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ABSTRACT

Sequence variations in regulatory DNA regions
are known to cause functionally important conse-
quences for gene expression. DNA sequence vari-
ations may have an essential role in determining
phenotypes and may be linked to disease; how-
ever, their identification through analysis of mas-
sive genome-wide sequencing data is a great chal-
lenge. In this work, a new computational pipeline,
a Bayesian method for protein–DNA interaction with
binding affinity ranking (BayesPI-BAR), is proposed
for quantifying the effect of sequence variations on
protein binding. BayesPI-BAR uses biophysical mod-
eling of protein–DNA interactions to predict single
nucleotide polymorphisms (SNPs) that cause signif-
icant changes in the binding affinity of a regulatory
region for transcription factors (TFs). The method in-
cludes two new parameters (TF chemical potentials
or protein concentrations and direct TF binding tar-
gets) that are neglected by previous methods. The
new method is verified on 67 known human regula-
tory SNPs, of which 47 (70%) have predicted true TFs
ranked in the top 10. Importantly, the performance of
BayesPI-BAR, which uses principal component anal-
ysis to integrate multiple predictions from various TF
chemical potentials, is found to be better than that
of existing programs, such as sTRAP and is-rSNP,
when evaluated on the same SNPs. BayesPI-BAR is
a publicly available tool and is able to carry out par-
allelized computation, which helps to investigate a
large number of TFs or SNPs and to detect disease-
associated regulatory sequence variations in the sea
of genome-wide noncoding regions.

INTRODUCTION

The rapid development of technology has made it increas-
ingly easier to characterize genetic variants in humans and
many other species (1). In most species, the number of DNA
sequence variants between individuals range from thou-

sands to millions, and some of these sequence variations
are linked to traits and diseases. A good understanding of
sequence variations in gene regulation may not only reveal
disease-associated sequence variants and gene functions but
also improve future diagnoses and therapies. Advances in
high-throughput sequencing techniques have allowed re-
searchers to carry out genome-wide genetic and epigenetic
studies in human disease. In human cancer research, thou-
sands of tumor and normal samples have been sequenced
by international consortia such as The Cancer Genome At-
las (TCGA) and the International Cancer Genome Consor-
tium (ICGC) (2,3). The analysis and interpretation of these
massive sequence data sets present a great challenge.

The characterization of mutations poses different chal-
lenges within and outside gene coding regions. Generally,
many useful gene-based features for sequence variations oc-
cur within coding regions because of their immediate ef-
fect on the encoded amino acid sequence, splicing, protein
function and structure (4). Several state-of-the-art compu-
tational tools have been developed to predict whether or not
a given coding variation may affect the gene function (5–
7). However, for the noncoding part of variations, the iden-
tification of functional driver mutations, such as disease-
associated sequence variants, is hindered by lack of data (8–
10). Nevertheless, noncoding variations, such as a single nu-
cleotide polymorphism (SNP), are known to possibly affect
gene regulation by either disrupting existing transcription
factor (TF) binding sites or creating new ones (11). In this
way, an SNP may destroy a link in the gene regulatory net-
work or create a new link, thereby activating or inhibiting
target gene expression. Many cases of such regulatory mu-
tations have been studied, for example, the mutation (db-
SNP ID rs281864518) in the promoter of the HBB gene next
to the CCAAT motif, which affects the binding of C/EBP
TF causing �+ thalassemia (12); the mutation (HGMD ID
CR062116) in a nongenic region between the α-globin genes
and their upstream regulatory elements, which creates a new
binding site for GATA1 TF, leading to � thalassemia (11);
and the mutation (dbSNP ID rs689466) upstream of the
PTGS2 gene, which creates a c-MYB binding site and in-
creases the risk of esophageal cancer (13). Thus, establishing
connections between functional noncoding mutations and
TF binding is an important task. Typically, one has to guess,
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or determine experimentally, which TF binding affinity is
affected by the mutation. When the functional role of the se-
quence mutation is uncertain, such as in somatic mutations
in tumor samples, the problem becomes even more difficult
because it is not known which sequence variants may affect
the TF binding. In addition, there are at least hundreds of
thousands of putative mutations in an individual genome.
Doing extensive experimental tests on every mutation, most
of which are neutral (14), is not practical. Therefore, com-
pleting the task requires robust computational methods that
are able to identify significant changes in TF binding affin-
ity due to sequence variations.

For many human TFs, the data about their binding
strength to particular DNA sequences are available in the
form of position weight matrices (PWMs) (15). A PWM de-
scribes how likely the protein is to be bound to a particular
sequence, considering every nucleotide independently. Gen-
erally, this information alone is not enough to determine
whether or not a given mutation will significantly affect the
TF binding. For example, the scanning of PWMs on DNA
sequences showed a poor performance compared with the
sequence conservation scores (16). Advanced mathematical
models, such as sTRAP (17) and is-rSNP (18), have been
designed to address this problem. Nevertheless, these earlier
methods do not consider two important things: the chemi-
cal potential (or protein concentration; the number of pro-
tein molecules in the nucleus) and the direct protein–DNA
interaction. In the present work, a new Bayesian method
for protein–DNA interaction with binding affinity Ranking
(BayesPI-BAR) is proposed, which includes information
on both chemical potentials and putative direct protein–
DNA interactions. Because the protein concentration is not
known in BayesPI-BAR, a plausible range for this parame-
ter is estimated from ENCODE ChIP-seq experiments, and
then a principal component method is used to combine the
predictions from multiple chemical potentials.

