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Abstract

Background—Huntington disease (HD) is a neurodegenerative disorder characterized by motor 

dysfunction, cognitive deterioration, and psychiatric symptoms, with progressive motor 

impairments being a prominent feature. The primary objectives of this study are to delineate the 
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disease course of motor function in HD, to provide estimates of the onset of motor impairments 

and motor diagnosis, and to examine the effects of genetic and demographic variables on the 

progression of motor impairments.

Methods—Data from an international multisite, longitudinal observational study of 905 

prodromal HD participants with cytosine-adenine-guanine (CAG) repeats of at least 36 and with at 

least two visits during the followup period from 2001 to 2012 was examined for changes in the 

diagnostic confidence level from the Unified Huntington's Disease Rating Scale.

Results—HD progression from unimpaired to impaired motor function, as well as the 

progression from motor impairment to diagnosis, were associated with the linear effect of age and 

CAG repeat length. Specifically, for every 1-year increase in age, the risk of transition in 

diagnostic confidence level increased by 11% (95% CI: 7-15%) and for one repeat length increase 

in CAG, the risk of transition in diagnostic confidence level increased by 47% (95% CI: 27-69%).

Conclusions—Findings show that CAG repeat length and age increased the likelihood of the 

first onset of motor impairment as well as the age at diagnosis. Results suggest that more accurate 

estimates of HD onset age can be obtained by incorporating the current status of diagnostic 

confidence level into predictive models.
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Introduction

Huntington disease (HD) is an autosomal dominant neurodegenerative disease caused by a 

trinucleotide expansion cytosine-adenine-guanine (CAG) in exon 1 of the HTT gene [1]. 

Individuals who develop HD have at least 36 CAG repeats. HD is associated with severe 

motor, cognitive, and psychiatric impairments that typically develop in adulthood [2]. The 

typical age of diagnosis is between 30 and 50 years, with a range of 2 to 85 years. The mean 

duration of the disease following diagnosis is between 17 and 20 years [3].

Progression of motor dysfunction is a characteristic of the disease course of HD. For a 

typical individual with CAG expansion, his or her motor function remains unimpaired from 

birth until a certain age at which subtle signs and symptoms of motor impairment start to 

appear, such as a change in handwriting or occurrence of slight involuntary movements. 

With continued worsening of motor function, further characteristic motor signs of HD 

emerge, such as chorea, dystonia, bradykinesia, and oculomotor impairments. At a certain 

point in the disease course the individual receives an HD diagnosis, based on the presence of 

motor signs and symptoms. Once an individual is diagnosed with HD, the condition slowly 

progresses toward death, since there are no disease-modifying treatments.

Motor function in HD has most typically been evaluated according to the standardized 15-

item motor exam in the Unified Huntington's Disease Rating Scale (UHDRS) [4]. After 

completing the exam, an experienced and certified motor rater assigns a score according to 

the diagnostic confidence level (DCL; UHDRS item 17), which asks whether the participant 
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“meets the operational definition of the unequivocal presence of an otherwise unexplained 

extrapyramidal movement disorder in a subject at risk for HD” (99% confidence). The DCL 

ranges from 0 to 4 – i.e., from unimpaired (DCL = 0), to non-specific motor impairments 

(less than 50% confidence) (DCL = 1), up to motor impairments that are unequivocal signs 

of HD (99% confidence) (DCL = 4). From the perspective of tracking the disease course of 

motor function, the first receipt of DCL score of 1 represents the onset of motor impairments 

and that of 4 indicates the onset of HD diagnosis.

The presentation of motor signs and symptoms in HD is variable among individuals. 

Although chorea is a classic sign of HD, a wide spectrum of other motor signs and 

symptoms can also occur, such as bradykinesia, dystonia, rigidity, and impairments of eye 

movements and gait [2, 5-11]. Not all of these impairments manifest in every individual 

with HD, nor do they follow the same progressive patterns [2, 5-11]. Most notably, some 

HD gene mutation carriers never develop chorea [2, 10, 11]. Therefore, it is inaccurate to 

use a single motor sign or symptom as pathognomonic of HD to characterize the disease 

course for all individuals.

