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Abstract

Objective

Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and

the most serious complication of long-standing chronic liver diseases (CLD). Its develop-

ment is associated with chronic inflammation and sustained oxidative stress. Deregulation

of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master reg-

ulator of cellular response to oxidative stress, has been associated with poor prognosis in

several cancers including HCC.

Design

In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tis-

sues obtained during HCC resection. The possible protective role of APE1/Ref-1 against

oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes

(IHH) over-expressing APE1/Ref-1.

Results

APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level.

APE1/Ref-1 mRNA content increased with the progression of liver disease with the tran-

scriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regula-

tion was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in

normal hepatocytes conferred cell protection against oxidative stress and it was associated

with BAX inhibition and escape from apoptosis.

Conclusion

APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggres-

siveness. The up-regulation occurs at the transcriptional level and it is present in the earliest
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phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with

hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possi-

ble role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development

calling attention to this molecule as a promising marker for HCC diagnosis and treatment.

Introduction
Human Hepatocellular Carcinoma (HCC) is the most common malignant primary liver tumor
[1], the most serious complication of long-standing chronic liver disease (CLD) and the third
cause of cancer-estimated deaths worldwide [2], symptomatic only at the advanced stage when
effective and radical therapies are limited. Thus, a better understanding of the molecular events
inducing hepatocyte transformation is of the utmost importance.

Hepatocarcinogenesis is a multistep process in cirrhosis [3]. Hepatocyte neoplastic transfor-
mation is associated with hepatocyte proliferation [4], activation of oncogenes, DNA rear-
rangement, chromosomal instability [5], and mitochondrial DNA damage [6]. Thus, selected
cell population proliferate with activation of survival pathways inducing malignant phenotype
[7,8] as in the case of apoptotic pathway deregulation [4,9]. CLD are all characterized by
chronic inflammation and increased production of free radicals [10,11]. Oxidative stress leads
to cellular damage and cell function disruption causing hepatocyte death and regeneration [11]
therefore increasing liver cell turnover in a context of chronic inflammation and oxidative
damage [12].

APE1/Ref-1 is a master regulator of cellular response to oxidative stress, involved in tran-
scriptional regulation of gene expression during adaptive cellular response to oxidative stress
and in base excision repair pathway of oxidative DNA lesions [13]. APE1/Ref-1 is regulated at
both the transcriptional and post-translational levels; Reactive Oxygen Species (ROS) induce
APE1/Ref-1 expression [14,15].

In a previous work we have addressed the functional protective role of APE1/Ref-1 in pre-
venting cell death upon genotoxic treatment and Fatty Acid accumulation using hepatic cell
lines [16]. Using both the APE1/Ref-1 redox inhibitor (E3330) and APE1/Ref-1 functional
mutants expressing clones, we were able to find that APE1/Ref-1 overexpression protects cells
toward different genotoxicants (i.e. H2O2, methyl methanesulfonate and etoposide). Moreover,
treatment with the E3330 prevented the functional activation of NF-κB via the alteration of
APE1/Ref-1 sub-cellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α
and FAS accumulation through blockage of the redox-mediated activation of NF-κB. There-
fore, APE1/Ref-1 overexpression observed in hepatic cancer cells may reflect an adaptive
response to cell damage and may be responsible for further cell resistance to chemotherapy
and for the onset of the inflammatory response.

Oxidative damage play a role in inflammation driven carcinogenesis [17,18], as in the case
of HCC, it facilitates tumorigenesis in several ways [19,20] by deregulation of preneoplastic
and neoplastic cell apoptosis [21,22], developing resistance against cell death signaling path-
ways. Alteration of APE1/Ref-1 intracellular distribution pattern and its up-regulation have
been shown to correlate with clinical outcome in different human cancers [23,24]. We have
previously demonstrated that in HCC, APE1/Ref-1 sub-cellular localization have a prognostic
significance being its cytoplasmic localization associated with a worst prognosis [25]. However,
no data are available about APEX1 gene expression level in human HCC and cirrhotic tissues
with respect to normal liver.
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In this work, the mRNA expression level of APE1/Ref-1 has been studied both in vivo and
in vitro to investigate the possible association between APE1/Ref-1 and HCC development. We
also investigated the APE1/Ref-1 protective role in vitro by evaluating hepatocyte response to
oxidative stress and Bax activation and apoptosis induction after APE1/Ref-1 over-expression.