The goal of BayesPI-BAR is similar to that of sTRAP:
given a known functional mutation in a noncoding region,
find which TF binding it affects the most. Here, only single
nucleotide polymorphisms (SNPs) are considered. Specifi-
cally, given an SNP and a list of PWMs of known TFs, the
method sorts the TFs by decreasing significance of the bind-
ing affinity changes caused by the SNP. Two such sorted
lists are produced: one for positive change, meaning that the
binding affinity is increased by the SNP (creating a bind-
ing motif), and the other for negative change (disrupting an
existing binding motif). BayesPI-BAR has been validated
on a set of 67 regulatory SNPs that are known to be func-
tional and the affected TFs have been identified experimen-
tally (16,19) by using 2065 PWMs collected for 617 unique
human TFs in (15). Of these 67 SNPs, 47 (70%) had the
true TFs ranked in the top 10 by BayesPI-BAR. In the fu-
ture, this new method may become an integrated part of a
more advanced computational tool, such as FunSeq2 (20),
CADD (21) and GWAVA (22), for annotating functional
noncoding regulatory variants in disease.

MATERIALS AND METHODS

Human ChIP-seq data

In this work, human ChIP-seq TF binding data (i.e. YY1,
IRF1, USF1, SP1, NFKb, AP2, GATA, HNF-4 and
CEBP) at various cell lines were obtained from ENCODE
(23). The called peaks in ChIP-seq experiments were down-
loaded from the UCSC genome browser. We used peaks
from the ENCODE uniform peak calling pipeline. To esti-
mate the TF chemical potentials in various cell lines, 200 bp
DNA sequences centered at the point source of each called
peak were extracted from the human genome hg19 reference
sequence. The overall enrichment in the peak region, which
is computed in the uniform pipeline (23), was used as the
signal for the estimation procedure.

Human regulatory mutations

Two sets of regulatory mutations were collected, in which
the TF binding is known to be affected by the sequence vari-
ations. The first set contains 20 regulatory SNPs (16) that
are known to reduce or enhance the TF binding, although
few of them are associated with disease. The second regula-
tory mutation data set includes 14 SNPs from (19), 4 SNPs
from (10) and 29 SNPs found in the HGMD database (24).
In this data set, the regulatory mutations not only affect the
TF binding but are also associated with human disease. The
complete description of all 67 mutations is available in the
supplementary Excel file.

Human position-specific weight matrices

To compute the in silico TF binding affinity at the DNA
sequence, 2065 PWMs representing about 617 unique hu-
man TFs were downloaded from an earlier publication (15).
This resource includes the collections from TRANSFAC
(25), JASPAR (26), ENCODE (23), protein binding arrays
(PBM) (27) and high-throughput SELEX (HT-SELEX)
(28) for human TFs.

Rare and common variants from 1000 genomes

We obtained genotype VCF files of the 1000 Genomes
Project (29) from the public FTP site ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20110521/, which contains ∼38
million SNPs for 1092 human genomes. There are four ma-
jor ethnic groups in the 1000 Genomes Project (i.e. Euro-
pean, Asian, African and American). The SNP calling was
based on both high-coverage (80x) exome and low-coverage
(5x) whole genome sequencing. In this study, we considered
only SNPs located ±500 bp to the transcription start site
(TSS) of protein coding genes, and the gene annotation was
based on GENCODE7 (30). Rare (∼141914) and common
(∼80561) variants of the 1000 genomes were obtained by
applying VCFtools (31) on the downloaded genotype VCF
files, with minor allele frequency (MAF) < 0.01 and MAF
> 0.01, respectively (32). To assess the difference in TF bind-
ing affinity changes between rare and common variants, we
applied BayesPI-BAR on randomly selected 0.5 percent-
ages of rare (∼690) and common (∼400) variants from each
chromosome thrice. Then we compared the sum of the top
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20 positive/negative TFs binding affinity changes of each
random selection with the results based on the randomly
generated SNPs (∼400) located ±500 bp to the TSS. The
significance of the TF binding affinity changes between the
rare/common variants and the randomly generated SNPs
was evaluated by a Wilcoxon rank-sum test. The Z-values
of the rank-sum tests are shown in a color-coded heat map.

Disease-associated regulatory variants from HGMD

We obtained from the HGMD (24) 416 disease-associated
regulatory SNPs that are predicted to disrupt TF bind-
ing sites. Unlike the previous set of 29 mutations from the
HGMD, this set contained mutations with only in silico pre-
dictions of TF binding site disruptions and no experimental
verification. BayesPI-BAR was applied on these SNPs to
estimate the TF binding affinity changes. The significance
of the binding affinity changes in the 416 SNPs was com-
pared with that of three randomly generated SNPs located
±500 bp to the TSS by using a Wilcoxon rank-sum test. The
Z-values of the rank-sum tests are shown in a color-coded
heatmap.

Sequence conservation scores

The sequence conservation score was obtained from a pre-
vious publication on GERP++ (33). The score was com-
puted by aligning the reference genomes of human and
33 other mammalian species and then counting the dif-
ferences on a per-nucleotide level. For each base pair of
the human genome with enough multiple species coverage,
a rejected substitution (RS) score was provided. The RS
scores were either positive (i.e. indicating a deficit in sub-
stitution and therefore evolutionary constraint) or nega-
tive (i.e. indicating a surplus in substitutions); these were
downloaded from http://mendel.stanford.edu/SidowLab/
downloads/gerp/. For each selected mutation, the sequence
conservation was assessed by using the RS score at the mu-
tation position.

Biophysical modeling of protein–DNA interaction

Based on biophysical modeling of protein–DNA interac-
tion (34,35), the Fermi–Dirac form of the protein–DNA
binding probability is P(S) = 1

1+exp(E•S−μ) , where S repre-
sents the sequence to be bound by a protein, E is the protein
binding energy matrix (PBEM) or position-specific weight
matrix (PWM) of a TF, and � is the chemical potential (or
protein concentration; the number of protein molecules per
nucleus). In theory, the Fermi–Dirac form of the probabil-
ity can be approximated by a Maxwell–Boltzmann protein
binding function (36), P(S) ≈ exp(−E • S), when a very
low protein concentration is assumed in the calculation. A
more detailed description of the biophysical modeling and
its applications can be found in previous publications, such
as BayesPI (35,37–38), BEEML (39), TRAP (40) and Ma-
trixREDUCE (36).

