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Abstract

An ideal myoelectric prosthetic hand should have the ability to continuously morph between any 

posture like an anatomical hand. This paper describes the design and validation of a morphing 

myoelectric hand controller based on principal component analysis of human grasping. The 

controller commands continuously morphing hand postures including functional grasps using 

between two and four surface electromyography (EMG) electrodes pairs. Four unique maps were 

developed to transform the EMG control signals in the principal component domain. A 

preliminary validation experiment was performed by 10 nonamputee subjects to determine the 

map with highest performance. The subjects used the myoelectric controller to morph a virtual 

hand between functional grasps in a series of randomized trials. The number of joints controlled 

accurately was evaluated to characterize the performance of each map. Additional metrics were 

studied including completion rate, time to completion, and path efficiency. The highest performing 

map controlled over 13 out of 15 joints accurately.

Index Terms

Biomechatronics; electromyography (EMG); myoelectric control; principal component analysis; 
transradial prosthesis

I. Introduction

An ideal myoelectric prosthetic hand should have the ability to continuously morph between 

postures like an anatomical hand. It requires a mechatronic design with actuated joints and a 

control system using electromyographic (EMG) signals to command motion. 

Multifunctional prosthetic hands contain high degrees of actuation (DOAs, i.e., motors) and 
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even higher degrees of motion (DOMs, i.e., joints) which allow for many possible grasps 

and postures [1]–[3]. In fact, the mechanical design of many current multifunctional 

prostheses could drive the hand into the most important six functional postures required for 

activities of daily living [4]. However, the control systems implemented on these devices do 

not allow for this ability.

The inability to command a continuously morphing motion is due to the insufficient number 

of input command signals (EMG signals) compared to the number of output commands 

required (motor commands) [5], [6]. This challenge is effectively a multiple–input multiple–

output (MIMO) problem. Santello et al. [7] showed that grasping is a “low dimensional” 

task. Santello et al. empirically derived the principal components (PCs) of human grasping 

(a mathematical coupling of joints in the hand). This specific mathematical coupling will be 

referred to as PCs throughout this study1. Santello et al. found that the first two PCs 

described over 80% of the variance in hand posture. PCs effectively reduce the 

dimensionality of the hand and thereby the number of input commands required to direct a 

hand posture. Our study tested the effect of the number of control inputs and the mapping of 

the control inputs on the ability to drive a continuously morphing virtual hand.

II. Background on Myoelectric Prosthetic Hands

The sensory and motor functions of the human hand comprise a complex and robust system 

capable of powerful grasps and fine manipulation. The musculoskeletal system of the hand 

consists of at least 18 joint articulations controlled by over 30 muscles [8]. The hand has 

proprioceptors that sense the position of the hand in space and sensory receptors capable of 

sensing temperature, vibration, shear, and movement [9]. The replacement of the human 

hand has challenged scientists, engineers, and prosthetists for decades [10]. Advances in 

micro-electronics, miniature-actuators, and battery technology have accelerated the number 

of developments in myoelectric prostheses. While these technologies have allowed for re-

energized research in advanced mechanical and control system design, many popular 

commercially available prosthetic hands are still single degree of freedom (DOF, i.e., 

number of input control signals) devices [11]–[13]. The challenges of the MIMO problem 

have slowed the availability of advanced myoelectric control systems in commercially 

available prostheses. The following sections discuss the current state of the art in 

myoelectric control systems.

A. Proportional Control

The control of a single DOF or “open-close” prosthesis typically uses a direct control 

scheme that proportionally maps a control signal (i.e., EMG signals measured at a control 

site) to a single control variable (e.g., motor speed) [10], [14] [15]. Conventional 

proportional control requires little cognitive effort from the user, can occur with minimal 

computational delay, and the EMG measurement is robust since only two control sites are 

necessary. Many two-site myoelectric control systems are successfully utilized on the 

market today [11]–[13]. However, single DOF prostheses are limited to one grasping 

1Depending on the field of research, the literature uses the terminology principal components, postural synergies, and eigengrasps to 
describe the mathematical coupling of joints in human hand. This study uses the term principal components in all cases.
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posture. Users indicate that multiple grasps and increased articulation are highly desirable 

design considerations [16], [17] and are not achievable when using proportional control on a 

single DOF prosthesis. Recently available multifunctional prosthetic hands have increased 

mechanical complexity that allows for multiple grasping postures but must be accompanied 

by a more advanced control scheme.

