC1 (102). Intriguingly, NEIL1
transcript is subject to RNA editing by the adenosine deam-
inase ADAR1, which results in a K→R change in the lesion
recognition site. The edited form is less efficient at removing
thymine glycol, but more efficient at removing 8-oxoguanine
oxidation products (174). However, the biological role of
this editing is not yet clear.

8-Oxoguanine–DNA glycosylases. The 8-oxoguanine–
DNA glycosylase family (human: OGG1; S. cerevisiae:
Ogg1) is responsible for excising G oxidation products
with intact ring systems including the extremely common
8-oxoguanine and additional modifications, specifically
across from C (175–188), and G-derived formamidopyrim-
idine (176,181,186,188). This family of enzymes possesses
an AP �-lyase activity specifically across from a C (63,175).
Some weak �-elimination has also been detected (180)
and Ogg1 has a minor dRPase activity, perhaps due to
�-elimination coupled with the Tpp1 3′-phosphatase (52).
OGG1 and Ogg1 lyase activity is fairly inefficient com-
pared to their glycosylase activities (182) but OGG1 can be
stimulated 5-fold in the presence of APEX1 (183,189,190).
OGG1 lyase activity can also be replaced by NEIL1/PNK,
which binds abasic sites more strongly than OGG1 (191).

OGG1 is expressed as multiple isoforms resulting from
alternative splicing. All isoforms contain a mitochondrial
matrix targeting signal (MTS), but only isoform 1a con-
tains a strong nuclear localization signal (NLS) (192). Iso-
form 1a is primarily localized to nuclei and to the nuclear
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matrix but has also been detected in small amounts in mi-
tochondria (193,194). All the other isoforms, which differ
in the C-terminus, are primarily localized to mitochondria,
with isoform 2a forming the majority of the mitochondrial
pool, associating with the inner membrane (193,195). As
with NEIL2, OGG1 associates with microtubules (196), but
the function of this interaction has not been elucidated.

OGG1 expression can be upregulated by treatment
with alkylating agents and antioxidants, but not by ROS
(190,197,198). OGG1 activity may be stimulated by ribo-
somal protein S3, which may bring OGG1 and APEX1
to lesions; however, S3 can also bind 8-oxoguanine le-
sions strongly enough to prevent excision (199,200), which
might suggest a role in the nucleolus. OGG1 can also be
post-translationally modified. PKC phosphorylates OGG1,
though the function of this modification is unknown (194),
while ROS-inducible p300-mediated acetylation weakens
abasic site binding, thus enhancing APEX1-induced OGG1
activity (201).

Uracil–DNA glycosylases. The uracil–DNA glycosylase
superfamily is one of the most highly conserved and di-
verse families of BESIR enzymes (202). While S. cere-
visiae only has one (Ung1), mammals have four (UNG,
SMUG1, TDG, MBD4). Mammalian glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and cyclin O (CCNO)
have also been reported to have uracil excision activity (203–
205). These activities have not been characterized beyond
these initial reports, though a 2015 study reported that while
GAPDH binds strongly to abasic sites, no uracil excision
activity was observed (206). Note that there was some ini-
tial confusion in the literature between CCNO and the nu-
clear UNG isoform UNG2; CCNO was originally named
UDG2, which led some early studies of UNG2 to conflate
the two proteins.

Uracil–DNA glycosylase (human: UNG; S. cerevisiae:
Ung1) is the major enzyme responsible for removing U
(resulting from C deamination or misincorporation) (207–
215) and oxidized derivatives (e.g. 5-hydroxyuracil, alloxan)
(216,217), acting on both double-stranded and single-
stranded DNA (207,208). UNG localizes to both the nu-
cleus and mitochondria as separate isoforms from alternate
promoters (UNG1: mitochondrial; UNG2: nuclear) (218–
222). In contrast, Ung1 is a single isoform that localizes to
both compartments (223). UNG1 is the only known human
mitochondrial uracil–DNA glycosylase. Both UNG2 and
Ung1 are upregulated in S phase (218,224–227). UNG2 is
controlled by both cyclin-dependent kinases (228,229) and
TP53-dependent phosphatase (230,231) and associates with
replication complexes (209,232–234). UNG1 is induced
with oxidative stress (235). The expression of both human
UNG forms are regulated by several miRNAs (236). With
a relatively high KM compared to the other uracil–DNA
glycosylases (237), UNG may be specialized for rapidly de-
tecting and excising lesions encountered by the replication
fork and for quickly correcting U misincorporated by DNA
polymerase.

