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Vasa Vasorum and Plaque Growth
Vasa vasorum are the microvessels that underlie the 

adventitial layer of large arteries or veins and provide oxygen 
and nutrients to these major vessels. Emerging evidence suggests 
that atherosclerotic plaque growth is closely associated with 
intraplaque angiogenesis, which occurs from vasa vasorum. 
Local administration of fibroblast growth factors (FGF), a potent 
angiogenic factor that promotes angiogenesis in the adventitia, 
enhanced the growth of atherosclerotic lesions in apoE-deficient 
mice.3 In rat models receiving injury to the arterial walls, 
administration of vascular endothelial growth factor (VEGF) 
exacerbated neointimal thickening, although VEGF alone was not 
sufficient to initiate the thickening.4 One important component that 
instigates intraplaque angiogenesis is inflammation, which causes 
oxidative stress. For example, transgenic mice—which ectopically 
express p22-phox, a major subunit of NAD(P)H oxidase in the 
smooth muscle cells—will generate increased oxidative stress in 
carotid lesions, further contributing to angiogenesis and plaque 
progression.5 It is posited that plaques behave like the tumor 
microenvironment in which inflammatory cells and/or other cells 
secret a plethora of angiogenic factors to induce angiogenesis. 
Due to hypoxia, the intraplaque microenvironment often results 
in vascular leakage, which further contributes to intraplaque 
hemorrhage, elevated lipid accumulation, and exacerbated 
inflammation. All of these effects result in the formation of 
vulnerable plaques. Interestingly, the perivascular microvessels 
also serve as niches for multipotent pericytes and endothelial 
progenitor cells. These cells play a critical role in augmenting 
intraplaque angiogenesis by providing endothelial cells (ECs) or 
supporting cells for angiogenic growth.6 

Reverse Cholesterol Transport, Lymphatics, and CAD 
Mounting evidence suggests that lymphatics play an essential 

role in lipid transport. Chylomicrons, a form of dietary lipids, 
are transported to the blood via intestinal lymphatic vessels.7 

Similarly, the transport of high-density lipoproteins (HDL) from 
the peripheral tissues back to plasma depends on lymphatic 
vasculature but not on venous capillaries. It has been shown 
that there is roughly 344 mg of HDL transported in human 
peripheral lymph daily.8 Inactivation of one copy of VEGFR3 in 
mice diminishes lymphatics in the skin but retains a normal blood 
vasculature. Accordingly, these mice demonstrate attenuated 
ability to remove subcutaneous fat.9 Lymphatic vessels are found 
in the adventitia of arteries and are in close proximity to the blood 
vessels.10 Surgical disruption of lymphatic vessels, by using aortic 
transplantation as well as blocking lymphatic regrowth using 
VEGFR3-neutralizing antibody, led to a remarkable increase in 
aortic lipid accumulation.11 

Lymphatic malfunction contributes to the pathogenesis 
of atherosclerosis, cardiovascular disease, and diabetes. The 
connection between atherosclerosis and impaired lymphatic 
functions has been observed for a long time.12,13 Experimental 
evidence has recently emerged suggesting that lymphatic 
vasculature provides a protective pathway for lipid and 
inflammatory cell removal from the arterial wall and peripheral 
tissues and thus alleviates the development of lipid deposition.11,14 
It remains unclear whether lymphatic vessels play an active role, 
which is speculated to occur via SR-BI-mediated transendocytosis, 
or a passive role, where it functions merely as a collecting conduit.

HDL in the Regulation of Angiogenesis and 
Lymphangiogenesis

Numerous reports indicate that HDL associated bioactive 
lipids and HDL-evoked changes in cholesterol levels regulate 
angiogenesis and lymphangiogenesis. In ECs, cholesterol is mostly 
enriched in lipid rafts of the cell membrane, where it is essential 
for cell signaling and maintenance of regular cellular functions 
such as migration and proliferation.15 Manipulation of cholesterol 
levels in ECs to decrease lipid rafts would interfere with 
membrane receptor-like VEGF receptor 2 (VEGFR-2) signaling 
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and subsequently impair angiogenesis. Notably, other molecules 
involved in angiogenesis such as FGFR, ICAM-1, and VCAM-1 
also localize to membrane lipid rafts and may be affected.16,17 

