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Abstract

The ovarian hormones progesterone and estrogen play important roles in breast cancer etiology, 

proliferation, and treatment. Androgens may also contribute to breast cancer risk and progression. 

In recent years, significant advances have been made in defining the roles of these steroid 

hormones in stem cell homeostasis in the breast. Stem cells are potential origins of breast cancer 

and may dictate tumor phenotype. At least a portion of breast cancers are proposed to be driven by 

cancer stem cells (CSCs), cells that mimic the self-renewing and repopulating properties of normal 

stem cells, and can confer drug resistance. Progesterone has been identified as the critical hormone 

regulating normal murine mammary stem cell (MaSC) populations and normal human breast stem 

cells. Synthetic progestins increase human breast cancer risk; one theory speculates that this 

occurs through increased stem cells. Progesterone treatment also increases breast CSCs in 

established breast cancer cell lines. This is mediated in part through progesterone regulation of 

transcription factors, signal transduction pathways, and microRNAs. There is also emerging 

evidence that estrogens and androgens can regulate breast CSC numbers. The evolving concept 

that a breast CSC phenotype is dynamic and can be influenced by cell signaling and external cues 

emphasizes that steroid hormones could be crucial players in controlling CSC number and 

function. Here we review recent studies on steroid hormone regulation of breast CSCs, and discuss 

mechanisms by which this occurs.
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Ovarian Steroid Hormones and Breast Cancer

Removal of the ovaries was recognized as an effective treatment for breast cancer in the late 

19th century [1, 2]. It is now well established that three quarters of breast cancers are 

hormone dependent, requiring local or systemic estrogens for growth maintenance. As such, 

endocrine therapies targeting the estrogen signaling axis have remained the cornerstone of 

breast cancer treatment since the first use of tamoxifen in the 1970s [3]. In addition to 
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perpetuating tumor growth, prolonged exposure to ovarian hormones is an independent risk 

factor for breast cancer; contributing factors include extended menstrual cycles due to early 

menarche and/or late menopause, a transient risk tied to pregnancy, the use of oral 

contraception and/or hormone replacement therapies, and excess hormone production in 

post-menopausal obesity [4–9]. Although the precise mechanisms of how female hormones 

increase breast cancer risk remain unknown, most theories have centered on increased 

proliferation imparted to breast epithelial cells. However, the repopularized concept that 

normal tissue stem cells may be the origin of many solid tumor malignancies has led to 

speculation that hormones target a specific population of long-lived cells. The seminal 

discovery that ovarian hormones, particularly progesterone, expand stem cells in the normal 

murine mammary gland and human breast [10–12] supports this notion and has led to new 

implications for hormone involvement in tumorigenesis. Emerging evidence reinforces that 

hormones influence a stem cell phenotype in established tumors. In this review, we discuss 

steroid hormone-mediated regulation of breast tumor stem cells, with a particular emphasis 

on progesterone and progestins.

Breast Cancer Stem Cells

The cancer stem cell (CSC) theory posits that tumors contain a subpopulation of cells that 

share properties of normal stem cells including self-renewal, tumor initiation, indefinite 

replicative potential, and the ability to generate differentiated progeny [13]. Importantly, 

CSCs compared to the bulk tumor cells are proposed to have heightened resistance to 

conventional chemotherapies due to relative quiescence and elevated expression of multi-

drug resistance pumps [14, 15]. Breast CSCs in particular show selective resistance to 

radio-, chemo- and endocrine therapies [16–19]. The notion of a rare static breast CSC 

population is challenged by developing evidence that the breast CSC phenotype is not 

necessarily pre-existing, but can be acquired through cytokine signaling and environmental 

cues [20–22]. This has important implications for hormone receptor positive breast cancers, 

where endogenous or exogenous hormone exposure could influence the number and activity 

of CSCs. In fact, our evolving concept of the CSC theory suggests that a combination of 

CSCs and environmental and clonal pressures collaborate to shape individual tumor 

phenotype [23, 24].

Several biomarkers have been identified for breast CSCs, albeit with no clear consensus. 

The seminal paper by Al-Hajj et al. defined breast CSCs as having the surface marker 

signature CD44+CD24−/lowEpCAM+ (termed CD44+CD24− hereafter) [25]. Primary breast 

tumor cells with this signature were able to initiate tumors from small numbers of cells in 

immune deficient mice [25]. CD44+CD24− cells are more abundant in triple negative breast 

cancers (TNBC) that lack estrogen receptors (ER, alpha) and progesterone receptors (PR), 

and are less prevalent (0–5 %) in luminal subtype ER+PR+ breast cancers [19, 26, 27]. 