Estimation of TF chemical potentials

By using the Fermi–Dirac form of the protein binding prob-
ability, if the TF PWM (or PBEM) and the TF binding

sequences (i.e. 200 bp DNA sequences centered at ChIP-
seq called peaks) are known, then the chemical potential
of the TF in a particular in vivo protein–DNA interaction
experiment can be estimated by a Bayesian nonlinear re-
gression model. In the regression model, the measured TF
occupancy data (i.e. ChIP-seq tag counts) represent the re-
sponse variable, and the predicted protein binding probabil-
ity (affinity) is the explanatory variable with known PWMs
but unknown chemical potentials. This calculation is ap-
plied in a new version of BayesPI2+ (37), in which the TF
chemical potentials at various conditions or cell lines are
estimated by fitting a known PWM to an in vivo ChIP-seq
experiment. In the present work, the data sets used to es-
timate the chemical potentials are not the same as those
used to compute the protein binding affinity by BayesPI-
BAR. The former considers the DNA sequences around
the ChIP-seq called peaks and the PWMs from the JAS-
PAR database, whereas the latter uses the flanking region
sequences of regulatory SNPs and the PWMs from a re-
cent publication (15). Finally, BayesPI-BAR needs only a
dynamical range of chemical potentials, which can be ei-
ther defined manually or estimated from in vivo TF binding
data, to obtain the TF ranking order by integrating predic-
tions from multiple chemical potentials.

Ranking the effect of sequence variation on TF binding by
shifted differential binding affinity

The in silico calculation of the TF binding affinity on
DNA sequences by applying the biophysical model has long
been used (40,41). Recently, the differential binding affinity
(dbA) was introduced to distinguish between direct and in-
direct protein–DNA interactions (42):

dbA(Si ) = w

N−m+1∑

l=1

Pi,l (Si ) −

R∑
r=1

w
N−m+1∑

l=1
Pi,l,r (Si,r )

R
,

where Si and Si,r represent a DNA sequence and its ran-
domly mutated variant, respectively; N is the length of the
sequence, m is the length of the PWM, w is a weight coeffi-
cient, R is the total number of random shuffling of DNA
sequence Si, and Pi,l (Si ) and Pi,l,r (Si,r ) represent the es-
timated protein–DNA binding probability at sequence Si
and at the randomly mutated sequence Si,r , respectively. For
the protein–DNA binding probability, either a Fermi–Dirac
(with chemical potentials) or a Maxwell–Boltzmann (with-
out chemical potentials) form of the protein–DNA binding
probability can be used in the calculation. In addition, an
expected P-value for direct TF binding to a DNA sequence

Si is provided P (Ei ) =
#of

N−m+1∑
l=1

Pi,l (Si )>
N−m+1∑

l=1
Pi,l,r (Si,r )

R . The P-
value is used to filter putative indirect TF–DNA interac-
tions when computing the TF binding affinity to a DNA se-
quence for a set of collected TF PWMs. In the new BayesPI-
BAR program, the chemical potential � can be manually
adjusted for a given PWM (in the present work, � ranges
from 0 to −23) in the above-mentioned calculations.

After removing the putative indirect TF–DNA interac-
tions from a set of PWMs (i.e. the 2065 collected PWMs),
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the difference in TF binding affinity between the refer-
ence (Si,re f erence) and the mutated (Si,mutated ) DNA sequence
is quantified by a new shifted differential binding affinity
(�dbA), where δdbAi = dbA(Si,re f erence) − dbA(Si,mutated ).
For a given sequence variation, if all available �dbA values
of the putative direct TF–DNA interactions (i.e. P (Ei ) <
0.05) are sorted, then the TFs with the strongest binding ef-
fect by the sequence variation can be identified. Here, the
positive and the negative �dbA values are sorted separately
(i.e. both the largest positive and the smallest negative �dbA
are ranked as one).

Combining the shifted differential binding affinities from mul-
tiple chemical potentials

An exact chemical potential for a given TF under a specific
condition or cell line is usually not known. BayesPI-BAR
uses a range of chemical potentials to estimate the TF bind-
ing affinity change at a given sequence variation. This re-
sults in multiple �dbA values for every PWM. For example,
�dbA(�) varies in scale with changing chemical potentials,
and different PWMs may have a different chemical poten-
tial that generates the highest �dbA(�). The task of identify-
ing the ‘best’ chemical potential for each TF, and then com-
paring the chemical potentials manually, is rather tedious.
A new principal component analysis (PCA) method has
been developed that combines the predictions from multi-
ple chemical potentials (i.e. � equals 0, −10, −13, −15, −18
and −20 in the present study) and then automatically finds
the TF most affected by a regulatory sequence variation.
The hypothesis is that the TF binding most affected by a se-
quence variation will be the one with the most extreme po-
sition in the multidimensional space of �dbA(�) scores. For
a particular PWM, �dbA(�) scores for six different chemi-
cal potentials are generally correlated. The set of �dbA(�)
scores for all available PWMs is distributed along a line in
the six-dimensional space (an example of two-dimensional
space is shown in Supplementary Figure S1). If all �dbA(�)
scores are projected onto the first principal component axis
for the six-dimensional �dbA(�) space, then the most af-
fected TF will be detected by the newly projected positions.

The exact calculation of the principal component method
is as follows. Let D be the matrix of �dbA(�) scores, where
Di, j = Sig

[
δdbA

(
PWMi , u j

)]
for PWM i at chemical po-

tential �j, and Sig is a sigmoid-like function that normal-
izes the distribution of the data Sig (x) = log (|x| + 1) •
sign (x); and let ε be the eigenvector of the largest eigen-
value for matrix DTD. Subsequently, the vector Dεgives the
projected scores of all PWMs to the first principal compo-
nent axis; these are the integrated �dbA(�) scores for pre-
dictions based on multiple chemical potentials. BayesPI-
BAR will use the projected new scores in the final TF rank-
ing. The scores computed by the PCA procedure are deter-
mined up to a multiplicative factor. The sign of the mean
�dbA across all chemical potentials is used to recover the
positive and negative sides of the ranking. Figure 1 shows
the complete pipeline of the BayesPI-BAR framework.