No matter how differently the motor signs and symptoms manifest themselves among 

different individuals or at different time points, the overall progressive pattern of motor 

dysfunction is a common feature in HD. In other words, every HD individual should, in 

principle, experience a period of no motor impairments, followed by a period of subtle 

motor impairments but without a rating of 4 on the DCL, followed by motor impairments 

warranting HD diagnosis (DCL = 4). The duration of these periods is unknown and likely 

varies among individuals. Careful consideration of the age at which motor impairments 

begin and the age at which a manifest motor diagnosis is given may provide useful 

information on disease progression. The rate and pattern of motor disease progression have 

received little attention, despite extensive study of HD age of onset [5, 11-15].

In all existing publications on the modeling of age of HD onset [5, 11-18], predicted age of 

onset is modeled based only on a participant's baseline information, such as CAG repeat 

length, age at study entry, and other demographic and neurological measures. There are 

several limitations to this approach. First, these models consider only HD diagnosis as the 

outcome. For participants who are not diagnosed during study followup, their outcomes are 

broadly categorized as censored (not yet diagnosed), and the information on their final 

statuses of motor function is discarded. Second, none of the models have included the status 

of motor function at study entry. As HD is a progressive disease, when participants enter a 

study, their motor function typically shows varying degrees of impairment. In studying age 

of HD onset, it is preferable to include such information in the model. Finally, none of the 

existing models can utilize the rich information on status of motor function collected over 

individual study visits. In summary, the existing models are static in nature and not well-

equipped to evaluate the dynamic process of disease progression. In this study, we aim to 

address these issues by employing a novel statistical framework, under which both the HD 

diagnosis and intermediate status of motor function can be modelled, and the dynamic 

process of disease progression can be evaluated. To the best of our knowledge, our study is 

the first of its kind and fills a gap in research on dynamic modeling of disease progression in 

HD.
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The primary objectives of this article are to provide models for the motor progression of HD 

from unimpaired to impaired motor function, and from impaired motor function to motor 

diagnosis. Such models may provide novel and significant contributions toward a better 

understanding of the natural evolution of motor impairments in HD.

Methods

Participants

Participants were 905 persons with the gene mutation for HD (≥36 CAG) from the 

PREDICT-HD study [19-22]. Data in PREDICT-HD were collected at 33 sites in the United 

States, Canada, Australia, Germany, Spain, and the United Kingdom from 2001 to 2014. All 

participants underwent comprehensive motor, cognitive, psychiatric, and functional 

evaluations at study entry, and annually thereafter. At study enrollment, participants were 

required to be 18 years of age or older, have a family history of HD, and have completed 

independent genetic testing for the HD CAG expansion prior to entry into PREDICT-HD. 

Confirmatory DNA testing was conducted at the baseline PREDICT-HD visit using a 

polymerase chain-reaction method to determine CAG-repeat length [23].

For this study, participants were included if they had at least two visits, because our research 

focuses on the modeling of changes in motor function from one visit to another. If a 

participant had only one data point, no change could be modelled. Descriptive statistics for 

the sample are presented in Table 1, stratified by the baseline DCL levels. As can be seen 

from the table, the gender composition, CAG repeat length and number of visits were very 

similar across baseline DCL levels.

Statistical Analysis Methods

We argue the diagnostic confidence levels of 0 and 4 represent two clinical extremes of 

motor function in disease progression, but the intermediate levels of 1, 2, and 3 are less 

distinct from one another. The intermediate levels reflect varying degrees of confidence a 

motor rater has on a participant's motor dysfunction. To prevent the over-interpretation of 

the clinical meaning of each of the intermediate confidence levels, we think that it makes 

practical sense to group them together into one category representing broader motor 

impairment below the threshold of a motor diagnosis. Therefore, DCL data from each 

participant was categorized into three states: the level of 0 corresponds to the “unimpaired” 

state, the levels of 1, 2 and 3 collectively represent the impaired state, and the level of 4 

represents HD diagnosis. In the remainder of the article, the newly created variable with 

three states will be the outcome variable in all analyses.