Materials and Methods

Patients
Nineteen HCC subjects were consecutively enrolled and treated, six with liver transplantation
(OLT) and 13 with liver resection. One liver donor was used as normal control (NL). Sixteen of
them were males and three were females with M/F ratio of 5/1 and a mean age of 63±7 years
(no differences between sexes). Eight patients were HCV, 5 HBV and 6 alcohol abusers.

Samples of HCC and distal liver cirrhosis (DLC) were obtained at the time of surgery. For-
malin fixed and paraffin embedded, 4-μm sections were cut and stained with hematoxylin-
eosin. Cirrhosis was clinically staged by Child-Pugh score [26,27] 12 being A, 6 B and 1 C.
Tumor staging was assessed using BCLC [27], three were A1, 3 A4, 13 A3. HCC was classified
according to Edmondson and Steiner criteria [28] 14 being G1-G2 and 5 G3-G4, analyzed by a
single operator. For molecular analysis of APEX1 expression, samples of DLC and HCC col-
lected during the surgery were immediately snap frozen and stored at -80°C until the RNA
extraction. All clinical data have been collected at the time of surgery. For each patient a written
informed consent form has been obtained. Study was approved by Comitato Indipendente per
la Bioetica (C.I.B.), I.R.C.C.S. Trieste, Prot CE/V-55, (11/5/2005)

Cell lines
APE1/Ref-1 expression pattern was evaluated using Immortalized Human Hepatocytes (IHH)
[29] (non tumoral cells), HuH-7 (well-differentiated hepatoma) and JHH-6 (poor-differenti-
ated hepatoma) cell lines. IHH were grown in DMEM/F12 supplemented by Fetal Bovine
Serum (FBS) 10%, Dexamethasone 10−6 M, bovine insulin 10−8 M. HuH-7 (JCRB0403) and
JHH6 (JCRB1030) have been purchased from Japan Health Science Research Resources Bank
Celland were grown respectively in Dulbecco's modified Eagle's and Williams'E medium sup-
plemented by FBS 10% and L-Glutamine 2 mM, and used within 20 passage numbers.

Transfections
All transfections were carried out in IHH cells. The sequences of interest were cloned into
p3XFLAG-CMV™-14 obtaining 2 different expression vectors with the Flag at the C-terminus:
1) p3XFLAG empty vector used as control (IHH/p3X), 2) pRef-1 containing the cDNA coding
for the wild type protein (IHH/pRef-1). Transfection was performed using Lipofectamine 2000
according to the manufacturer’s instructions. Selection of stable episomal transfectants has
been obtained using G418 antibiotic.

Real Time RT-PCR
Total RNA was extracted using Tri-Reagent kit in accordance with manufacturer’s instruc-
tions. Quantification and quality evaluation were performed spectrophotometrically being
RNA quality criteria sufficed when A260/A280 ratio was between 1.8 and 2.0 and A260/A230
ratio greater than 2.0. Total RNA was retrotranscribed using iScript™ cDNA Synthesis kit and
Real-time quantitative PCR was performed according to the iQ™ SYBR1 Green Supermix pro-
tocol; 18S and β-actin were used to normalize levels of specific mRNA between samples. Primer
pairs were designed using Beacon Designer 6.0 and synthesized by Sigma Genosys. Primer
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sequences: APE1/Ref-1 (NM_080649) 5’-CTGCCTGGACTCTCTCATCAATAC-3’ and 5’-
GAATGCCGTATCCGCTACTCC-3’ 18S (X03205) 5’-TAACCCGTTGAACCCCATT-3’ and
5’-GCGATGATGGCTAACCTACC-3’ β-actin (NM_001101) 5’-CGCCGCCAGCTCAC
CATG-3’ and 5’-GGCAGAAGGGGAGGTAGCAC-3’. Relative quantification was made using
the Pfaffl modification of the ΔCt equation [30,31]. APE1/Ref-1 expression in LC and HCC
was expressed relative to NL.