Sphingosine-1-phosphate (S1P), which docks on HDL via apoM, 
exerts an effect on both angiogenesis and lymphangiogenesis.18 
The effects of HDL-associated S1P on angiogenesis seem to be 
context-dependent. For example, S1P on HDL stimulates in vitro 
angiogenesis as well as ovarian angiogenesis in the follicular 
fluid via ERK, PKC, Akt, and eNOS activation.19 Endothelial 
lipase is shown to play a critical role in S1P-induced aortic ring 
neovascularization, presumably by releasing free S1P from HDL.20 In 
contrast, another study tested the effect of different concentrations 
of HDL on ECs and found a biphasic effect of HDL on endothelial 
progenitor cell (EPC)-mediated in vitro angiogenesis. High levels 
of HDL inhibit angiogenesis through stimulation of Rho-associated 
kinase (ROCK) and inhibition of the Akt and ERK pathways.21 In 
vivo, S1P receptor deficiency increases while S1P receptor activation 
decreases angiogenesis. Further, S1P signaling in ECs preserves 
vascular integrity by stabilizing adherent junctions between 
neighboring ECs and responds to laminar shear stress to transduce 
blood flow-regulated EC homeostasis.22, 23

S1P promotes human lymphatic endothelial cell (LEC) tube 
formation and cell migration in vitro and facilitates growth of 
lymphatic vessels in the Matrigel plug in vivo.24 Mechanistically, 
it promotes lymphangiogenesis through stimulation of PLCg 
and calcium signaling. S1P levels are increased in breast cancer 
patients, in whom lymphatic vasculature is essential for tumor 
dissemination. Similarly, sphingosine kinase, a kinase that 
produces S1P, has increased expression levels and supports 
lymphangiogenesis in the tumor microenvironment.25

Despite many papers ascribing the actions of S1P to its receptor, 
HDL, at least in part, is involved in S1P-induced signaling. For 
example, SR-BI, the HDL receptor, is shown to regulate S1P-
induced upregulation of NF-kB and cell adhesion molecules such 
as VCAM-1 and ICAM-1 via activation of PI3K and eNOS.26 Of 
note, the receptors for S1P, G protein-coupled receptors, localize 
and activate in lipid rafts.27 Whether targeted cholesterol efflux 
mediated by AIBP regulates the signals initiated from S1P is an 
intriguing question that merits further study.

Zebrafish: a Unique Animal Model for the Study of 
Atherosclerosis, Angiogenesis, and Lymphangiogenesis

Through our series of studies, we have established that 
zebrafish fed a high cholesterol diet (HCD) are a novel animal 
model to study the early atherosclerogenesis, when foam cell 
formation occurs. The advantages of using zebrafish include its 
optical transparency, easy genetic manipulation, generation of 
a large quantity of progeny per breeding, short life cycle, and 
rapid development of diseases. When fed an HCD similar to that 
used for mouse atherosclerosis studies (4% cholesterol weight 
for weight in food) for 2 months, adult zebrafish develop early 
healed lesions in the dorsal aorta.28 These lesions revealed lipid 
accumulation, macrophage retention, EC inflammation, and 
smooth muscle cell proliferation. All of these features are found 
in early human atherosclerotic lesions. Oxidation of low-density 
lipoprotein (LDL) renders it proinflammatory, and oxidized LDL 
(OxLDL) is believed to be one of the key culprits that promote 
atherogenesis. There is a 20-fold increase in OxLDL levels in 
zebrafish fed an HCD compared to control diet, and the absolute 
levels are much higher than that previously observed in humans.28 
The OxLDL levels are measured using an ELISA assay based 
on E06, a monoclonal antibody against oxidized phospholipids 

developed by the Witztum lab.29 Consistent with this data, 
liquid chromatography tandem mass spectrometry (LC-MS/
MS) measurement of the levels of oxidized cholesterol esters 
and phospholipids indicates a 10- to 70-fold increase, further 
supporting the use of zebrafish for studying atherosclerosis and 
lipid oxidation.30 The epitope recognized by E06 is also found on 
zebrafish HDL; this epitope is rarely found in human HDL. Yet 
there are reports on human apoA-I oxidation,31 so it is possible 
that the modified apoA-I is trapped in the intima and precludes its 
detection in human plasma.32 