Furthermore, within a tumor, CD44+ CD24− cells express low ER and PR mRNA compared 

to CD44−CD24+ cells [28]. Activity of the enzyme aldehyde dehydrogenase (ALDH) was 

subsequently defined as a marker of normal breast stem cells and breast tumor initiating 

cells [29]. The ALDH+ and CD44+CD24− populations are not identical in tumors, but share 

an overlapping population that has the most potent tumor initiating activity [29]. ALDH+ 

cells have also been reported as ER negative [29, 30]. However, a recent report finds ALDH
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+ cells exist in both mesenchymal and luminal-like states, although ER expression was not 

measured [31]. Our group originally reported that luminal ER+PR+ breast cancers contain a 

subpopulation of cells that express the epithelial intermediate filament protein cytokeratin 5 

(CK5), a marker of normal human breast stem and luminal progenitor cells [32–36]. CK5+ 

cells, compared to the bulk CK5− tumor cells, are endocrine and chemotherapy resistant, 

and have enhanced mammosphere-forming and tumor-initiating potential [17, 37, 38]. CK5+ 

cells generally lack expression of ER and PR [37] and their population partially overlaps 

with CD44+ cells, though non-identical populations exist [37, 38]. Other biomarkers for 

breast CSCs have been mentioned in the literature less frequently; we focus our discussions 

here on these three well-described markers.

Progestins, Progesterone Receptors, and Breast Cancer Stem Cells

PR has been measured in breast cancer since the 1970s with the advent of radio ligand 

binding assays [39]. The presence of PR portends better prognosis and responsiveness to 

endocrine therapy, and has generally been thought to be an indicator of functional ER [40]. 

However, activated PR is detrimental for late stage breast cancers, providing some rationale 

for dual targeting of ER and PR in advanced tumors [41]. PR has two naturally occurring 

isoforms transcribed from the same gene, a truncated PRA and a longer PRB form [42]. 

Both isoforms are generally co-expressed in PR+ cells. However, a higher PRA:PRB ratio 

signifies less favorable outcome for breast cancer [43, 44]. PR ligands include the ovarian 

hormone progesterone as well as synthetic progestins such as medroxyprogesterone acetate 

(MPA).

The unexpected findings of the Women’s Health Initiative and the Million Women Study 

that combination estrogen/progestin but not estrogen alone increased the risk of invasive 

breast cancer changed our perception of progestins as predominantly onco-protective 

hormones [45, 46]. Progestin-mediated proliferative stimuli on the post-menopausal normal 

breast were originally suspected as causing increased breast cancer risk [47]. However, an 

alternative theory supposes that progestins expand a transformation sensitive pool of normal 

stem cells, or activate occult malignant stem cells, accelerating the appearance of ER+PR+ 

tumors [48, 49]. This aligns with early studies by Charles Huggins et al. establishing that 

administration of progesterone (but not estrogen alone or estrogen plus progesterone) to 

female Sprague Dawley intact rats fed a single dose of the mutagen 17, 12-

dimethylbenz(a)anthracene (DMBA) greatly accelerated time to mammary tumor formation 

[50]. It was later shown that PR knockout (PRKO) animals had significantly less DMBA-

induced mammary tumors than wild-type animals, suggesting PR are crucial for carcinogen-

induced mammary tumor formation in rodents [51]. Thus, it is established that progestins 

and PR play important roles in rodent mammary tumorigenesis, which could potentially 

occur through modulation of stem cells. The role of progestins in human breast 

tumorigenesis is less well established. HRT trials suggest that progestins are tumorigenic in 

post-menopausal women, although there is some speculation that progestins may be 

accelerating the growth of existing micro-malignancies [49, 52]. In this review, we discuss 

the role of progestins in established breast cancers.
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Progesterone and synthetic progestins increase populations of phenotypical breast CSCs in 

ER+PR+ breast cancer cell lines. This was first demonstrated in PR-rich T47D xenograft 

tumors grown in mice supplemented with estrogen alone or estrogen plus the synthetic 

progestin MPA; the progestin treated tumors had increased numbers of CK5+ tumor cells 

[37]. Progesterone induction of CK5+ cells occurs within 24 h in multiple luminal breast 

cancer cell lines including MCF7, ZR75-1, and BT474, but is most potent in T47D cells; 

these cells have amplification of the PR gene, and express PR in a non-estrogen-dependent 

manner [17, 53, 54]. In T47D cells, the post-treatment CK5+ population can be up to 20 % 

of the total cells. Progesterone treatment also increased the total CD44+ cell population by 