B. Pattern Recognition

Pattern recognition is a widely researched scheme for the control of multifunctional 

prosthetic hands [18]–[20]. It is based on measuring patterns of EMG signals and assigning 

each pattern to a specific posture/motion. The EMG measurement of multiple control sites is 

preprocessed and segmented into windows over time. Features are extracted from each 

window which contain information on the EMG signal. The classifier then decides upon the 

desired posture/motion from the extracted features. The pattern recognition system can 

recognize many patterns but must be trained for each pattern before use. The postures/

motions are predefined and cannot vary during use. Pattern recognition provides a method 

for controlling multiple degrees of freedom but sacrifices flexibility.

C. State Machines

Another type of advanced myoelectric control scheme is based on state machines or event 

driven finite-state (EDFS) schemes [21]–[24]. There are several commercial devices that 

integrate simple state machines within the control scheme [1], [2]. Like pattern recognition, 

state machines can control multifunctional prostheses. State machines consist of many 

predefined states each with a unique function (i.e., posture) that can be selected sequentially. 

The input signal commands a transition between the states until the desired state is selected. 

Then, the predefined function is performed. State machine control methods demand 

memorization to iterate through the states. Also, the control scheme allows for only a 

limited, predefined set of functions. A state machine does not allow for variations on the set 

functions. The transition between states inherently slows the ability of the user to perform a 

task.

D. Mathematical Coupling Using Principal Components

The study of the principal components [7], [25], [26] of grasping has provided another 

method for the control of a myoelectric hand. Santello et al.. studied the principal 

components of nonamputee subjects when grasping everyday objects. The study concluded 

that two principal components describe over 80% of the variance in hand posture when 

grasping everyday objects. The first PC describes the flexion of the metacarpophalangeal 

(MCP) joint of the digits and the rotational/adduction of the thumb. The second PC 

describes the extension of the MCP joints and flexion of the proximal interphalangeal joint 

(PIP) of the digits while the thumb follows the same pattern as in the first PC. Fig. 1 depicts 

the two dimensional domain (referred to hereafter as the PC domain) and the coordinates of 

57 different grasps tested in [7]. This result opened an intriguing method of control of 

multifunctional prosthetic hands since [7] has shown that grasping can be achieved with 

only two control signals.
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Ciocarlie and Allen [27] used mathematical coupling based on principal components in the 

control of advanced robotic hands. The reduced dimensionality of the control system 

allowed for computational advantages when interfacing between the human and robot. 

Ciocarlie and Allen focused on complex tasks like dexterous grasping and grasp stability 

which further demonstrates the utility of PCs in the control of multi-DOF hands. Matrone et 

al. [28]–[30] showed the efficacy of a control system for a myoelectric prosthetic hand 

based on PCs. In their work, PCs were derived in order to drive a six DOA prosthetic hand 

using only two input command signals and single map onto the PC domain. The 

experimental results proved the ability of this type of controller to drive a prosthetic hand 

into typical grasping postures using computer and myoelectric control.

The bimodal distribution of postures in the PC domain suggests that better (i.e., faster/more 

accurate) control might be achieved if the EMG inputs were aligned to the distribution. We 

tested this hypothesis by implementing novel transformations (maps) of the EMG signals on 

the PC domain [31]. The use of novel mappings motivated additional questions including 

the benefit of additional control sites (i.e., a two DOF mapping versus a four DOF mapping). 

The control system architecture is described in detail in Section III. The experimental 

methods are described in Section IV. The ability of the control system to drive a high DOM 

virtual hand into functional grasps in a continuously morphing fashion is validated and 

discussed in Section V.

III. Development of Controller Architecture

A block diagram of the controller architecture based on principal components is shown in 

Fig. 2. The EMG control signals are processed using standard EMG processing techniques. 

The PC domain maps transform the EMG signals into a PC coordinate (PC1, PC2). The joint 

angle transform produces an array of 15 joint angles from the PC coordinate which is then 

sent to the virtual hand model for visualization. It should be noted that the controller does 

not require any training unlike pattern recognition techniques. The following section 

describes the controller architecture in more detail.