Although in principle, motor dysfunction should progress from unimpaired to impaired to 

HD diagnosis, the observed data did not always follow such a progressive pattern, and 

deviations frequently occur. This is illustrated in the left panel of Figure 1 using the 

observed data from two participants in the PREDICT-HD study. For example, the disease 

course of participant A in general follows the overall pattern of unimpaired to impaired to 

diagnosis. However, the participant received a diagnosis at the fourth visit, and the diagnosis 

was reversed in the next four visits (back to impaired). Based on the observed disease 
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trajectory, it is natural to hypothesize that participant A′s diagnosis at the fourth visit could 

be just a random deviation and the participant should not be declared as HD diagnosed in 

light of his/her motor performance at the next four visits. For participant B, the disease 

course also shows a progressive trend. However, there are variations in disease status at the 

last three visits (fluctuating between impaired and HD diagnosis). There is a possibility that 

the impaired state that patient B received at the fifth visit could in fact be HD diagnosis.

There are many other participants whose disease trajectories show similar deviations during 

followup. Table 2 represents the frequency of transitions between each possible pair of 

disease states based on the PREDICT-HD data. As can be seen from the table, most 

transitions show a progressive pattern, such as from unimpaired to impaired, or from 

impaired to HD diagnosis. However, many reverse transitions also occur, such as from 

impaired to unimpaired, or from HD diagnosis to impaired. Since the disease is relentless 

and there is currently no treatment, these reverse transitions can be treated as random 

deviations or measurement noise. The actual causes of the deviations in the observed disease 

trajectories are not clear. Some possible reasons include changes of performance of motor 

assessors, temporary effects of some drugs taken by the participants, or psychological 

variations over the participants' clinical visits.

The examples in Figure 1 and the summary statistics in Table 2 indicate the observed data 

may not always show a progressive pattern [24, 25]. A disease course showing a strict 

progressive pattern can be considered as an idealized disease process. Such a process makes 

it possible to define HD diagnosis or duration in a disease state in an unequivocal and 

unique way. An idealized disease process can be derived based on the observed data, and 

this is one of the primary objectives of this study.

To model the idealized disease course of motor function based on the observed data in the 

context of expected measurement noise, we employ the hidden Markov model (HMM) [26, 

27] for the statistical analysis. The HMM is a statistical model for a categorical response 

variable, such as disease status, that is measured repeatedly over time, where each outcome 

is subject to measurement noise. Each level of the categorical variable is called a state. A 

distinction is made between the noisy observation, which is called an observed state, and its 

noise-free counterpart, which is called the hidden state (or idealized state). Using the HMM 

model, the noise-free disease states can be derived from the noisy observations, and the 

transitions between idealized disease states, as well as factors affecting these transitions, can 

be systematically evaluated. When modeling the progressive nature of the disease course of 

motor function in HD, we assume that the idealized disease states cannot transition 

backward from HD diagnosis to impaired or from impaired to unimpaired. Under this 

assumption, each HD gene mutation carrier has a unique and unequivocally defined onset 

age of motor impairments and onset age of HD diagnosis.

Three individual-level covariates were considered in all analyses: CAG repeat length, age at 

each visit, and sex. All covariates entered the model in a linear fashion. Age was a time-

varying covariate indexing the fact that transitions between disease states are age dependent. 

Both CAG and age were centered at their sample means, and the interaction between age 

and CAG was also included. The effects of these covariates were assumed to be different for 
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distinct transitions. Estimation of covariate effects and prediction of years of onset were 

performed using the msm package [28] in the R computing program.

Results

Effects of CAG repeat length, sex and age on disease progression

The estimated covariate effects and their 95% confidence intervals (CIs) are summarized in 

Table 3. The statistical significance of a covariate effect is based on whether its CI contains 

0 or not: if it contains 0, then it is not statistically significant. For the transition from the 

unimpaired to impaired state, the main effects of age and CAG are statistically significant, 

but their interaction effect is not. To be specific, for every one-year increase in age, the risk 

of transition to the next state (i.e., unimpaired to impaired) increases by 11%; whereas for 

one repeat length increase in CAG, the risk increases by 47%. For the transition from 

impaired state to HD diagnosis, the main effects of age and CAG as well as their interaction 

are all significant. Like the transition from unimpaired to impaired, the risk of transition 

increases with older age and longer CAG repeat length, but the amount of increase in the 

risk depends on individual age and CAG. For example, when CAG = 43, a one-year increase 

in age increases the risk of transition by 11%, and when CAG = 45, a one-year increase in 

age increases the risk of transition by 13%. The effect of sex is not significant for either 

transition.