APE1/Ref-1 protein level analysis in vitro
Total protein extraction was obtained using Cell signaling cell Lysis Buffer in accordance with
manufacture’s protocol. Western Blot analysis was performed using as primary antibodies
anti-APE1/Ref-1 mouse monoclonal antibody (1:200) and anti-α-tubulin (reference protein)
monoclonal antibody (Santa Cruz Biotechnology; 1:5000) and Anti-mouse IgG peroxidase
conjugated antibody (Dako; 1:2000) as secondary antibody. Western blot was used to quantify
the protein amount and comparative analysis of protein level has been performed as previously
described [32,32–34], APE1/Ref-1 optical density was normalized to the α-tubulin.

Nuclear, cytoplasmic and mitochondrial fractionation
Nuclear cytoplasmic and mitochondrial extracts were isolated by differential centrifugation as
previously described [35,36]. Cellular purified fractions were separated on a 10% SDS-PAGE
gel and evaluated by Western Blot. APE1/Ref-1 was detected with the same antibody and con-
ditions previously described. To test nuclear and cytoplasmic enrichments anti α-tubulin anti-
body and anti p84 antibody (Abcam Inc., catalog ab487, 1:1000), have been used as
cytoplasmic and nuclear markers respectively.

Immunocytochemistry
IHH, Huh-7 and JHH6 were grown on glass coverslips to reach a 50–60% confluence, fixed
with paraformaldehyde 4% and permeabilized with 0.1% Triton X-100, treated with RNAse A
and blocked with PBS containing 2.5% FBS. The coverslips were then incubated with the same
anti-APE1/Ref-1 primary antibody used for WB, fluorescein isothiocyanate (FITC)-conjugated
mouse antibody was used as secondary antibody. Propidium iodide stained the nucleus. Fluo-
rescent images were visualized by Leica DM2000 apparatus, captured by charge-coupled-device
camera (Leica DC490) and processed using Adobe Photoshop CS 8.0. Immunocytochemistry
was used to access flagged proteins subcellular localization, anti-Flag M2 form Sigma (1:1000)
was used to detect flagged APE1/Ref-1, nuclei were stained using Hoechst 33342 and mito-
chondria were stained using MitoTracker Red CMX ROS.

Western Blot for APE1/Ref-1 transfected forms
Total protein extracts from each clone were separated on a 10% SDS-PAGE gel as previously
described. The production of flagged exogenous APE1/Ref-1 protein form was detected by
using anti-Flag M2 antibody Sigma (Sigma, 1:1000). To evaluate the endogenous protein pro-
duction, APE1/Ref-1 was detected with the anti-APE1/Ref-1 monoclonal antibody.

Oxidative stress induction and MTT analysis
IHH/pRef-1and IHH/p3X were plated (25000 cells/cm2) in 24 well tissue culture plates. After
24 hours cells were exposed to hydrogen peroxide at the following concentrations: 0, 100, 150,
200 and 250 μM for additional 24h, and cytotoxicity was tested by MTT reduction assay.
Absorbance was measured in a plate reader (Beckman Coulter LD400) at λ = 562 nm.
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Induction and detection of apoptosis
Apoptosis was induced by irradiating cells (in fixed volumes of culture medium) at 90 mJ/cm2