The other uracil–DNA glycosylase family members
have specialized roles. SMUG1 is nuclear and recog-
nizes the same substrates as UNG1 and UNG2 (216,238–
241) in addition to U and T oxidation products (e.g.

5-hydroxymethyluracil, 5-formyluracil, alloxan) (216,239–
242) with some weak activity for exocyclic adducts of C (e.g.
3,N4-ethenocytosine) (243) and deaminated purines (e.g.
oxanine, xanthine) (161,244). SMUG1 overall is less effi-
cient than UNG, but SMUG1 prefers single-stranded DNA
100-fold as compared to double-stranded DNA (238).
SMUG1 also has a lower KM than UNG, which gives it an
advantage at lower substrate concentrations (237). As a re-
sult, SMUG1 is more efficient at repairing rare lesions in
nonreplicating chromatin (245). Additionally, SMUG1 has
novel activity removing 5-hydroxymethyluracil from rRNA
in the nucleolus (246), presumably to perform quality con-
trol on rRNAs while they are unfolded and most vulnerable
to damage.

TDG is a nuclear mismatch-specific glycosylase which
excises U and T (247–249), highly oxidized 5MeC deriva-
tives (e.g. 5-formylcytosine, 5-carboxylcytosine) (250–252),
oxidized T derivatives (e.g. 5-hydroxymethyluracil, 5-
formyluracil, thymine glycol) (250,253,254), deaminated A
(hypoxanthine) (250), and exocyclic C derivatives (255–
258). All substrates are recognized primarily when across
from G. TDG has a strong preference for a 5′-adjacent G,
as is found in CpG islands (259), and has been strongly
associated with both DNA methyltransferases (260,261)
and transcription activation (262–266). Recently, a set of
5MeC oxidases, the TET dioxygenases, have been discov-
ered which specifically oxidize the 5-methyl group, convert-
ing the methylated base into a substrate for TDG (16,17).
Thus, TDG has been implicated in active DNA demethyla-
tion as well as reducing the mutation rate of these critical
genetic control regions (267). TDG is expressed inversely
with UNG, degraded when cells enter S phase and upreg-
ulated in G2 (268,269), and is translationally regulated by
the miRNA miR-29 (270,271). TDG activity is controlled
by p300/CBP-SIRT1 acetylation sites which reduce glyco-
sylase activity, adjacent PKC� phosphorylation sites that
block acetylation (269,272,273), and transient sumoylation
which stimulates abasic site release (274,275).

MBD4 is a recently discovered nuclear mismatch-specific
uracil–DNA glycosylase, which is a fusion of a 5MeC bind-
ing domain and a uracil–DNA glycosylase domain (276).
MBD4 associates with methylated CpG islands (277) and
excises U, T and oxidized T derivatives (e.g. 5-formyluracil,
thymine glycol) (253,254,278,279) when opposite G. Many
other functions have been associated with MBD4 (280). The
glycosylase activity of MBD4 has not been fully character-
ized, but it may be involved in active demethylation similar
to TDG (261,281).

MutY family glycosylases. The MutY family is a G
mismatch-specific adenine–DNA glycosylase (human:
MUTYH; S. cerevisiae: not present). A:G mispairs are the
result of a misinsertion of A across from 8-oxoguanine.
MUTYH can excise both A and oxidized A (e.g. 2-
hydroxyadenine) across from either G or 8-oxoguanine
(282–284). MUTYH is present in both nuclei and mito-
chondria (193,285) and is upregulated in S phase (286). In
the nucleus, MUTYH is associated with replication com-
plexes (286,287) so that mispairs can be corrected shortly
after replication. There are multiple known isoforms of
MUTYH, but their distinct roles are not known (283,285).
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MUTYH activity is enhanced by the mismatch repair
complex MSH2/6 (288) and APEX1 (289), but it also
inhibits OGG1 excision across from, and APEX1 excision
of, its resulting abasic site (290). As with NTHL1 and
Ntg2, MUTYH also contains an iron-sulfur center, and
may be regulated by a similar charge transport mechanism
(140).