TF ranking accuracy evaluation

To assess the prediction accuracy of various programs, we
first used a cumulative accuracy plot to show the perfor-

mance BayesPI-BAR, sTRAP and is-rSNP. In this plot, the
X-axis represents the predicted rank, and the Y-axis shows
the fraction of mutations for which the true TF appears with
the corresponding or a lower rank. Then scatter plots are
used to compare the predicted ranking of all mutations by
BayesPI-BAR with that by sTRAP/is-rSNP. In the scatter
plots, each mutation appears as a circle, with the X-axis de-
noting the ranking of true TFs given by BayesPI-BAR, and
the Y-axis indicting the rank provided by sTRAP/is-rSNP.
Because lower ranks mean better predictions, all mutations
above the X = Y line will be ranked better by BayesPI-BAR,
and those below the line will be ranked better by sTRAP/is-
rSNP. The significance of the ranking difference in a scatter
plot is evaluated by a Wilcoxon signed-rank test.

Distinguishing verified mutations from randomly generated
regulatory variants

In this work, the collected 67 verified mutations that af-
fect TF binding sites are assumed to be functional muta-
tions and are combined with three sets of randomly gener-
ated regulatory variants (∼300 SNPs; ±500 bp to the TSS).
Three computer programs (BayesPI-BAR, CADD (21) and
FunSeq2 (20)) are used to calculate a putative functional
mutation score for each variant, respectively. For BayesPI-
BAR, the mean absolute �dbA value of the top 20 predicted
TFs in both positive and negative directions is used as a pre-
diction score. For CADD and FunSeq2, the default param-
eter settings are used to obtain the corresponding score for
each mutation. The significance of the score difference be-
tween the verified and the randomly generated variants is
evaluated by a Wilcoxon rank-sum test. Because a higher
score indicates that the mutation is more likely to be func-
tional and to affect the phenotype, we expect that the set
of scores given by a program to the verified mutations will
have a higher median value than that given to random mu-
tations. To evaluate the aforementioned three programs as
binary classifiers, we first choose a threshold value for the
predicted scores and then divide the set of all mutations
into two groups (functional: scores above the threshold, and
nonfunctional: scores below the threshold). By consider-
ing all possible thresholds for the scores, receiver operat-
ing characteristic (ROC) curves can be plotted for the three
programs, in which the true positive versus the false posi-
tive rates are shown. Usually, the higher the ROC curve, the
better the classification accuracy. The area under the curve
(AUC) is a numeric measure of the classification accuracy
(AUC = 0.5 when a random-guessing classifier is used).

RESULTS

Estimated TF chemical potentials in various cell lines

For our collected regulatory mutations (gene-TF pairs),
nine human TFs (YY1, IRF1, USF1, SP1, NFKb, AP2,
GATA, HNF-4 and C/EBP) with ChIP-seq experiments
are available in the ENCODE project. In total, there are 44
ChIP-seq experiments for the nine TFs in 19 different cell
lines. For each TF, the BayesPI2+ program (42) was used to
estimate the chemical potentials (protein concentrations) in
various cell lines based on the known PWMs from the JAS-
PAR database. The results, as shown in Figure 2, indicate
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Figure 1. A computational pipeline of the Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR). The method is
proposed for quantification of the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions
to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors
(TFs).

that different TFs prefer different chemical potentials in in
vivo ChIP-seq experiments. Even for the same TF, the chem-
ical potentials differ in different cell lines. Most of the chem-
ical potentials range between −4 and −18, with a large neg-
ative value representing a high protein concentration. This
indicates that the TF chemical potential (the number of TF
molecules in the nucleus) is an important parameter for bio-
physical modeling of protein–DNA interaction.

Ranking TFs based on the shifted differential binding affinity

Based on the results shown in Figure 2, a common dynam-
ical range of chemical potentials (i.e. from 0 to −23) was
used to compute the shifted differential binding affinities
(�dbA) for the 2065 collected human PWMs (15) in a set
of 20 regulatory mutations from (16). For each regulatory
mutation, 61 bp DNA sequences centered at the mutation
change position were extracted from the human genome
hg19 reference sequence. The results are presented in Fig-
ure 3. In Figure 3A, a heat map of the log10-transformed
absolute �dbA values shows that �dbA decreases with in-
creasing TF chemical potential. This is more evident in Fig-
ure 3B, in which the mean and the standard deviation of the
log10-transformed absolute �dbA values for 20 regulatory
mutations across different chemical potentials are plotted.
Figure 3C shows a heat map of the predicted ranking or-
der of TFs that are known to be affected by the sequence
variations: the darker the color, the higher the predicted TF
ranking order; white means that the effect of sequence vari-
ation on the TF binding is not recovered by �dbA. The re-
sults indicate that, given a very low protein concentration
approximation (i.e. the Maxwell–Boltzmann protein bind-
ing probability), some of the TF–DNA interactions (e.g.
SP1:NFY and GPD2:NRF2) cannot be predicted. Never-