during 12” using a UV Stratalinker 2400 apparatus. To quantify cell death, apoptosis was
induced and 6 h after irradiation floating cells and adhering cells were collected and stained
with annexin V-FITC and Propidium Iodide (50 μg/mL). Stained cells were then analyzed by
flow cytometry using a FACScalibur system (Becton Dickinson). Apoptosis induction was fur-
ther investigated by evaluating BAX activation and Cytochrome C release by immunocyto-
fluorescence. Cells were stained with mitotracker Red CMX ROS, nuclei were stained by
Hoechst 33342. BAX activation was detected using anti-BAX cdc2 antibody (1:200) and Cyto-
chrome C release using anti-Cyt C antibody (1:400) as primary antibodies, anti mouse FITC
was used as secondary antibody. Cells were then visualized by Zeiss Axiovert 135TV apparatus;
images were captured by Photometric CE200A CCD device camera and processed using
Adobe Photoshop CS 8.0. Scoring of BAX Activation and Cytochrome C release was performed
by counting at least 100 fluorescent cells per field. Only the cells displaying a clear diffuse cyto-
plasmic staining for Cytochrome C (cytochrome C release feature) and a clear BAX mitochon-
drial localization were scored as apoptotic cells.

Statistical analysis
APE1/Ref-1 mRNA expression levels are expressed as median fold change and interquartile
range (IQR) data are analyzed using Wilcoxon matched pairs test (p<0.05). All data obtained
in vitro represent the mean of at least three different experiments, and data are reported as
mean ± Standard Deviation (SD). Comparison between two groups were analyzed via Student’s
t test (p<0.05) and data are reported as mean ± Standard Deviation (SD). Comparison between
three groups by ANOVA with a Bonferroni posthoc test (p<0.05) and data are reported as
mean ± Standard Deviation (SD).

Results
APE1/Ref-1 mRNA content was higher in HCC (4.05, IQR 1.8–8.1) than in DLC (1.85, IQR
0.79–2.89) (p = 0.002) (Fig 1B) with increasing levels moving from DLC to HCC (Fig 1A). All

Fig 1. APE1/Ref-1 mRNA relative levels determined by Real Time RT-PCR in HCC affected patients. (A)
APE1/Ref-1 mRNA level increase in HCC with respect to DLC for each patient. (B) APEX1 mRNA fold
change in HCC with respect to DLC. (* p = 0.002 vs. DLC). (C) SLC/DLC ratio and HCC/DLC ratio for each
patient. Abbreviations: DLC: distal liver cirrhosis; SLC: surrounding liver cirrhosis; HCC: hepatocellular
carcinoma; NL: normal liver.

doi:10.1371/journal.pone.0143289.g001
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showed an up-regulation of APE1/Ref-1 in HCC with HCC/DLC ratio>1 (Fig 1C), while only
57.8% of subjects presented an up-regulation in cirrhosis as compared to NL (Fig 1C) indicat-
ing that transcriptional up regulation of APEX1 gene is always present in HCC and in more
than half of cirrhotic samples. Of notice, APE1/Ref-1 up-regulation in HCC differs according
to CLD etiology as mRNA levels were significantly higher in those related to HCV (2.11 ± 0.66,
p = 0.036) as compared to alcohol (1.16 ± 0.37); intermediate values were found for HBV infec-
tion (1.86 ± 0.54). No association has been found between APE1/Ref-1 mRNA level in DLC
and HCC tissue with age, sex, Child-Pugh score, HCC grading and HCC staging.