AP endonucleases. AP endonucleases cleave the DNA
backbone 5′ to an abasic site or 3′-dRP left behind by AP
�-lyase (291–299). AP endonucleases can also recognize ox-
idized abasic sites (66,67,300). APEX1 and Apn1 have an
additional functionality in NIR by directly incising 5′ to
oxidized and alkylated pyrimidines (71–77) and they can
remove a 3′-terminal lesion with weak exonuclease activ-
ity (299,301–304). APEX1 can also cleave at abasic sites
within RNA playing a role in RNA quality control (305–
307). However, APEX1 has many other known functions
due to the redox-sensitive transcription factor domain (re-
viewed in (308)). Interestingly, while APEX1, APEX2, and
Apn2 belong to the exonuclease III family (309), Apn1 be-
longs to the endonuclease IV family (310).

APEX1 and APEX2 are both upregulated in S phase
(311,312) and during DNA damage (313). APEX1 activ-
ity is reduced by SIRT1-removed acetylation (314) and
CK2-added phosphorylation (315). APEX1 activity is also
stimulated by HSP70 binding (316,317), the RAD9-RAD1-
HUS1 checkpoint clamp (318), and XRCC1 (319).

APEX1, APEX2, and Apn1 all localize to both the nu-
cleus and mitochondria (294,320–325) while Apn2 is exclu-
sively nuclear (295,296). APEX2 shows the most predom-
inant mitochondrial localization of these enzymes (235).
APEX1 and Apn1 make up the majority of AP endonu-
clease activity in both nuclei and mitochondria with the
weaker activities of APEX2 and Apn2 playing minor,
backup, or specialized roles (235,294,297,326).

Other end-trimming enzymes. Tyrosyl–DNA phosphodi-
esterase 1 (human: TDP1; S. cerevisiae: Tdp1) directly cat-
alyzes the release of a cross-linked topoisomerase 1 from
the end-group phosphate. PNKP/Tpp1 then removes the 3′-
phosphate and adds a 5′-phosphate to the break site. Topoi-
somerase II lesions are removed by TDP2 (S. cerevisiae:
not present), leaving a 5′-phosphate (68). Aprataxin dead-
enylase (human: APTX; S. cerevisiae: Hnt3) directly re-
moves the 5′-5′ AMP left behind by an aborted ligation (69).
TDP1/TDP2/Tdp1 and APTX/Hnt3 have all been found
in both the nucleus and mitochondria (327). End-trimming
enzymes have been reviewed in depth recently (70).

DNA polymerases. In humans, X-family DNA poly-
merases are responsible for the replacement of the excised
nucleotides in the nucleus, primarily polymerase � (POLB)
and secondarily polymerase � (POLL). These polymerases
may be tightly coupled to APEX1 processing of abasic sites
by forming a complex with the XRCC1 scaffold protein
(328). Both human polymerases � and � were reviewed in
detail recently (329,330). While S. cerevisiae has a POLB
homolog, Pol4, it has not been associated with BESIR;
Pol4 seems to be involved with gap-filling in double-strand
break repair, an activity also associated with polymerase

� (331). Instead, yeast rely on the major replicative poly-
merase, polymerase � (Pol3/Pol31/Pol32), to complete re-
pair (332,333). Both human and yeast mitochondrial BE-
SIR appear to utilize the mitochondrial DNA polymerase
� to complete repair of the mitochondrial genome as no X-
family polymerases have been identified with mitochondrial
localization (334).