theless, the predictions based on the Fermi–Dirac form of
the function are also poor when extremely low chemical po-
tentials are used in the calculation (i.e. � = −3), except
for ALOX15:SPI1. This phenomenon is clearly presented
in Figure 3D, in which a bar plot shows the percentages of
TFs with their associated ranking for different chemical po-
tentials. The plot shows that ∼50% of the predicted known
gene-TF pairs have a top ranking of about 5 when the chem-
ical potentials are equal to zero (Maxwell–Boltzmann ap-
proximation). Such percentage increased from 30% to 70%
when the chemical potentials were increased from −3 to
−13 (Fermi–Dirac form of the protein binding probability).
Figure 4 shows similar bar plots but for TFs ranked by the
median predicted rank (or �dbA) of six and eight chemi-
cal potentials (i.e. � = 0, −5, −8, −10, −13, −15, −18 and
−20), respectively. In Figure 4A, the performance of the me-
dian ranking based on six chemical potentials is shown to
be better than that of the Maxwell–Boltzmann approxima-
tion but worse than the best result of Fermi–Dirac form of
calculation (i.e. � = −20). In Figure 4B, the median rank
based on eight chemical potentials is close to the best result
provided by � = −20. Similar plots for another 47 verified
mutations (10,19,24) are shown in Supplementary Figures
S2 and S3, which present similar trends to those in Figures
3 and 4. These results suggest that the chemical potential is
protein-specific in the biophysical modeling of TF–DNA in-
teraction; it affects the in silico computation of TF binding
affinity changes (i.e. �dbA). However, a common dynamical
range of chemical potentials can be applied to several TFs
because the integration of predictions from multiple chemi-
cal potentials will reduce the protein-specific effect of chem-
ical potentials.
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Figure 2. Predicted TF chemical potentials for 9 TFs based on ENCODE ChIP-seq experiments in various cell lines. The known PWMs of 9 TFs were
obtained from the JASPAR database. The TF chemical potentials were estimated by fitting the known PWMs and the called ChIP-seq peaks in a Bayesian
nonlinear regression model.

Combining the predictions from multiple chemical potentials

The results of the previous test suggest that the identi-
fication of the impact of sequence variations on protein
binding is related to the protein-specific chemical potential
in the biophysical modeling of protein–DNA interactions.
BayesPI-BAR prefers the integration of predictions from a
range of chemical potentials. To evaluate this integrated ap-
proach, we applied BayesPI-BAR on 67 verified regulatory
SNPs, with the �dbA of every TF computed for six chemi-
cal potentials (� = 0, −10, −13, −15, −18 and −20). The
final ranking of the effect of regulatory sequence variations
on TF binding is based on a PCA, which combines pre-
dictions from multiple chemical potentials. Here, the rank-
ing for positive (creation of new motifs) and negative (de-
struction of existing motifs) change was done separately.
The results are presented in Figure 5 as cumulative accu-
racy plots, in which the X-axis denotes the increasing num-
ber of TFs considered in the ranking, and the Y-axis rep-
resents the cumulative accuracy (i.e. the fraction of muta-
tions for which the true TF appears with the corresponding
or a lower rank). In Figure 5A, the direction of the affinity
change is not taken into account, which means that we con-
sidered the lowest ranking for a true TF with either negative

or positive predicted affinity change. The accuracy of four
integration methods is shown: PCA, median rank, median
�dbA and robust rank aggregation (RRA) (43). Addition-
ally, the results based on the Maxwell–Boltzmann approxi-
mation (� = 0) are also plotted. The figure indicates that the
PCA method outperforms the other integration methods by
a small margin and is not severely affected by the sequence
length (Supplementary Figure S4). Figure 5B shows the re-
sults of a similar analysis but with the directions of the pre-
dicted affinity changes considered. Here, 51 mutations with
known directions of TF binding affinity changes are used,
and only the ranking with the correct direction is consid-
ered. In this test, all cumulative accuracies are lower than
those of the previous test. Nevertheless, the overall trend
of performances is the same as that shown in Figure 5A.
This suggests that the integration of multiple predictions
from different chemical potentials extracts more informa-
tion than does an individual estimation. The PCA integra-
tion method is used in the subsequent data analysis.
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Figure 3. Prediction results of BayesPI-BAR at 20 known regulatory mutations. (A) The heat map of log10-transformed absolute �dbA values (the shifted
dbA between the reference and the mutated sequence) for 20 known regulatory SNPs (16) that affect the TF binding to the target gene (gene name:TF
name). The chemical potentials range between 0 and −23 (the large the negative value, the higher the protein concentration or chemical potentials). (B) The
mean and standard deviation of the log10-transformed absolute �dbA values of 20 known gene-TF pairs based on different chemical potentials; the red
and blue circles represent predictions based on the Maxwell–Boltzmann function and Fermi–Dirac function, respectively. (C) The regulatory mutations
of gene-TF pairs with the associated TF ranking order, which were predicted for different chemical potentials. (D) The bar plot of the percentage of TFs
with their associated ranks for different chemical potentials.

Comparing prediction accuracies between BayesPI-BAR and
other binding affinity change ranking methods (sTRAP and
is-rSNP)

The performance of BayesPI-BAR was compared with
those of other existing methods with similar functionality,
such as sTRAP (17) and is-rSNP (18). The sTRAP pack-
age was downloaded from its original publication, and the
library of PWMs was rebuilt in the local machine, which
has the same 2065 PWMs used in the present study. To test
the is-rSNP method (18), we used the web service of in sil-
ico regulatory SNP detection provided by its authors, with
the same DNA sequences used in this study. Because is-
rSNP does not allow the use of custom PWMs, the TRANS-
FAC+JASPAR option provided was used in the test. Both
tools output a list of PWMs that are predicted to be affected
by the given SNP, ordered by decreasing significance. The
predicted direction of binding affinity change is also given
in the output.

Figure 6A shows a cumulative accuracy plot of the results
predicted by the three programs (BayesPI-BAR, sTRAP
and is-rSNP) based on the 67 verified mutations, with the
X-axis denoting the increasing number of TFs, and the Y-
axis representing the cumulative accuracy. Here, the direc-
tion of binding affinity change is not considered in the ac-
curacy calculation. The cumulative accuracy plot reveals
that BayesPI-BAR, sTRAP and is-rSNP reach maximum
cumulative accuracies of 81%, 76% and 70%, respectively,
when the top 50 predicted TFs are considered. When the
top 10 predicted TFs considered, the cumulative accura-
cies of BayesPI-BAR, sTRAP and is-rSNP are 70%, 61%
and 51%, respectively. In Figure 6B, the cumulative accu-
racy of BayesPI-BAR is compared with that of sTRAP/is-
rSNP by considering the predicted direction of TF binding
affinity changes. All three programs showed lower accura-
cies in this setup, but BayesPI-BAR still performed better
than the other two methods. The decreased accuracies may
be mostly due to the exclusion of higher-quality mutation
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Figure 4. Prediction results of BayesPI-BAR at 20 known regulatory mutations with different chemical potentials. (A) Percentages of SNPs with their
associated ranks for 20 gene-TF pairs; the predicted TF ranks of known regulatory SNPs are based on chemical potential 0, the median ranks or �dbA
values for six chemical potentials (0, −10, −13, −15, −18 and −20) and chemical potential −20, respectively. (B) The same plot as panel (A) but for eight
chemical potentials (0, −5, −8, −10, −13, −15, −18 and −20).