8–12 fold, measured by flow cytometry, in luminal breast cancer cell lines [53, 54]. MCF7, 

BT474, and ZR75 cells require pre-treatment with estrogens to induce PR protein levels 

prior to assessing progesterone action. In these cell lines, estrogen alone did not increase the 

CD44+ population, whereas estrogen plus progesterone increased the number of CD44+ 

cells [53, 54]. These experiments measured only the total CD44+ population; luminal breast 

cancer cell lines are near ubiquitous for CD24+ cells. A recent paper by Hilton et al. [55] 

demonstrated that treatment with progesterone or the synthetic progestins ORG2058 or 

MPA increases the CD44+CD24− population in T47D and HCC1428 breast cancer cells. 

One recent study reported that progesterone treatment increased the ALDH+ population 

from 1 to 3.5 % in T47D cells [56]. Thus, there is sufficient evidence that in breast cancer 

cell lines and cell line-derived xenograft models, progesterone or its synthetic analogs can 

increase breast CSCs as defined by three common markers. There are some exceptions; 

BCK4 cells, an ER+PR+ breast cancer cell line isolated from a pleural effusion [57], do not 

increase CK5 protein levels in response to progesterone (with or without estrogen).1 Also, in 

our collection of breast cancer patient derived xenografts (PDX) [58], we find tumor lines 

that are both sensitive and resistant to progestin expansion of CK5+ cells2. Thus, the context 

in which progestins and PR increase breast CSCs warrants further investigation.

Progesterone-expanded breast cancer cells show functional stem cell properties. Our 

laboratory has engineered T47D cells with stable integration of the human CK5 promoter 

linked to GFP, allowing FACS isolation of enriched CK5+ and CK5− fractions [38, 59]. We 

demonstrated that isolated CK5+ compared to CK5− cells following progesterone treatment 

have increased mammosphere forming capacity [38]. Progesterone-expanded CK5+ vs. 

CK5− T47D cells also show increased tumor initiation capacity in vivo with limiting 

dilution analysis.3 CK5+ cells also produce outgrowths of ER+PR+ cells [37], suggesting 

they are capable of recapitulating tumor heterogeneity. Taken together, these data support 

that progesterone increases functional CSC activity.

There is some speculation over whether synthetic progestins impart a higher risk for breast 

cancer than the natural hormone progesterone during hormone replacement regimens [60]. 

Studies in breast cancer cells identify that both progesterone and progestins increase CSCs 

similarly. In PR-rich T47D breast cancer cells, both progesterone and MPA regulate a 

similar program of genes [61]. Likewise, both hormones expand CK5+ cells in T47D 

1B.M. Jacobsen, personal communication
2J. Finlay-Schultz and C.A. Sartorius, unpublished data
3J. Finlay-Schultz and C.A. Sartorius, unpublished data
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xenograft breast tumors [36], and several progestins increase the CD44+CD24− population 

in T47D breast cancer cells [55]. As progestins, particularly MPA, can target both PR and 

AR, studies in new patient-derived tumor models with various PR and AR expression may 

shed light on their contributions to breast CSC expansion.

Estrogens, Estrogen Receptors, and Breast Cancer Stem Cells

Estrogen receptor alpha (ER) remains the single most important prognostic and predictive 

factor determining breast cancer treatment and outcomes. Like PR, ER measurement also 

commenced in the early 1970s via radio ligand binding assay [62]. ER is expressed in ~75 % 

of breast tumors and indicates candidacy for treatment with therapies that target ER through 

selective ER modulation or degradation (SERMs and SERDs, respectively) or reduction in 

estrogen production (aromatase inhibitors, AI). These endocrine therapies remain the 

cornerstone of breast cancer treatment for most patients [63]. Estrogens are the primary 

mitogens in hormone-dependent breast cancers, with compensatory proliferative pathways 

in refractory endocrine resistant tumors [64]. While estrogens are pro-proliferative in breast 

cancer, ER is also positively associated with luminal differentiation markers such as 

GATA3, CK18, and MUC1 [65]. This is in contrast to the normal human breast where ER+ 

luminal cells are quiescent while ER− luminal cells are actively proliferating [66].