DNA ligases. Base excision repair is completed by the ac-
tion of a DNA ligase. DNA ligase I (human: LIG1, S. cere-
visiae: CDC9) is critical for the completion of nuclear BE-
SIR; in yeast this enzyme plays a more general role, lo-
calizing to both nuclei and mitochondria (335–337). The
activity of human LIG1 is complemented by DNA ligase
III (LIG3), which localizes to both nuclei and mitochon-
dria and specializes in SN-BESIR (338). Both LIG1 and
LIG3 in humans associate with the XRCC1 scaffold protein
(335). The role of ligases in DNA repair has been reviewed
in depth recently (339,340).

Endonuclease V-mediated excision repair

Recently, a unique repair pathway initiated by endonucle-
ase V (human: ENDOV; S. cerevisiae: not present) was dis-
covered (341) (Figure 2E). ENDOV recognizes exocyclic-
deaminated purines and cuts the DNA backbone 3′ to the
nucleotide immediately 3′ to the lesion, preferentially in
single-stranded regions. Through an unknown combination
of nucleases, a short single-strand gap is created in the re-
gion of the nick, which is filled by DNA polymerase and
sealed by DNA ligase. The discovery and current knowl-
edge regarding this enzyme family is reviewed in (342).

Nucleotide excision repair

The nucleotide excision repair (NER) pathway corrects
bulky chemical base adducts and intrastrand crosslinks
such as those produced by UV irradiation which induce he-
lical distortion (Figure 2D). NER can partially compen-
sate for BESIR loss (343), and proteins involved in NER
are implicated in the repair of certain BESIR substrates
(344–348). NER is active in the nucleus and there is no ev-
idence of mitochondrial NER activity. As there are dozens
of copies of the small mitochondrial genome, it may be more
efficient to degrade severely damaged mitochondrial DNA
molecules and resynthesize new ones than to repair them
(reviewed in (349)). NER can be induced generally (global
genome repair, GGR) or in response to a stalled RNA poly-
merase (transcription-coupled repair, TCR). In brief, both
pathways involve the dual incision of the strand around the
damage, leaving a 24–32 nucleotide gap which is filled by a
DNA polymerase and sealed with a ligase (350–353).

OPEN QUESTIONS AND CHALLENGES

The biochemical mechanisms of eukaryotic DNA base
damage repair have been elegantly defined by the work of
Tomas Lindahl, Aziz Sancar, Paul Modrich and all those
who followed. However, much remains to be elucidated re-
garding the in vivo regulation of the DNA repair pathways,
and the interconnections between them and to the core
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metabolic pathways of the cell. One critical question is how
DNA repair pathways could be regulated by partitioning
between the nucleus, cytosol, mitochondria, and plastids;
recent studies in S. cerevisiae have revealed shifts in local-
ization depending on genotoxic stress conditions termed dy-
namic compartmentalization (133,134). Another critical is-
sue is to understand how lesions are directed into the multi-
ple, redundant pathways available to them; for example, the
choice of incision vs. excision in BESIR, endonuclease or
lyase processing of abasic sites, or between single-nucleotide
and long-patch BESIR. In addition, novel pathways initi-
ated by endonuclease V and RNase H2 will require focused
study to determine how they fit in with the established DNA
repair landscape.

A major challenge lies in understanding how cells sig-
nal the presence of unrepaired base damage, though some
pieces of the puzzle are starting to be identified. Recent
work has demonstrated that reactive oxygen species are gen-
erated in response to DNA base damage in S. cerevisiae
(354), but the biochemical pathway leading to generation of
ROS has not yet been defined. Human OGG1 can allosteri-
cally recognize free 8-oxoguanine, one of its major reaction
products, which counterintuitively leads to activating cel-
lular signaling pathways including those mediated by the
Ras, Rac and Rho small GTPases (355–357). Poly(ADP-
ribose) is generated at single-strand breaks, including those
produced during BESIR, and may protect the break and
recruit repair proteins (358). Several recent studies have
shown that an NER-generated single-strand gap can be ex-
panded by exonuclease 1, producing an extended gap that
activates the ataxia telangiectasia and Rad3-related (ATR)
signaling pathway, connecting NER-repairable lesions to
the DNA damage cell cycle checkpoints (359–362). The
ability of NER-repairable lesions to activate ATR raises
the intriguing possibility that other unrepaired base lesions
could activate ATR signaling and checkpoint activation ei-
ther through NER or through an excision intermediate pro-
cessed by exonuclease 1. Gaining a clear understanding of
these putative signaling pathways and their downstream ef-
fectors will be an important advance in elucidating the over-
all regulation of DNA repair.