APE1/Ref-1 expression in vitro demonstrated that APE1/Ref-1 mRNA level was signifi-
cantly higher (p = 0.0035) in hepatoma cell lines since JHH-6 (11.9 ± 2.51, CI 5.65–18.1) and
Huh-7 (2.5 ± 0.81, CI 0.49–4.55) showed respectively a 11.9-fold and 2.5-fold increase in
mRNA level with respect to IHH (Fig 2A), with a progressive increase of APE1/Ref-1 gene
expression moving from normal hepatocytes to poorly-differentiated cancer cells pointing to
an association between APE1/Ref-1 mRNA level and HCC differentiation grading as observed
in human tissues. Furthermore, APE1/Ref-1 protein was significantly higher (p = 0.001) in
JHH-6 (2.78 ± 0.21) and in Huh-7(1.62 ± 0.15) than in IHH (Fig 2B) indicating that increased
mRNA synthesis is associated with increased APE1/Ref-1 protein production especially in
poorly-differentiated hepatoma. In addition to the main band that was observed at the
expected 37 kDa corresponding to the APE1/Ref-1 full length protein, a second less intense
band of a MW around 33 kDa (Fig 2B) was observed only in the poorly-differentiated hepa-
toma cell lines. This band is consistent with APE1/Ref-1 truncated form lacking the N-terminal
33 amino acids already described [37]. APE1/Ref-1 was found both in the nucleus and

Fig 2. APE1/Ref-1 mRNA and protein levels in Hepatoma cell lines with respect to IHH. (A) Real Time
RT-PCR analysis expressed as fold change in mRNA expression of APE1/Ref-1 in hepatoma cell lines as
compared to normal hepatocytes (IHH). Data are expressed as mean± SD of five different experiments from
5 different batchs of cells *p = 0.0035 vs. Huh7. (B) WB analysis for APE1/Ref-1 in total extracts of hepatoma
cell lines and in normal hepatocytes. Left: representative WB for APE1/Ref-1 detection. Right: band density
quantification graph. Samples were normalized to α -tubulin and protein levels in Huh-7 and JHH-6 are
relative to IHH cells, data are expressed as mean±SD of five different experiments from 5 different batchs of
cells. (* p = 0.001 vs. Huh7).

doi:10.1371/journal.pone.0143289.g002
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cytoplasm (Fig 3A). However, Western blot analysis performed on nuclear and cytoplasmic
enriched fractions (Fig 3B) showed higher protein content in JHH6 cytoplasmic fraction with
respect to Huh-7 and IHH. On the contrary, the relative APE1/Ref-1 nuclear amount was com-
parable in the 3 cell lines (Fig 3C). These data confirm the previous observation that APE1/
Ref-1cytoplasmic localization is more frequent in poorly differentiated HCC.

To evaluate the possible role of APE1/Ref-1 on hepatocyte survival, an over-expression
strategy was used obtaining IHH/p3X and IHH/pRef-1 cells with preserved hepatocyte cell
morphology when compared to IHH parental cells. Both the exogenous flagged APE1/Ref-1
(Fig 4A) and the endogenous protein (Fig 4B) were expressed in the transfected IHH demon-
strating that the exogenous APE1/Ref-1 over-expression did not suppress the endogenous pro-
tein production. In addition, exogenous APE1/Ref-1 was localized both in IHH nucleus,
cytoplasm and mitochondria (Fig 4B) indicating that the intracellular trafficking was not
altered either by the FLAG sequence or by the over-expression. When these cells were exposed
to oxidative stress, IHH/pRef-1, exerted a significant protection against H2O2 damage than
IHH/p3X, at 150, 200 and 250 μM (p<0.05). At higher concentration (350 μM), this protection
disappeared (NS) (Fig 5A). The main difference was found at 250 μMH2O2 with an IHH/p3X
viability almost half of that of IHH/pRef-1 (27.0 ± 2.04 vs. 57.91 ± 3.67, respectively;
p = 0.022). These findings collectively indicate, as in other cell lines, that increased expression
levels of APE1/Ref-1 protect hepatocytes from oxidative stress damage [38].

Hepatocyte survival ability was studied by inducing apoptosis. Six hours after UV irradia-
tion the number of Annexin V positive cells (Fig 5B) was significantly reduced (p = 0.001) in
IHH/pRef-1 than in control cells indicating that APE1/Ref-1 protects hepatocytes from apo-
ptotic stimulus.