Figure 5. Cumulative accuracy of methods for integrating �dbA scores. (A) Cumulative accuracy plots of 67 verified mutations for PCA, median rank,
median �dbA and RRA as score integration methods. The accuracy of the ranking based on a single �dbA score (for � = 0) is provided; the positive/negative
direction is not considered. (B) The same plots as in panel (A) but also considering the direction of the affinity change.

data from Andersen and Epstein sets (16,19), which often
do not include information about the direction of the affin-
ity change. In Figure 6C and D, the predicted true TF rank-
ings by BayesPI-BAR are compared with those by sTRAP
or is-sSNP in scatter plots. In these tests, the direction of
affinity changes is not considered so as to allow the use of
more data points. BayesPI-BAR achieved better true TF
rankings for 42% and 45% of SNPs, respectively, compared
with sTRAP and is-rSNP. On the contrary, only 21% and
16% of SNPs were ranked better by sTRAP and is-rSNP,

respectively, compared with BayesPI-BAR. The differences
are statistically significant (P < 0.02 and P < 0.0008 for
sTRAP and is-rSNP, respectively). Thus, for most of the
67 verified mutations, BayesPI-BAR provided the same or
better prediction accuracy compare with the two other pro-
grams.
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Figure 6. Cumulative accuracy of predicted TF rankings for 67 verified mutations. (A) Cumulative accuracy plot for BayesPI-BAR, sTRAP and is-rSNP.
The X-axis represents the predicted rank, and the Y-axis shows the fraction of mutations for which the true TF appears with the corresponding or a lower
rank. The positive or negative direction of TF binding affinity changes is not considered. (B) Cumulative accuracy plot for BayesPI-BAR, sTRAP and
is-rSNP considering the predicted direction of TF binding affinity changes. (C) Scatter plot of the predicted ranking of mutations for BayesPI-BAR and
sTRAP, with the ranks capped at 51. Mutations above the X = Y line (red) are ranked better by BayesPI-BAR, and those below the line are ranked better
by sTRAP. The P-value of the Wilcoxon signed-rank test comparing the paired ranks is given. (D) The same plot as in Figure 6C but for BayesPI-BAR
versus is-rSNP.

Distinguishing verified mutations from randomly generated
regulatory variants

The putative functional mutation scores between the 67 ver-
ified mutations and the three sets of randomly generated
regulatory variants, each with ∼120 mutations located at
±500 bp to the TSS of annotated protein coding genes, were
compared by Wilcoxon rank-sum tests for BayesPI-BAR,
FunSeq2 and CADD. The log10-transformed P-values and
the corresponding Z-values are shown in heat maps in Fig-
ure 7A and B, respectively. Because some of the mutations
were either removed by FunSeq2 due to internal filtering
conditions or have the status of coding mutations in CADD,
the results shown in the figure are based only on 49 veri-
fied mutations and three sets of randomly generated regula-
tory variants (each with ∼100 mutations) that are available
in both FunSeq2 and CADD as noncoding mutations. The

darker the color in Figure 7, the smaller the P-value. The
heat maps clearly show that the putative functional muta-
tion scores obtained by BayesPI-BAR indicate a strong dif-
ference between the 49 verified mutations and the randomly
generated variants (median P < 0.002). However, the muta-
tion scores provided by either CADD or FunSeq2 show a
marginal difference between the verified and the randomly
generated mutations (median P < 0.05 or P < 0.09), with
only one of three CADD tests giving a significant P-value
(P < 0.002). The ROC curves for the three predictions are
presented in Figure 7C, in which the true positive versus the
false positive rate is shown. The AUC values for BayesPI-
BAR, CADD and FunSeq2 are ∼0.65, 0.6 and 0.58, respec-
tively. These results suggest that the putative functional mu-
tation scores computed by BayesPI-BAR (considering pure
DNA sequence information) are better than those provided
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Figure 7. Distinguishing the 67 verified mutations from random ones. The results of three programs (i.e. BayesPI-BAR, CADD and FunSeq2) are com-
pared. (A) The log10-transformed P-values of the rank-sum tests for the predicted scores of verified mutations versus those of randomly generated ones.
Lower P-values indicate a more significant difference in predicted scores between the two sets of mutations. (B) The Z-values of the same tests as in Figure
7A. (C) The receiver operating characteristic (ROC) curves for the three programs show the performance of the programs as binary classifiers (i.e. func-
tional versus random mutations) and the area under this curve (AUC) serves as a numeric measure. For a random-guessing classifier (‘Random’), the AUC
of the theoretical ROC curve is 0.5.

by either CADD or FunSeq2 (considering diverse genomic
information, including conservation scores) in distinguish
functional from nonfunctional mutations.