Estimated probabilities of transitions

The probabilities of transition from one disease state to another are shown in the 

supplementary material. For illustrative purposes, we extracted the estimated 3-year, 5-year 

and 10-year transition probabilities for an individual at age 40 with CAG repeat length of 

43. The 3-year benchmark was chosen to represent a feasible length of a clinical trial, 

whereas the 10-year benchmark was chosen because it is the longest follow up time of our 

sample (5 years is a convenient middle value). If the individual's motor function is currently 

unimpaired, the probabilities for this individual to be diagnosed in 3, 5, and 10 years are 4%, 

10%, and 27%, respectively. On the other hand, if the individual already has symptoms and 

signs of motor impairments, the risk of being diagnosed in 3, 5, and 10 years increases to 

19%, 30%, and 51%, respectively.

Estimated years to onset of motor impairments and HD diagnosis

The average number of years to first onset of motor impairments and to HD diagnosis for 

any specific individual can be estimated. Estimates are shown in the supplementary material 

for an individual at age 40 with CAG repeat length 43, and another individual at age 45 and 

CAG repeat length 45. When the individual with CAG = 43 and age = 40 currently has 

unimpaired motor function, his or her estimated average years to onset of motor 

impairments and HD diagnosis are approximately 6 and 21, respectively. If the individual 

already shows motor impairments, the estimated years to HD diagnosis are reduced to 14. 

For the individual with CAG = 45 and age = 45, if the individual currently has unimpaired 

motor function, his or her estimated average years to onset of motor impairments and HD 

diagnosis are approximately 2 and 5, respectively. If the individual already shows motor 

impairments, the estimated years to HD diagnosis is 3.
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Discussion

Using data from the largest and longest-followed cohort of premanifest HD, we examined 

progression of motor impairment so that the onset of motor impairments and that of HD 

diagnosis can be defined and evaluated. Estimates of years to first onset of motor 

impairments and years to HD diagnosis are provided for a broad range of CAG repeat 

lengths and ages. Transitions from unimpaired to impaired motor functioning and from 

impaired motor signs to a traditional diagnosis of manifest HD are delineated.

As expected, findings confirmed that CAG plays a critical role in determining the onset of 

HD diagnosis, as reported in numerous previous studies. Although age and CAG have a 

significant interaction effect on HD diagnosis (as based on the DCL of 4 from the UHDRS), 

the interaction is not significant on the onset of “prediagnosis” motor impairments. The lack 

of significant interaction suggests that age and CAG impact the onset of motor impairments 

prior to a formal diagnosis in an independent way rather than dependent on each other. One 

reason could be that some motor signs and symptoms are age-related and increase with age 

irrespective of being at risk for HD. Another reason may be that since the onset of motor 

impairments represents the first appearance of impaired motor function, which usually 

occurs much earlier than HD diagnosis, the toxicity effect of CAG at that point has not 

accumulated enough such that its impact can be magnified by age.

Our investigation made novel and significant contributions to the study of motor progression 

in HD. In the literature, when predicting age of HD diagnosis, the current disease state of 

motor function is not considered [5, 12-18]. However, it is clear that for two individuals 

with identical demographic and genetic information, if one individual currently has 

unimpaired motor function while the other already shows motor impairments, it is very 

likely that the second individual will receive an HD diagnosis sooner than the first person. 

Current disease state summarizes the dynamic and most updated information on the disease 

process. Therefore, the incorporation of current disease state should provide a more accurate 

estimate of years to HD diagnosis. Findings in this paper provide benchmark data that may 

be informative for designing interventional clinical trials, such as the estimated years to 

onset of HD diagnosis and that of motor impairments. One potential use of our results is for 

identifying patients who are in a critical period that is amenable to therapeutic intervention. 

Another use is to assess the efficacy of an intervention in terms of extending the unimpaired 

period in motor function or delaying the onset of motor impairments or HD diagnosis.