Since the inactivation of mitochondrial apoptotic intrinsic pathway is crucial for hepatocyte
survival and HCC development, and to further investigate APE1/Ref-1 role in apoptosis escape,
we studied BAX activation and Cytochrome C release inhibition. APE1/Ref-1 over-expression

Fig 3. Intracellular localization of APE1/Ref-1 in hepatoma cell lines. (A) Immunofluorescence for APE1/
Ref-1 in IHH, Huh-7 and JHH6. In red: propidium iodide (PI) stained nuclei. In green: FITC-immunodetected
APE1/Ref-1. APE1/Ref-1 is localized both in the nucleus and in the cytoplasm of each cell line. Merge is
obtained overlapping the two images; orange/yellow indicates nuclear localization of APE1/Ref-1 while green
indicates cytoplasmic localization of this protein. (B) Western blot analysis for APE1/Ref-1 in IHH, Huh-7 and
JHH6 nuclear and cytoplasmic fractions. Representative WB for APE1/Ref-1 in IHH, Huh-7 and JHH6
nuclear and cytoplasmic fractions. (C) Band density quantification graph for nuclear (grey bars) and
cytoplasmic fractions (black bars). Samples were normalized to α-tubulin and α-p84 respectively and protein
levels in Huh-7 and JHH-6 are relative to IHH cells, data are expressed as mean ± SD of three different
experiments from 5 different batches of cells.

doi:10.1371/journal.pone.0143289.g003
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significantly inhibited (p = 0.001) BAX activation with a 3 time reduction in IHH/pRef-1 with
respect to IHH/p3X (30.8 ± 0.91). This effect was associated with a parallel decrease in Cyto-
chrome C release (p = 0.001) in IHH/pRef-1 (12.4 ± 1.4) with respect to IHH/p3XFLAG
(35.5 ± 1.1) (Fig 5C).

Discussion
APE1/Ref-1 is known to be deregulated in different tumors and this deregulation correlates
with tumor aggressiveness and prognosis (39, 40). In HCC, APE1/Ref-1 cytoplasmic localiza-
tion is more frequent in poorly-differentiated tumors and is associated with a shorter survival
time [25]. However, the mechanism linking the cytoplasmic accumulation with hepatocarcino-
genesis is still not known. It has been demonstrated that APE1/Ref-1 cytoplasmic localization
enhances lung tumor aggressiveness [39]. Hepatocarcinogenesis begins in cirrhotic hepatocytes
[40] where persistent cellular damage induces an increased ROS production [41]. APE1/Ref-1
is a master regulator of cellular response to oxidative stress and it has been demonstrated that
its intracellular localization has a prognostic significance also in predicting HCC relapse after
transplantation [42]. APE1/Ref-1 over-expression depends in part by NF-kB pathway in cancer
cells [43]. Nevertheless, no data are available about APE1/Ref-1 gene expression in human
HCC tissues. The present study demonstrated, for the first time, that APE1/Ref-1 mRNA syn-
thesis is increased in HCC, suggesting a transcriptional regulatory mechanism of APE1/Ref-1
expression in HCC, in line with the observation of elevated APE1/Ref-1 transcript levels in
other tumors such as prostate cancer [44] and melanoma [45]. It has been demonstrated that
both APE1/Ref-1 mRNA levels and protein production are altered in chronic viral hepatitis
[46], and this agrees with our finding that APE1/Ref-1 is up-regulated mostly in cirrhotic tissue
of HCV affected patients. Although in the present study APE1/Ref-1 resulted over-expressed
in all HCC specimens, more than half of patients showed an up-regulation also in DLC,

Fig 4. Detection of transfected (exogenous) and endogenous APE1/Ref-1 forms. (A) Western Blot
detection of transfected flagged APE1/Ref-1 proteins using anti-Flag antibody (left panel) and detection of
endogenous (black arrow) and flagged APE1/Ref-1 (white arrow) using anti-APE1/Ref-1 antibody (right
panel). (B) Microphotography of flagged APE1/Ref-1 cellular localization in the two cell lines obtained after
transfection. In blue: Hoescht stained nuclei. In red: mitotracker-red stained mitochondria. In green: FITC
detected flagged APE1/Ref-1 forms. Merge is obtained overlapping all three images; orange/yellow indicates
a mitochondrial localization of the flagged proteins.