After the proof-of-concept studies, the zebrafish larvae 
were used for further analyses because of the aforementioned 
advantages. Feeding transgenic zebrafish larvae an HCD for 
2 weeks also resulted in oxidation-specific epitopes (OSE) 
accumulation and vascular inflammation, which increase vascular 
leakage and macrophage recruitment.33 We created a transgenic 
zebrafish with conditional expression of EGFP-tagged single 
chain monoclonal antibody IK17, which targets malondialdehyde-
modified epitopes, to monitor the spatiotemporal accumulation of 
OSE. Furthermore, the expression of IK17-EGFP reduced vascular 
lipid accumulation.33 Thus, from a pathogenesis point of view, the 
initial events of atherogenesis are conserved between zebrafish 
and humans. 

Zebrafish angiogenesis proceeds in a similar manner to 
humans, and the genetic pathways governing angiogenesis such 
as VEGF and Notch are conserved in zebrafish. Several transgenic 
zebrafish lines such as EC-specific promoter driving fluorescent 
protein expression—including Tg(fli1:EGFP) and Tg(flk1:mcherry-
RAS)—have been extensively used for zebrafish angiogenesis 
studies.34 These transgenic zebrafish permit a spatiotemporal and 
real-time examination of the development of in vivo angiogenesis 
for which fine-tuned mechanisms are delineated. Using the two 
transgenic zebrafish lines, we deciphered the role of AIBP in 
regulation of angiogenesis as discussed above in detail.

Zebrafish have also been employed to study 
lymphangiogenesis, although it appears that factors such as Prox1, 
Coup-TFII, and Sox18 that are essential for mouse lymphatic vessel 
growth seems to be dispensable for zebrafish lymphangiogenesis.35 
Nonetheless, people have used different lymphatic reporter 
fish lines to study the functionality of the lymphatic system in 
zebrafish, and the key features are congruent with their mammal 
counterparts. For example, lymphatics in zebrafish are important 
for removal of subcutaneous fluids, and defects in lymphatics 
result in edema.36,37 The differential mechanism controlling 
zebrafish lymphatic vessel development may be adopted to treat 
lymphedema in humans. 

AIBP-Regulated Cholesterol Efflux, Angiogenesis, and 
Atherosclerosis

Cholesterol is essential for normal cell function, from 
maintenance of structural integrity to biogenesis of hormones 
and ligands. However, excessive cholesterol is detrimental to 
cells. Cholesterol efflux enables the clearance of excess cholesterol 
from cells and is essential for maintenance of cholesterol 
homeostasis.38-40 Cholesterol efflux is carried out by cholesterol 
transporters such as ATP-binding cassette family members A1 
(ABCA1) and G1 (ABCG1), and scavenger receptor class B member 
1(SR-BI) in an ATP-dependent manner.41-45 ABCA1 resides on the 
cell membrane and transports cholesterol to lipid-poor apoA-I or 
nascent HDL, while ABCG1 is located in the cytosol and deploys 
cholesterol to HDL. Lack of ABCG1 facilitates ex vivo angiogenesis 
of a murine aortic ring. SR-BI is a receptor for HDL and mediates 
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selective uptake of cholesterol esters on HDL.46 Interestingly, SR-BI 
favors cholesterol efflux from a phospholipid-rich environment.47 
In addition, SR-BI is located in lipid rafts and was recently 
indicated as a sensor to regulate cholesterol homeostasis in the 
membrane.48 It is also reported to engage in active lymphatic 
transport of interstitial HDL.14