Estrogens are proposed to play a permissive role in the expansion of normal murine 

mammary stem cells by stimulating expression of PR [10, 11]. In breast cancers, several 

studies have reported that estrogens alone do not increase CD44+ or CK5+ CSCs [38, 53, 

54, 67]. There are, however, a few studies that have linked estrogens and ER to increased 

CD44+CD24− breast cancer cells. One study reported that estrogen treatment of MCF7, 

T47D, and HCC1428 breast cancer cells increased the CD44+CD24− population up to 

eight-fold [68]. This was hypothesized to occur through a paracrine feedback mechanism 

involving estrogen induction and secretion of fibroblast growth factor 9 (FGF9), increased 

expression of the transcription factor Tbx3 in non-CSCs, and further stimulation of Wnts 

and FGFs to expand the CSC pool. In ER− breast cancers, Tbx3 expression stabilizes 

paracrine FGF and Wnt signaling to regulate CSC subpopulations [68].

Several studies have reported that estrogens can influence breast CSCs through both non-

genomic signaling and variant ERs. G protein-coupled receptor 30 (GPR30), a seven-

transmembrane domain receptor, mediates non-genomic estrogen signaling and is expressed 

in both ER+ and ER− breast cancer cells and tumors [69, 70]. GPR30 regulates the Hippo 

signaling pathway through activation of tafazzin (TAZ), a phospholipid transacylase [69]. 

Using an isogenic derivative of the human immortalized epithelial MCF10A cell line (Ras-

transformed MCF-10A-T1k cells), CD44+CD24− cells expressed higher levels of TAZ; 

knockdown of TAZ in these cells significantly reduced the CD44+CD24− population and 

mammosphere formation capacity [71]. TAZ is also overexpressed in the CSC fraction of 

primary breast cancers and has been linked to CSC-mediated metastasis [72]. Knockdown of 

TAZ decreased chemoresistance and the tumorigenic capacity of primary breast CSCs [72].

The ER variant ER-α36 has been implicated in regulating breast CSCs. ER-α36 lacks the 

ligand-dependent and –independent transactivation domains (ATF-1 and -2), while retaining 
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the DNA binding, dimerization, and ligand-binding domains [73]. In MCF7 and T47D cells, 

ER-α36 promoted tamoxifen resistance by increasing the self-renewal capacity of 

CD44+CD24− cells [74, 75]. Knockdown of ER-α36 in T47D and MCF7 cell lines 

decreased the overall CD44+CD24− population and blocked tamoxifen- or fulvestrant-

mediated increases in CD44+CD24− cells. ER-α36 knockdown also decreased 

mammosphere formation of the same cells [74, 75]. Knockdown of ER-α36 in the HER2+ 

breast cancer cell line SKBR3 reduced HER2 expression and the ALDH+ CSC population 

[76]; HER2 has been implicated as a driver of ALDH+ breast CSCs [77]. These data support 

a role for variant ER-α36 in regulating breast CSCs in both ER+ and HER2+ER− tumors.

Several reports have cited that SERMS, SERDs, and AIs enrich for cells with a 

CD44+CD24− or CK5+ phenotype. Tamoxifen, fulvestrant, or estrogen depletion increased 

the percent of CK5+ cells in T47D cell cultures [17]. In a small cohort of patients 

undergoing neoadjuvant therapy with the AI exemestane plus tamoxifen, CK5 expression 

increased in post-compared to pre-therapy tumor biopsies from the same patients [17]. 

Tumors treated with the AI letrozole were enriched in CD44+CD24− mammosphere 

forming cells post-therapy [18]. Tamoxifen-resistant MCF7 cells have increased 

CD44+CD24− and ALDH+ populations compared to the parental line and high levels of 

Sox2, one of four transcription factors involved in induced pluripotent stem cell production. 

The development of Tam resistance in these cells is driven by Sox2 activation of Wnt 

signaling, possibly through expansion of CSC populations [78]. Knockdown of Sox2 or 

inhibition of Wnt signaling reduced CSC populations, inhibited mammosphere formation, 

and restored tamoxifen sensitivity [78]. These studies suggest that antagonizing estrogen 

action in breast cancer cells and tumors increases CSCs. This could occur through selection 

and expansion of the mostly ER− CSC pool, or upregulation of self-renewal signaling 

pathways such as Wnt.