TF binding affinity changes in rare and common variants from
the 1000 Genomes Project

To study the TF binding affinity changes in rare and com-
mon variants, we focus on the variants located ±500 bp to
the TSS of the annotated protein coding genes (i.e. GEN-
CODE7) because of the low coverage of genome-wide se-
quencing data in the 1000 Genomes Project (29). First,
VCFtools was used to identify rare and common variants
from the above-mentioned genomic regions. Then, BayesPI-
BAR was applied on a randomly selected subset of rare or
common variants (i.e. ∼0.5 percentages of variants from
each chromosome), as well as a set of randomly gener-
ated regulatory SNPs (∼400) and disease-associated regu-
latory SNPs (∼416) from HGMD, respectively. The ran-
dom selection was repeated thrice. In each selection, the
sum of the top 20 positive/negative TF binding affinity
changes were computed for the rare variants, common vari-
ants, disease-associated regulatory SNPs, and randomly
generated regulatory SNPs, respectively. The distributions
of the predicted positive or negative TF binding affin-
ity changes in the above-mentioned four types of variants
are shown in box plots (Supplementary Figure S5). Sub-
sequently, a Wilcoxon rank-sum test was used to evalu-
ate the significance of TF binding affinity changes between
the rare/common/disease-associated variants and the ran-
domly generated regulatory SNPs. The Z-values of the
rank-sum tests are shown in color-coded heat maps (Fig-
ure 8A–C), which indicate that both the rare and the com-
mon variants have similar TF binding affinity changes when
compared with the randomly generated ones. For the rare
variants, the median P-values of the three tests for positive,
negative and mean absolute binding affinity changes are P
< 0.21, P < 0.5 and P < 0.3, respectively. For the common

variants, the median P-values of the same tests are P < 0.61,
P < 0.21 and P < 0.2, respectively. However, for the disease-
associated variants from HGMD, the TF binding affinity
changes are significantly higher than that of the randomly
selected one; the median P-values of the three tests are P <
2.8e-7, P < 2.3e-11 and P < 1.8e-15 for positive, negative
and mean absolute binding affinity changes, respectively.

Additionally, we compared the sequence conservations
of the aforementioned four types of variants. The signifi-
cance of the difference in sequence conservations between
the rare/common/disease-associated variants and the ran-
domly generated ones is assessed by a Wilcoxon rank-sum
test. The Z-values of the tests are shown in a color-coded
heat map in Figure 8D. The results indicate that the DNA
sequences of both the rare and common variants are much
less conserved than that of the randomly generated ones
(negative Z-values; the median P-values of the three tests
are P < 0.05 and P < 0.008 for the rare and common vari-
ants, respectively). However, for the disease-associated vari-
ants from HGMD, the sequence conservations are slightly
higher than that of the randomly generated ones (positive
Z-values; the median P-value of the three tests is P < 0.095).
These results prompted us to investigate the distribution of
various sequence variants around the TSS. The plots are
shown in Supplementary Figure S6, which indicates a clear
peak of the disease-associated HGMD variants at ±100 bp
to the TSS, although the distributions of the rare and com-
mon variants are similar to that of the randomly generated
one. Nevertheless, there is a small peak of the common vari-
ants between −200 bp and +100 bp to the TSS, and a clear
drop-off of the rare variants from −100 bp to the TSS.

In summary, by using BayesPI-BAR to compare the TF
binding affinity changes among four types of sequence vari-
ants (i.e. rare, common, disease-associated and random), we
found that the disease-associated variants significantly alter
the TF binding affinity changes and that they correlate with
a relatively higher conservation score at the mutation posi-
tion compared with the randomly generated ones. However,
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Figure 8. Comparison of TF binding affinity changes between the rare/common/disease-associated variants and the randomly generated ones. ‘Positive
binding affinity changes,’ ‘mean absolute binding affinity changes,’ and ‘negative binding affinity changes’ represent the sum of the positive (A), the mean
absolute (B) and the negative (C) changes of the top 20 TF �dbA values predicted by BayesPI-BAR, respectively. The above-mentioned three types of
binding affinity changes in rare (‘Rare’), common (‘Comm’) and disease-associated variants (‘HGMD’) were compared with those of randomly generated
ones (i.e. ‘Rand1,’ ’Rand2’ and ‘Rand3’) by using Wilcoxon rank-sum tests. ‘Conservation’ (D) refers to the comparison of sequences conservations between
the real (i.e. rare, common or disease-associated) variants and the randomly generated ones by using Wilcoxon rank-sum tests. All Z-values of the rank-sum
tests are shown with yellow and blue indicating positive and negative Z-values, respectively.

both the rare and the common variants have little effect on
the TF binding affinity changes and are much less conserved
than the randomly generated ones.

DISCUSSION

A previous work (16) has shown that a simple scan of
PWMs on DNA sequence (TF binding affinity) cannot reli-
ably quantify the effect of sequence variation on TF binding
compared with predictions based on sequence conservation
scores. Thus, several advanced statistical methods such as
sTRAP (17) and is-rSNP (18), were developed to address
the problem. An important part of the TF binding affinity
calculation is determining whether the interaction between
a TF and a DNA sequence is significant. In sTRAP (17),
an empirically derived statistical model is used to compute
such significance scores. A parametric probability distribu-
tion is fitted to the set of computed TF affinity scores for
each PWM by considering a provided set of background
sequences. This allows the computation of a P-value for
the hypothesis that a given TF PWM binds more strongly
to a given sequence than to the background sequence. In
is-rSNP (18), a model of the ratio between the reference
and the mutated affinity scores is used to test the signifi-
cance of a mutation to a given TF. In this work, a new bio-
physical model (BayesPI-BAR) that explicitly considers the
difference in binding probability between the background
and the given sequence (differential binding affinity (42)) is
proposed to address the same problem. This concept was
originally developed to distinguish between direct and indi-
rect TF binding, which is closely related to the TF binding
affinity changes because functional sequence variations are
tightly associated with direct TF–DNA interactions. Addi-
tionally, the effect of the chemical potential (or the protein
concentration in the cell) on the TF–DNA interaction is
also considered in BayesPI-BAR, which provides more in-
formation of TF binding variations than does the low pro-
tein concentration assumption, such as in sTRAP.