High levels of HDL may be beneficial because it carries excess 
cholesterol away from cells. HDL-C in epidemiological studies 
is inversely associated with CVD risk. Infusion of wild type 
apoA-I, apoA-I Milano, or its mimetic peptides into rabbits or 
mice mitigates atherosclerosis.49,50 Thus, different approaches have 
been applied to increase HDL-C levels such as CETP inhibitors 
and RVX-208, a compound that functions as an inhibitor for 
BET bromodomains to increase apoA-I protein synthesis.51,52 
However, clinical trials at the Cleveland Clinic with RVX-208 
failed to document an increase in apoA-I protein levels in humans 
compared to placebo control. So far, the majority of clinical trials 
aiming to reduce risks for CAD by increasing HDL-C levels 
have failed to show efficacy.53,54 Moreover, the genetic evidence 
supporting the cause-and-effect relationship between higher 
HDL-C levels and lower CVD risk is controversial.55 To address 
the discrepancy, several investigators proposed that augmenting 
the ability of cholesterol removal by HDL instead of increasing 
HDL-C levels would improve the outcome of CVD.56 Indeed, 
large-scale measurement of the ability of LDL-depleted plasma 
to facilitate cholesterol efflux confirmed lower risk for prevalent 
atherosclerotic burden and CAD in patients with higher cholesterol 
efflux capacity.57-59 

We have recently reported that AIBP demonstrates a capability 
to enhance cholesterol efflux of HDL and therefore may fulfill the 
role of boosting HDL functionality (Figure 1).2 AIBP is a secreted 
protein discovered in a screen of proteins that interact with 
apoA-I.60 Human AIBP is abundantly expressed in a majority of 
tissues that govern secretions. Of particular interest, it is expressed 
in the vascular smooth muscle and heart muscle but not in 
skeletal muscle.61 The protein localization may imply its role in 
cardiovascular functions. In addition, AIBP was detected in human 
cerebrospinal fluid and urine but not in the plasma of healthy 
subjects.60 The human apoAIBP gene resides on the chromosome 
region associated with familial combined hyperlipidemia, which 
may cause premature CAD.62 Before our studies, there were no 
publications documenting the role of AIBP in lipid metabolism 
and cardiovascular disease.63 We found that an incubation of AIBP 
with HDL increased cholesterol efflux to HDL in ECs. The ability 
of AIBP to promote cholesterol efflux plateaus after 6 hours. One 
reason for this plateau may be the relatively small amount of 
AIBP used (the molar ratio of AIBP to HDL is 75). Since HDL is 
documented to trigger AIBP release from cells,60 it is possible that 
AIBP released from HDL-supplemented cells will catch up with 
the effect caused by trace amounts of AIBP. Another reason for the 
plateau may be due to an insufficient HDL cholesterol deposition 
pool for AIBP to carry out its function in an in vitro system. Under 
in vivo conditions, we do not expect such a problem because a 
much larger pool of HDL is present. We showed that this change of 
cholesterol efflux is a spatiotemporal-dependent event that occurs 
in development during zebrafish angiogenesis.2 

Most studies on cholesterol efflux associated with atherosclerosis 
were done in macrophages, so whether AIBP accelerates cholesterol 
efflux from these particular cells merits further investigation. 
Additionally, maintenance of cholesterol homeostasis in ECs 
appears critical for proper vascular function. Increased cholesterol 
levels in ECs can result in elevated levels of lipid rafts and their 

associated membrane receptor activation, leading to inflammation 
and/or hyperproliferation and angiogenesis.2,64 This should be 
avoided in the plaque microenvironment, where intraplaque 
angiogenesis may incur vulnerability and culminate in its rupture.65 
It will be important to investigate if the enhancement effect of AIBP 
on cholesterol removal may improve the functionality of HDL in 
vivo and mitigate the development of atherosclerosis and CVD in 
at-risk patients.