Androgens, Androgen Receptors, and Breast CSCs

AR is present in 70–80 % of breast cancers [79–81], making it more commonly expressed 

than either ER or PR. Overall AR, like ER and PR, is associated with more favorable 

prognosis and a well differentiated phenotype in breast cancer, although this may be subtype 

specific. AR is co-expressed with ER in 80–90 % of luminal breast cancers where it 

generally correlates with better prognosis [79, 82–85]. AR has also been detected as a 

potential co-regulator for ER, both in previous work using two-hybrid systems [86] and 

more recently using ChIP and proximity ligation assays (PLA) [87]. AR is also found in ER

− breast cancer subtypes including HER2+ER− tumors and a subset of TNBC termed 

luminal AR [81, 88]. Recent data implicate AR as a compensatory mechanism for breast 

cancer growth in ER− disease; these findings have led to the development of AR-targeted 

therapeutic approaches for breast cancer [89–91]. Clinical trials are currently centered on the 

anti-androgen enzalutamide for treatment of AR+ TNBC or endocrine-refractory ER+ 

tumors [89, 91].

The contribution of androgens and AR in regulating breast CSCs remains only marginally 

explored. A recent report cited that dihydrotestosterone (DHT) treatment led to a small 

increase (1–3 %) in the CK5+ population in MCF7 but not T47D cells [67]; the latter may 
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have nonfunctional AR [92]. This same study demonstrated that glucocorticoids and min-

eralocorticoids can also expand the CK5+ subpopulation in luminal breast cancer cell lines 

[67]. This intuitively makes sense as PR, GR, AR, and the mineralocorticoid receptor (MR) 

share similar DNA binding consensus sequences. In AR+ TNBC cell lines, AR is important 

in maintaining the CSC population as knockdown of AR and treatment with the anti-

androgen enzalutamide each reduce the ALDH+ population and mammosphere formation 

[93]. It is therefore also likely that AR can regulate breast CSCs in a context-dependent 

manner.

Many synthetic progestins have partial affinity for AR and can mimic androgen activity in 

breast cancer cells, as well as cause androgenic side effects in women taking these drugs 

[94, 95]. Therefore it is possible that progestin-mediated increases in breast CSCs could 

occur partially through AR. This could be particularly important in breast neoplasms that are 

AR+PR− or have a higher AR to PR ratio (AR>PR). Furthermore, in HRT-treated women, 

synthetic progestins had stronger association with increased breast cancer risk than 

progesterone [96, 97], implicating dual stimulation of AR and PR could be involved. Under 

some circumstances, AR blocks ER action in breast cancer cells by binding at ER target 

genes, and acts as an antiestrogen to inhibit growth [98]. This underscores the complexities 

of AR action in breast cancer, which are likely to be context-dependent [99]. As crosstalk 

and cooperative interactions between ER, PR, and AR signaling are unraveled, it may 

become clear that the balance of the three receptors contributes to the regulation of breast 

CSCs.

Downstream Signaling Pathways and Transcription Factors that Facilitate 

the Progesterone-Mediated Increase in Cancer Stem Cells

In breast cancer cells, progesterone treatment leads to downstream increases in multiple 

transcription factors, growth factors, and other proteins that could contribute to an increase 

in CSCs (illustrated in Fig. 1). Progesterone potently upregulates genes involved in normal 

mammary development such as prolactin receptor (PRLR) and Signal Transducer and 

Activator of Transcription 5A (Stat5a). Progesterone and MPA also upregulate or activate 

signaling pathways involved in CSC self-renewal in T47D breast cancer cells such as 

members of the Notch signaling pathway (Notch2 and Jagged 1) [61, 100]. Notch signaling 

is also elevated in CK5+ compared to CK5− breast cancer cells [101]. Progesterone also 

activates mitogenic Wnt signaling in human breast cancer cell lines through Wnt1, which 

leads to epidermal growth factor receptor (EGFR)-mediated downstream activation of 

Erk1/2 mitogen-activated protein kinase (MAPK) activity [102]. EGFR is upregulated and 

activated by progesterone in breast cancer [103]. While EGFR has not been directly linked 

to breast CSCs, it is co-expressed with CK5 in both luminal and basal-like breast cancers 

[101, 104]. HER2 is a reported driver of ALDH+ CSCs in non-HER2 amplified tumors [77, 

105], and although the HER2 gene has not been reported as directly regulated by progestins, 

activated PRs increase HER2 signaling during tumor progression [106]. These data 

implicate that several progesterone-activated signaling pathways contribute to breast CSC 

expansion; precise mechanisms of action require further investigation.
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Several other transcription factors are reported to positively or negatively influence 

progesterone/PR− induced CK5 expression. Progesterone-mediated expression of CK5 is 

preceded by upregulation of BCL6, an oncogene and transcriptional repressor [107]. 