doi:10.1371/journal.pone.0143289.g004
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Fig 5. APE1/Ref-1 exerts hepatocytes protection against oxidative insult and apoptosis. (A) Hydrogen
peroxide cytotoxicity on transfected IHHmeasured by MTT assay (black diamond: IHH/p3X; black triangle:
IHH/pRef-1). Data are expressed as mean ± SD of three different experiments. (* = different from IHH/p3X;
p<0.05). (B) FACS analysis of apoptotic rate after UV irradiation. Cells were treated with UV exposure and
after 6 hours FACS analysis for AnnexinV staining was performed to assess the percentage of cells
undergoing apoptosis. Left Panel: example of FACS analysis graphs for apoptotic rate at 6 hours after UV
irradiation (FL1-H: AnnexinV-FITC; FL2-H: propidium iodide). Right Panel: The bar plot shows the
AnnexinV-FITC positive cells mean ± SD of three different experiments from three different batches of cells
(black bars: IHH/p3X; grey bars: IHH/pRef-1). (* = different from IHH/p3X). (C) Immunocytochemical
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suggesting that APE1/Ref-1 transcriptional activation is already present in the earliest phase of
liver disease progression, when oxidative burst is elevated and selection of hepatocyte clones
able to survive plays a central role in tumor development.

Several evidences demonstrated the involvement of Ape1/Ref-1 over-expression in carcino-
genesis. Mi-Hwa Kim demonstrated that APE1/Ref-1 contributes to aggressive colon cancer
behavior and functions as an upstream activator in the Jagged1/Notch signaling pathway
highlighting its oncogenic effects [47]. Elevated APE1/Ref-1 levels facilitate ROS induced trans-
formation of JB6 cells suggesting that APE1/Ref-1 up-regulation protects cells from oxidative
damage facilitating neoplastic transformation [48]. This is important since hepatocarcinogen-
esis is characterized by a progressive de-differentiation of the hepatocytes [28,28,49,49,50].
This is in line with our finding of a significant increase of APE1/Ref-1 mRNA production from
DLC to HCC, pointing to an association between tumor aggressiveness and APE1/Ref-1 up-
regulation. The cytoplasmic accumulation of APE1/Ref-1 has been described as a peculiar fea-
ture of transformed hepatocytes, and this pattern was described also in many other human can-
cers [23]. We demonstrated that APE1/Ref-1 protein content was significantly higher in the
less differentiated hepatoma cell line that was characterized by a cytoplasmic accumulation of
the protein. It has been recently shown that in lung cancer, APE1/Ref-1 cytoplasmic localiza-
tion is associated with higher tumor aggressiveness and involves NF-kB pathway activation.
These findings emphasize the need for a deeper understanding of the mechanism associated
with APE1/Ref-1 cytoplasmic accumulation in HCC and the protein functions in this compart-
ment. Whereas APE1/Ref-1 nuclear roles are well established, little is known about APE1/Ref-
1 extra-nuclear functions even though the very recent discovery for a role of APE1/Ref-1 in
RNA metabolism points to a potential function in the tumorigenic process [51,52]. ROS play a
role in progression of CLD to HCC [9] and activates APE1/Ref-1. In fact, during cellular
response to oxidative stress neo-synthesized APE1/Ref-1 is rapidly translocated into the
nuclear compartment. Nuclear localization of APE1/Ref-1 is controlled by the first 20 amino
acids at the N-terminus sequence through a nuclear localization signal (NLS) [49]. Qu demon-
strated that S-nitrosation in response to NO stimulation leads to the nuclear to cytoplasmic
APE1/Ref-1 translocation by a nuclear export signal [53,54]. Thus, both nuclear import and
export may control sub-cellular distribution of APE,1 its intracellular trafficking and protein
activities. It has been shown both that APE1/Ref-1 up-regulation is associated with an
increased cell resistance toward oxidative stress [37] and that APE1-Ref-1 silencing enhances
cell sensitivity to radiotherapy [55]. The reduction of APE1/Ref-1 mRNA and protein levels is
associated to a reduced cell resistance to death [56]. Here we demonstrated that APE1/Ref-1
over-expression in hepatocytes confers cell survival advantage as an adaptive response to oxi-
dative damage.