Along the same lines as base damage signaling path-
ways, we have an only rudimentary understanding of how
base damage repair is regulated at the level of gene expres-
sion and/or post-translational modifications. In a number
of cases, transcriptional regulation that occurs in response
to genomic insult has been documented but whether ad-
ditional regulatory mechanisms are critical is not known
(363). In only a few specific cases has the functional im-
portance of post-translational modifications of DNA repair
proteins been defined (364). Research into these questions
will be critical to fully understand how cells respond to and
deal with potentially deleterious DNA damage.

Another important issue is to determine how DNA re-
pair pathway regulation and deficiencies are related to hu-
man health. A few common inherited polymorphisms have
been described, including OGG1 S326C (365), which may
have subtle impacts on human health. Other rare inherited
variants have been reported in NTHL1 and MUTYH with
strong associations to colorectal cancer (34,36). Variations
in the abundance and localization of BESIR proteins have

also been reported in a number of cancers (366–368). The
impact of many of these variations on oncogenesis and pa-
tient prognosis is not yet clear. Recently, the relationship of
metals to inhibition of BESIR enzymes including the NIEL
glycosylases has been a topic of investigation, especially as
this inhibition may interact with heavy metal exposures and
neurological diseases characterized by metal accumulation
(369).

A major challenge to studying DNA damage and repair
is the lack of precision tools and endpoints. The majority of
our current in vivo knowledge of DNA repair pathways re-
lies on genetic manipulations, genotoxic agents, and muta-
genic and phenotypic readouts. Genetic manipulations and
genotoxic agents shift lesion abundances in broad, nonspe-
cific ways and their effects are scattered randomly through-
out the genome. Mutagenic and phenotypic readouts are
several levels removed from the lesions, introducing many
opportunities for confounding. Ideally, we would want to
introduce a defined lesion at specific loci and then be able to
observe how those lesions are processed and resolved. Some
recently developed tools and methodologies provide steps
in this direction. Micro-irradiation is a promising approach,
relying on targeted sensitizers and lasers to provide more lo-
calized induction of DNA damage (370). One such tool for
the induction of targeted oxidative stress is the KillerRed
fluorescent protein derivative, which generates singlet oxy-
gen radicals in response to green light (371). KillerRed has
been used to target specific genomic regions with oxidative
damage allowing the subsequent response to be detected
and analyzed (372). Approaches to measure lesions in a
more quantitative and specific manner have also been devel-
oped. One method releases lesions from genomic samples
using glycosylases and then analyzes their frequencies with
chromatography/isotope-dilution tandem mass spectrome-
try (373). Another method called Excision-seq allows the
mapping of classes of lesions by releasing damaged bases
with a glycosylase from a genomic sample and subjecting
the products to massively parallel sequencing (374); other
genome-scale techniques have been reviewed in (375). Tech-
niques to analyze the localization of DNA repair proteins
have also been developed as localization of DNA repair pro-
teins has emerged as a potentially important level of regula-
tion. One such method is Q-SCAn, which relies on fluores-
cent marker proteins to quantify the distribution of proteins
among subcellular compartments (376). While all of these
novel techniques still have their limitations, advances such
as these will be important to continue dissecting the details
of DNA base damage and repair.

The 2015 Nobel Prize in Chemistry was awarded in recog-
nition of the seminal work that defined the biochemical
mechanisms underlying the critical DNA repair pathways.
This work spawned a vitally important field of study, which
has greatly improved our knowledge of the details and im-
pacts of DNA base damage and repair. However, there are
still major challenges in understanding how these pathways
are regulated and integrated with one another to ensure ge-
nomic integrity.
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