Prolactin inhibits progesterone-mediated upregulation of CK5 through Stat5a-dependent 

repression of BCL6 transcription, indicating negative crosstalk between PRLR and PR [107, 

108]. This suggests that loss of BCL6 protein may lead to increases in other factors that 

block PR transcription of the CK5 gene. Krüppel-like factor 5 (KLF5) is another 

transcription factor upregulated by progesterone in breast cancer cells [61, 100]; knockdown 

of KLF5 impaired progesterone-mediated induction of CK5, whereas overexpression of 

KLF5 in the absence of progesterone was able to increase CK5 expression [109]. Progestins 

also downregulate the transcription factor (and Notch target gene) GATA3, which is 

associated with maintaining the luminal epithelial phenotype [110]. Using a high content 

screen, we found that several retinoic acid (RA) compounds were potent inhibitors of 

progesterone induction of CK5 in T47D breast cancer cells [59]. RA is a strong pro-

differentiation hormone in multiple cell types and, contrary to progesterone, can prevent 

carcinogen-induced mammary tumor formation in rats [111]. Interestingly, RA 

downregulates PR mRNA and protein levels, and inhibits progestin-stimulated transcription 

of a PR-regulated reporter construct [112, 113], suggesting negative crosstalk between 

retinoic acid receptor (RAR) and PR signaling in regulating a breast CSC phenotype. 

Overall, these studies have identified that several progesterone-regulated transcription 

factors cooperate in regulating breast CSC populations, while other transcription factors may 

counterbalance the action of progesterone/PR.

Steroid Hormone-Regulated microRNAs and Breast CSCs

MicroRNAs (miRNAs) are small regulatory RNA molecules that regulate expression of 

specific target genes by base-pairing to their mRNAs and interfering with translation and/or 

inducing degradation. Progestins, estrogens, and androgens all regulate miRNAs [114–117], 

several of which have been linked to CSC formation in breast cancer cells (Fig. 1). The 

miR-29 and miR-200 families have specifically been studied for their roles in progesterone-

induced breast CSC formation. All three miR-29 family members (miR-29abc) are rapidly 

(within 6 h) downregulated by progestin treatment in breast cancer cells [53]. This 

downregulation coincides with an increase in protein levels of the transcription factor KLF4, 

which was found to be a specific target of miR-29a [53]. Inhibition of miR-29a or miR-29b 

alone was sufficient to increase the CD44+ breast cancer cell population [53, 118] and 

tumor-initiating ability of breast cancer cells [53]. miR-29a inhibition also potentiated the 

progestin-mediated increases in both the CD44+ and CK5+ breast cancer cell populations 

[53]. Progesterone also downregulates GATA3 in breast cancer cells [110], which has been 

shown to increase miR-29b expression to promote a differentiated phenotype and suppress 

metastasis [118]; the progestin-induced down-regulation of miR-29b could therefore 

increase the breast CSC population partially through lowering GATA3.

Progesterone also rapidly downregulates miR-141, a member of the miR-200 family of 

tumor suppressors [54]. Inhibition of miR-141 also increased the number of CD44+ breast 

cancer cells, and potentiated progesterone-dependent increases in the CD44+ and CK5+ 

populations. A combination of miR-141 inhibition plus progesterone treatment increased the 
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tumor initiating capacity of breast cancer cells [54]. MiR-141 was found to directly target 

both PR and Stat5a mRNA. Knockdown or inhibition of Stat5a using siRNA or the small 

molecule Pimozide, respectively, reduced the ability of progesterone to increase CK5+ cells 

[54]. Interestingly, miR-141 as well as other miR-200 family members are underexpressed 

in CD44+CD24− breast cancer cells [119], suggesting their suppression helps maintain a 

more stem-like phenotype.

ER-regulated miRNAs in breast cancer cells have been reported by multiple laboratories 

[114]. While there are no specific studies on ER miRNAs and breast CSCs, ER upregulates 

several miRNAs involved in maintenance of differentiation including the let-7 miRNA 

family, proposed to repress self-renewal and promote differentiation in normal and cancer 

cells [120]. Interestingly, ER upregulates the miR-29 family; this is opposite to the effects of 

progesterone. One study showed that ER downregulates miR-221/222 [121], a miRNA that 

represses ER expression [122], and is found in higher levels in CD44+CD24− breast cancer 

cells [119]. The role of AR-regulated miRNAs in breast CSCs remains unexplored. A few 

studies have assessed dihydrotestosterone (DHT)-regulated miRNAs in MCF7 and MDA-

MB-453 breast cancer cell lines [116, 123, 124]. The majority of miRNAs were 

downregulated, similar to that described for progestins [124]. AR also downregulates the 

pro-differentiation miRNA let-7a; overexpression of let-7a inhibited the growth of TNBC 

cells [123]. Collectively, these studies suggest that ER upregulates miRNAs that maintain a 

more differentiated phenotype while PR, and perhaps AR, suppress miRNAs that support 

breast cancer cell differentiation. Further investigation is required to address how hormone 

regulated miRNAs, and other non-coding RNAs, influence a breast CSC phenotype.