In our study, the importance of chemical potentials in
in vivo ChIP-seq experiments is presented first in Figure 2,
in which the predicted chemical potentials show a clear
cell line- and protein-specific behavior. Then, the impact
of chemical potentials on the TF binding affinity change is
presented in Figure 3 and Supplementary Figure S2, which

show decreasing �dbA values with increasing chemical po-
tentials. This is consistent with the theory that many unspe-
cific TF–DNA interactions occur when the number of TF
molecules per nucleus is very high and that a high protein
concentration results in a minor difference between specific
and unspecific TF–DNA interactions (44). Importantly, the
significance of TF binding affinity changes, which are in-
fluenced by sequence variations, may be blurred when the
wrong chemical potentials are used in the protein binding
probability. For example, in Figure 3C and Supplementary
2C, the prediction accuracy of BayesPI-BAR is greatly re-
duced by the use of chemical potentials that are too low (i.e.
� = −3). Therefore, the in silico calculation of TF binding
affinity changes (i.e. �dbA) through biophysical modeling
of TF–DNA interaction is very sensitive to the choice of
chemical potentials. A Maxwell–Boltzmann approximation
may be insufficient to identify the real effect of sequence
variations on TF binding affinity changes. An integration
of predictions from multiple chemical potentials (Figure 4
and Supplementary Figure S3) is thus needed.

Motivated by the above results, a new principal com-
ponent method is designed combining the predicted ef-
fect of sequence variations on TF binding from multiple
chemical potentials. The results are first compared with the
other integration methods, such as the robust rank aggre-
gation (RRA) algorithm and the median rank, as shown
in Figure 5, with the highest prediction accuracy obtained
by the principal component method. Subsequently, three
programs, BayesPI-BAR, sTRAP and is-rSNP, which are
designed to predict the effect of SNPs on TF binding,
are systematically compared, as shown in Figure 6. Both
the cumulative accuracy and the scatter plots indicate that
BayesPI-BAR gives significantly better predictions in most
of the verified mutations compared with the two other
programs (P < 0.02 and P < 0.0008). Although sTRAP
is very similar to the Maxwell–Boltzmann approximation
version of BayesPI-BAR, the filtering of putative indirect
TF binding targets and the computation of a new �dbA
score in BayesPI-BAR greatly improve the prediction ac-
curacy. Generally, the two biophysically originated meth-
ods (BayesPI-BAR and sTRAP) surpass the common sta-
tistical method (is-rSNP) in identifying TF–DNA interac-
tion affected by sequence mutation changes. However, the
lower prediction accuracy of is-rSNP, which was previously
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reported to be more accurate than sTRAP (18), may par-
tially be explained by the difference in PWMs (i.e. is-rSNP
is equipped only with TRANSFAC and JASPAR PWMs).
In the present study, no method completely outperforms the
others in all 67 verified mutations. In the future, an integra-
tion of the results from multiple methods will provide more
robust prediction than that achieved by a single method.

In addition, BayesPI-BAR is compared with two other
programs (CADD and FunSeq2), which were developed for
the identification of functional regulatory mutations by in-
tegrating diverse information. Although BayesPI-BAR is
not designed for the same purpose, its �dbA (the shifted
dbA between the reference and the mutated sequence) may
provide in silico phenotype information for distinguish-
ing functional (driver) from random (passenger) mutations.
This hypothesis is tested; the results are shown in Figure 7,
in which the putative functional mutation scores (mean ab-
solute �dbA) provided by BayesPI-BAR show the strongest
difference between the 67 verified mutations and the ∼300
randomly generated regulatory variants. In particular, the
ROC curves, based on a binary classification of verified
and random mutations, suggest that the scores produced by
BayesPI-BAR (AUC = ∼0.65) are slightly better than those
generated by either CADD (AUC = ∼0.6) or FunSeq2
(AUC = ∼0.58) in distinguishing functional from nonfunc-
tional mutations. This is a very interesting result because the
scores computed by BayesPI-BAR only consider the DNA
sequence information. In contrast, the two other programs
integrate diverse information, such as sequence conserva-
tion, disease or gene annotation, TF binding, enhancer-
gene linkages and protein interaction network centrality,
among others. If our proposed �dbA is integrated into these
earlier methods, then a great improvement in functional
mutation prediction in the noncoding part of the genome
can be expected.

Finally, BayesPI-BAR is used to investigate the TF bind-
ing affinity changes among four types of variants: rare
and common variations predicted from the 1000 Genomes
Project, disease-associated regulatory variants provided by
HGMD and randomly selected variations ±500 bp to the
TSS. The results shown in Figure 8 suggest that there is no
clear difference between the rare and the common variants
from the 1000 Genomes Project when their impact on the
TF binding affinity changes is considered. In other words,
the effect of either rare or common variants on TF–DNA
interaction is similar to that of the randomly selected reg-
ulatory variants. This may be explained by the low cover-
age of sequencing depth at non-exome regions in the 1000
Genomes Project, which results in a high error rate and un-
reliable variant calling (45,46). Second, the heterogeneous
population (i.e. European, Asian, African and American) in
the 1000 Genomes Project may also weaken the detection of
rare sequence variations (32). However, for the disease- as-
sociated regulatory variants from HGMD, the predicted TF
binding affinity changes by BayesPI-BAR are significantly
higher than those of the randomly selected variants (i.e. the
median P-value of the three tests are P < 2.8e-7, P < 2.3e-11
and <1.8e-15 for positive, negative and mean absolute bind-
ing affinity changes, respectively). Thus, BayesPI-BAR is a
very useful tool for detecting sequence variants that disrupt
protein binding sites.

In conclusion, the new biophysical model BayesPI-BAR
was successfully applied on 67 known regulatory muta-
tions, with a clear improvement shown over other ex-
isting computational methods. BayesPI-BAR is a pub-
licly available package (http://folk.uio.no/junbaiw/BayesPI-
BAR) that contains C, Perl and R programs. It is capable of
parallelized computation under Windows, Linux and Mac
OS X operating system, which may significantly reduce the
CPU time needed for a large number of PWMs or regula-
tory mutations. BayesPI-BAR is thus a useful tool for de-
tecting functional driver mutation in the noncoding part
of the genome (10) and exploring massive genome-wide se-
quence data that are constantly generated by large consor-
tia, such as the International Cancer Genome Consortium
(3) and the Cancer Genome Atlas (47).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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