We observed that, in IHH, transfection with pRef-1 exert a significant protection both
against H2O2 induced oxidative insult and against UV irradiation by reducing the hepatocyte
apoptotic rate. It is known that APE1/Ref-1 knockdown sensitizes cells to apoptosis induced by
oxidative stress both in vitro [57] and in vivo [58], that APE1/Ref-1 silencing increases HCC

detection of Bax activation and Cytochrome C release and positive cell counting. Figures represent an
example of immunocytochemical detection of Bax activation (upper figure) and Cytochrome C release (lower
figure) after UV treatment. In blue: Hoescht stained nuclei. In red: mitotracker-red stained mitochondria. In
green: FITC detected Cytocrome C. Merge is obtained overlapping all three images, orange/yellow indicates
a mitochondrial localization of BAX and Cytocrome C. After BAX activation Cytochrome C is released into the
cytoplasm losing its mitochondrial localization. Bar graphs represent the percentage of cells with BAX
activation and Cytocrome C release after UV irradiation (grey bars: untreated; black bars: 6 hours of UV
exposure). Data are reported as mean ± SD of three different experiments. (*p<0.01 vs. IHH/p3X). UT:
untreated.

doi:10.1371/journal.pone.0143289.g005

Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor

PLOS ONE | DOI:10.1371/journal.pone.0143289 December 1, 2015 10 / 14



sensitivity to radiotherapy by enhancing hepatocyte apoptosis, nevertheless the mechanism
directly involved in APE1/Ref-1 apoptotic control is not well understood.

We showed that APE1/Ref-1 over-expression reduce the hepatocyte apoptotic rate pointing
to a possible link between APE1/Ref-1 over-expression and hepatocyte survival. Some pro-apo-
ptotic molecules such as BAX are down regulated or inactivated in HCC [59] causing cell sur-
vival through mitochondrial apoptotic pathway dysfunction. [60]. Bhattacharyya
demonstrated that APE1/Ref-1 expression reduce BAX production and apoptotic rate in Heli-
cobacter pylori-mediated gastric epithelial cell apoptosis [61]. Mitochondrial targeted APE1/
Ref-1 reduced the apoptotic Cytochrome C release [62] and absence of APE1/Ref-1 decreased
the ratio of Bcl2/BAX protein expression resulting in Cytochrome C release and apoptosis [57].
In HCC the apoptotic rate is reduced, but, if BAX activation is induced, this apoptotic rate can
be reversed [63] suggesting BAX as a potential therapeutic target in HCC. Interestingly, in our
model APE1/Ref-1 over-expression was able to inhibit BAX activation and Cytochrome C
release, and this is the first report demonstrating that APE1/Ref-1 over-expression may protect
human hepatocytes from apoptosis acting at the mitochondrial apoptotic pathway level.

In summary, this study demonstrated for the first time that APE1/Ref-1 synthesis is up-reg-
ulated in human hepatocellular carcinoma and that mRNA level increases according to the
progression of liver disease. We also showed that APE1/Ref-1 over-expression protects normal
hepatocytes from oxidative stress damage and reduce apoptotic rate by inhibiting BAX activa-
tion suggesting another APE1/Ref-1 cytoplasmic role in hepatocyte survival. Although all these
observation need to be confirmed in a larger cohort of patients, our findings point to APE1/
Ref-1 as a promising molecular target for HCC diagnosis and treatment being implicated in
hepatocyte survival and escape from apoptosis.
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