Intrinsic vs Extrinsic Signaling in Progesterone-Mediated Expansion of 

Breast CSCs

The mechanism of progestin-mediated increases of breast CSCs likely involves both 

intrinsic and extrinsic signaling. Using a GFP reporter driven by the human CK5 promoter 

and time-lapse microscopy, we showed that previously CK5− cells become CK5+ upon 

progesterone treatment [125]. This argues against expansion of pre-existing CK5+ cells 

through cell division and suggests that progesterone directly stimulates reprogramming from 

a CK5− to CK5+ state. Interestingly, these CK5+ cells lose expression of ER and PR [38]. 

To truly test if this occurs in a cell-intrinsic manner will require single cell experimentation. 

Progestins regulate multiple secreted factors that could act on the producing cell or on 

neighboring cells to stimulate CK5 expression. Although progestin treatment increases the 

fraction of cells with breast CSC markers several fold, this still only comprises 5–20 % of 

the total cell population. Therefore, only specific cells are primed for progesterone 

reprogramming, implying surrounding cells could contribute via extrinsic signaling but not 

change phenotype themselves. Altered transcriptomes, pioneer and cofactor expression, and 

DNA epigenetics in individual cells may all contribute to susceptibility to dedifferentiation. 

This would be even more pronounced in solid tumors where genetic diversity plays large 

role in tumor progression. Our knowledge of which cells become CSCs is limited.

Paracrine signaling plays a critical role in progesterone-driven expansion of mammary stem 

cells (MaSCs) in murine mammary glands [10, 11]. This is mediated through several 

Finlay-Schultz and Sartorius Page 9

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2016 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



secreted factors including receptor activator of nuclear factor kappa-B ligand (RANKL), a 

potent progesterone regulated gene during mammary development and during pregnancy at 

peak progesterone levels [10]. Progesterone simultaneously increases RANKL in the 

luminal cell compartment and RANK receptor in the myoepithelial and mammary stem cell 

compartments [10, 11]. RANKL is also a key paracrine mediator in progestin-dependent 

mammary tumorigenesis [126, 127]. Along with RANKL, Wnt4 is upregulated by 

progesterone in the luminal cell compartment [10]; more recently, Wnt4 was identified as a 

downstream control factor of progesterone-mediated MaSC function [128]. Recent reports 

have also identified a role for progesterone-mediated CXCR4 paracrine signaling in normal 

mammary stem and progenitor cells. In normal mouse mammary glands, inhibition of 

CXCR4 led to a decrease of progesterone-directed expansion of progenitor cell populations 

and a reduction in colony-forming capacity [129]. Overall, these data implicate a critical role 

for paracrine signaling in progesterone regulation of murine MaSCs.

Despite the role of signaling in mediating progesterone signals in the murine mammary 

gland and during mammary tumorigenesis, their role in progesterone signaling in humans is 

less well studied. RANKL was not a significantly progesterone-regulated gene in genome-

wide profiling of human breast organoids [12]. A recent report identified that progesterone 

increased RANKL in human breast microstructures, but not in isolated HMECs [130]. 

Furthermore, RANKL expression in human breast specimens was associated with high 

serum progesterone levels [130]. Despite these observations, multiple studies have not 

identified RANKL mRNA or protein levels as increased by progestin treatment in PR+ 

breast cancer cell lines [61, 100, 130–133]. Forced overexpression of RANK and stimulation 

with RANKL in multiple breast cancer cell lines, however, increased the CD44+CD24− 

population, as well as increased migration and invasion [133]. Progestins do increase 

RANKL family members TNFSF10 (TRAIL) and TNSFS10a (TRAIL receptor) [61, 100], 

and thus could be signaling through a similar system. In normal human breast tissue, cell 

populations that express growth hormone receptor (GHR) were found to overlap with 

progenitor cell populations and show some functional properties of stem cells, including the 

ability to form mammospheres and differentiate into multiple lineages [134]. While these 