In this study, we divide the disease course of motor function in the premanifest and 

prodromal phases into an unimpaired and impaired period based on the longitudinal DCL 

data. There are at least three advantages to this division. The first is that the presentation of 

motor signs and symptoms varies significantly among individuals, and no single sign or 

symptom manifests in all individuals affected by HD. Therefore, it is advantageous to have 

an unimpaired/impaired division so that the progressive states of motor dysfunction can be 

summarized and meaningfully compared among HD individuals. The second advantage is 

that the onset of motor impairments represents an important landmark event in disease 

progression. Before the occurrence of this landmark event, an HD individual has unimpaired 

motor function, just like other non-HD individuals; after the onset of this event, the 
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individual starts to develop motor impairments. The duration of the unimpaired period and 

factors affecting the transition from unimpaired to the impaired period may provide crucial 

information on disease progression. These questions have not been extensively studied and 

the “unimpaired/impaired” division makes it possible to address these issues. The third 

advantage is that the division yields higher reliability of the data compared to using the raw 

DCL scores. As shown in the study of Hogarth et al. [25], the DCL levels of 1, 2 and 3 have 

relatively low reliability, and collapsing DCL levels between 0 and 4 clearly improves the 

reliability of the data.

Our study has two unique strengths. The first is that it has a large sample size, long followup 

time, and extensive followup visits for each participant. The second is that we account for 

measurement error in the data, so the disease progression of the motor phenotype can be 

appropriately reconciled with biological indicators of neurodegeneration. There are also 

limitations to our study. First, in the model we only considered linear terms of all variables, 

and nonlinear effects are certainly possible. Second, the range of CAG repeat length in our 

sample (38-52) is somewhat narrow, and findings might vary with different ranges. Third, 

some studies have indicated CAG repeat lengths at or above 40 are fully penetrant, whereas 

penetrance for lengths in the range of 36-39 (both inclusive) might be incomplete and are 

associated with later onset [29, 30]. We did not examine this issue in our study. Fourth, in 

the analysis we have not studied variables in other domains, such as cognitive, psychiatric 

and functional. As HD is associated with impairment in all these domains, it will be 

interesting to examine the relationships between progression of motor impairments and other 

measures of clinical and biologic phenotype.

In summary, by taking advantage of the data from one of the largest and longest followup 

studies in premanifest and prodromal HD, we systematically examined the following unique 

aspects of disease progression of motor dysfunction: the onset of motor impairments; the 

onset of HD diagnosis; the transition from the unimpaired period to impaired period of 

motor function and that from the impaired period to HD diagnosis; and the impact of age, 

sex and CAG on these transitions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Examples of observed data from two participants in the PREDICT-HD study. HD 

Huntington disease
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Table 1

Descriptive statistics of study participants.

Baseline DCL DCL = 0 DCL = 1 DCL =2 DCL = 3

Number (percentage) of participants 351 (38.8%) 395 (43.6%) 119 (13.1%) 40 (4.4%)

Number (percentage) of females 211 (60.1%) 267 (67.6%) 74 (62.2%) 25 (62.5%)

Mean (standard deviation) of age 39.3 (9.8) 40.5 (9.8) 43.0 (10.8) 45.5 (10.7)

Median (range) of CAG repeat length 42 (38-50) 42 (38-52) 42 (38-51) 43 (39-51)

Median (range) of number of visits 5 (2-10) 5 (2-10) 6 (2-10) 5 (2-10)

DCL diagnostic confidence level, CAG cytosine-adenine-guanine
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Table 2

A summary of the number of transitions between different states of motor impairment over followup in the 

PREDICT-HD study.

To: Unimpaired Impaired HD

From: Unimpaired 757 449 6

Impaired 317 1768 236

HD 0 57 261
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Table 3

Estimated covariate effects (95% CI) in transitions between disease states.

Variable Transition from unimpaired to impaired Transition from impaired to HD

Age 0.102 (0.067, 0.136) 0.099 (0.074, 0.124)

CAG 0.382 (0.241, 0.523) 0.552 (0.450, 0.653)

Gender (Male) -0.429 (-0.866, 0.008) -0.216 (-0.539, 0.107)

Age*CAG 0.003 (-0.007, 0.013) 0.010 (0.002, 0.017)

HD Huntington disease, CAG cytosine-adenine-guanine
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