AIBP documents a remarkable capability to restrict cell 
migration and angiogenesis in vitro in human ECs, ex vitro in 
mouse aortic rings, and in vivo in zebrafish.2 This inhibitory effect 
of AIBP depends on cholesterol transporter ABCG1, which is 
responsible for cholesterol removal in ECs.66 Accordingly, loss of 
ABCG1 abolishes the enhanced effect of AIBP on cholesterol efflux 
in ECs. Interestingly, neovascularization using mouse aortic ring 
assay demonstrates that ABCG1 deficiency increases microvessel 
sprouting, which is not retarded by AIBP. Consistently, the ability 
of AIBP to inhibit segmental artery angiogenesis is comprised in 
ABCA1A- and ABCG11-deficient zebrafish. In this scenario, it is 
likely that there are increased levels of lipid rafts, similar to in 
myeloid cells,38,67 in ECs lacking ABCG1, which in turn promotes 
VEGFR2 signaling and thus augments angiogenesis. An in vivo 
assessment of lipid rafts in zebrafish, known as membrane lipid 
order, which was measured using a lipophilic probe laurdan, 
reveals that there are more lipid rafts in tip cells than in stalk 
cells. This is in line with other findings as tip cells, characteristic 
of VEGFR2 activation, are known to be responsible for vascular 
sprouting and migration in zebrafish. Stalk cells, instead, follow 
the migration of tip cells and are believed to be quiescent, although 
recent studies indicate that tip and stalk cells may compete and 
alternate their cell fates due to synchronization of VEGFR and 
Notch signaling pathways during angiogenesis.68 The higher 
membrane order in tip cells can be lowered using cholesterol 
acceptor HDL, which has no effect on lipid raft abundance in 
the major blood vessel dorsal aorta (DA).2 Since vasculogenesis, 
which gives rise to the DA, has completed at this time,69 it is 

Figure 1. AIBP-mediated targeted cholesterol efflux from endothelial cells 
disrupts caveolae/lipid rafts and inhibits VEGFR2 signaling. VEGFA-stimulated 
VEGFR2 signaling induces the receptor dimerization in the caveolae/lipid 
rafts enriched with cholesterol. Enhanced removal of cholesterol by AIBP/
HDL from the EC plasma membrane disrupts caveolae/lipid rafts, resulting in 
retarded VEGFR2 signaling and restricted angiogenesis. AIBP: apoA-I binding 
protein; VEGFR: vascular endothelial growth factor receptor; HDL: high-
density lipoprotein; EC endothelial cells.
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comprehensible that the cells may be quiescent in this setting. 
This will be of particular importance in using AIBP to treat CVD 
because it manifests no adverse effect on established vessels. 
Rather, it only targets newly formed vasculature that is detrimental 
for atherogenesis.

Future Prospective: Using AIBP to Treat Human CAD
We found that downregulation of AIBP gene expression 

increases while upregulation decreases lipid rafts in the presence 
of HDL. Concurrent with this result, enhanced neovascularization 
is observed in the aortic rings from ABCG1-/- mice.2 Administering 
recombinant apoA-I or genetically raising levels of apoA-I inhibit 
angiogenesis and tumor growth in mice.70 The blood vasculature 
and lymphatic vessels share many features and are functionally 
related. Lymphangiogenic sprouting initiates from venous ECs 
and intersegmental arteries provide cues for lymphangiogenesis.71 
The potential role of AIBP in lymphangiogenesis may be worth 
investigating since lymphatics is regarded as a conduit for reverse 
cholesterol transport. 

Considering that angiogenesis promotes atherosclerotic plaque 
growth and rupture, targeting AIBP may inhibit intraplaque 
angiogenesis and mitigate atherosclerotic plaque growth. 
Insights gained from zebrafish angiogenesis studies may be 
translated to targeting intraplaque neovascularization. We have 
made transgenic zebrafish with conditional expression of AIBP. 
Furthermore, taking advantage of the recently developed gene 
editing technology Crispr/Cas9,72 we can make an AIBP mutant 
zebrafish. Those AIBP loss- and gain-of-function zebrafish models 
will be of tremendous help in elucidating the role of AIBP in 
the early steps of atherogenesis. Inferred from studies of apoA-I 
mimetic peptides,73 there may be AIBP derivate peptides or 
mimetics that can replace AIBP function and are more amenable 
for therapeutic applications. 

Since AIBP also promotes cholesterol removal from cells, it is 
possible that AIBP could “kill two birds with one stone” by both 
inhibiting intraplaque angiogenesis and accelerating cholesterol 
efflux in the plaque settings (Figure 2). This may inhibit plaque 
growth and result in conversion of a vulnerable plaque to a stable 
plaque that poses less threat to patients. The therapeutic potential 
of AIBP to boost HDL functionality may also underpin the 
direction of future drug discovery for cardiovascular disease.
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