GHR+ cells are hormone receptor negative, progestins act on ER+PR+ cells in the normal 

breast to induce GH secretion; inhibition of this signaling pathway significantly reduced 

MCF7 xenograft growth in vivo [134]. In human breast cancer, CXCR4 is linked to poor 

prognosis and metastasis. While there is no evidence for progestin-mediated regulation of 

CXCR4 in breast cancer, studies in breast cancer cell lines have shown higher CXCR4 

levels in the CD44+CD24− CSC population, and inhibition of CXCR4 decreased 

mammosphere formation in MCF7 cells [135]. Thus while progesterone signaling appears to 

switch on a cell-intrinsic ability to transition to CSCs, the involvement of extrinsic factors 

from neighboring cells cannot be excluded and requires further investigation.

Conclusions

An integral connection between steroid hormones and their cognate receptors in breast 

tumorigenesis and progression has been established during more than a century of work. 

More recently, it has been discovered that hormones regulate the balance of stem cell 

populations in the normal and malignant breast. In the normal breast, it is speculated that 
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increased stem cell populations lead to increased breast cancer susceptibility. It is also 

speculated that increasing breast CSC populations influences both drug resistance and tumor 

recurrence. The fact that luminal subtype ER+PR+ tumors can have particularly long latency 

periods prior to recurrence underscores how increasing long-lived cells even a few fold may 

contribute to this clinical problem. On the whole, evidence suggests that progestins are the 

dominant force increasing normal and breast CSC populations, with estrogens playing a 

more permissive role. The increasing studies of androgens and AR in breast tumor biology 

are certain to uncover how they contribute to breast CSC levels. Here we have described 

what is currently known concerning downstream mechanisms of steroid hormone and 

receptor regulation of breast CSCs. These include direct and indirect regulation of genes, 

mostly transcription and signal transduction factors, and post-transcriptional regulation of 

transcription factors through hormone-regulated miRNAs. The progesterone-mediated 

increase in breast CSCs is likely less dependent on paracrine signaling, as opposed to stem 

cell upregulation in the normal murine mammary gland. As new inroads into interactions 

between ER, PR, and AR are made, it is likely that the balance of steroid hormones and their 

receptors controls heterogeneous populations in breast cancers, and can influence their long 

term fate.
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AR Androgen receptor

ALDH Aldehyde dehydrogenase

CK5 Cytokeratin 5

CSC Cancer stem cell

DHT Dihydrotestosterone

DMBA 7,12-dimethylbenz(a)anthracene

EGFR Epidermal growth factor receptor

ER Estrogen receptor (alpha)

FACS Fluorescent activated cell sorting

FGF Fibroblast growth factor

HRT Hormone replacement therapy

MaSC Mammary stem cell

MMTV Mouse mammary tumor virus

MPA Medroxyprogesterone acetate

MUC1 Mucin 1
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PR Progesterone receptor

PRKO Progesterone receptor knockout

RANK Receptor activator of nuclear factor kappa-B

RANKL receptor activator of nuclear factor kappa-B ligand

TNBC triple negative breast cancer
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Fig. 1. 
Schematic of described mechanisms involved in steroid hormone regulation of cancer stem 

cell populations. Estrogens bind estrogen receptor alpha (ER) to increase transcription of 

target genes FGF9, let-7, and miR-29abc. FGF9 is involved in paracrine, and possibly 

autocrine, signaling to increase transcription of the transcription factor Tbx3. Estrogens can 

also bind GPR30 to initiate EGFR and Hippo signaling pathways. Progesterone or 

progestins bind progesterone receptor (PR) to increase expression of transcription factors 

(Stat5, Bcl6, Klf5, and Klf4), Notch pathway members (Notch2, Jagged1), and members of 

the Wnt family (Wnt-1). Wnts and other extrinsic factors may be secreted to influence 

dedifferentiation of the secreting or neighboring cells. Both progesterone and progestins 

bind PR to downregulate GATA3, miR-141, or miR-29abc, and increase CSC populations; 

GATA3 upregulates expression of miR-29b. Androgens or progestins bind androgen 

receptor (AR) to suppress let-7 microRNA transcription. ER downregulates miR-221/222, 

which represses translation of ER, miR-29abc blocks translation of Klf4, and miR-141 

blocks translation of both Stat5 and PR. Prolactin binds prolactin receptor (PRLR) to block 

expression of the transcription factor BCL6, which suppresses progestin-dependent 

induction of CK5
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