A. EMG Processing

The four EMG signals were acquired using ProControl2 electrode pairs (Motion Control, 

Inc.) and self-adhesive Ag/AgCl snap electrode stickers (Noraxon USA, Inc.). Electrodes 

were placed on flexor digitorum superficialis (EMG A), extensor digitorum (EMG B), 

extensor carpi ulnaris (EMG C), and flexor carpi ulnaris (EMG D). The location of the 

control sites were based on previous work [32] which found four independent surface EMG 

sites on the forearms of nonamputee subjects. The measured raw EMG signals from four 

control sites were amplified by the ProControl2 electrode and sent to a NI USB-6008 Data 

Acquisition (DAQ) device (National Instruments, Inc.). The raw analog EMG signal was 

sampled at 1 kHz. Then the signal was band pass filtered (30–450 Hz), notch filtered at 60 

Hz, rectified, smoothed with a 200 ms moving average filter, and normalized individually to 

the signal input range of the DAQ. A tuning process was performed for each subject before 

the myoelectric sessions took place. The tuning process included adjusting the gain and 

activation threshold for all EMG signals in order to produce the most comfortable control 

system for each subject. The gains were adjusted to ensure that every task was achievable 
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without overdue effort including co-contraction tasks (i.e., when postures lie far from the 

EMG signal axes in the PC domain). The activation thresholds were adjusted to negate 

quiescent EMG signals. All of the processing techniques described above are typical clinical 

practices and can be implemented when using many commercial prosthetic hands.

B. PC Domain Maps

The controller is based in the PC domain. Various maps between the EMG control signals 

and the PC domain were investigated. All maps as well as the target postures used in the 

experimental protocol are depicted in Fig. 3. The generalized equation of the mappings is 

described by (1). Table I specifies the unique transformation matrix [A] and offset vector 

[B] implemented by each map

(1)

Map 1 only utilizes EMG A and B and projects the EMG control signals to the third 

quadrant of the PC domain. The EMG A and B axes correspond to the positive PC1 and PC2 

directions, respectively. This map was considered to be the simplest method of maneuvering 

in the PC domain. Map 2 only utilizes EMG A and B as well. However, Map 2 projects the 

EMG control signals to the fourth quadrant of the PC domain. This map was developed to 

mimic the bimodal distribution of the postures in the PC domain (see dashed lines in Fig. 1). 

A set of vectors that best fit the distribution of postures in the PC-domain was derived using 

Principal Component Analysis and used as the transformation matrix [A] for map 2 (Table 

I). The vectors were then translated to ensure that the entire principal component domain 

was accessible using this map. Map 3 utilizes EMG A, B, and C and divides the PC domain 

into three equal portions. The EMG A axis is projected to the first quadrant of the PC 

domain. The EMG B axis projects onto the negative PC1 axis. The EMG C axis is projected 

to the fourth quadrant of the PC domain. Map 4 utilizes all four EMG signals (A, B, C, and 

D) and divides the principal component domain into four equal portions. The EMG A, B, C, 

and D axes follow the negative PC2 axis, negative PC1 axis, positive PC1 axis, and positive 

PC2 axis respectively.

For all mappings, EMG signals were assigned in order to follow the most physiologically 

realistic maps by applying the following rules: 1) flexor digitorum superficialis (EMG A) 

drives the hand to close; 2) extensor digitorum (EMG B) drives the hand to open; 3) 

extensor carpi ulnaris (EMG C) drives towards lateral prehension/zipper; 4) flexor carpi 

ulnaris (EMG D) drives towards power grasp/fry pan. In all cases, the result of the (1) is a 

PC coordinate (PC1, PC2) which is the input to the joint angle transform.

C. Joint Angle Transform

The joint angle transform converts the PC coordinate into a 15 element joint angle vector 

using a mathematical coupling based on the PCs of human grasping. Each principal 

component vector (  and ) is a 15-element vector describing a pattern of joint 
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angles. The principal component vectors are derived from physiological human grasping 

data, as calculated by (7), and are the source of the biomimetic characteristics of this control 

algorithm. The linear combination of the two PC vectors and the PC coordinate (PC1, PC2) 

equals a joint angle command vector which controls the posture of the hand as described by

(2)

The control algorithm described by (2) converts the EMG input signals into a continuously 

variable joint angle command vector. In other words, the posture of the hand can 

continuously morph from posture to posture by varying the EMG control signals. It should 

be noted that the input to the joint angle transform (the PC coordinate) has two elements 

whereas the output of the transform (the joint angle vector) has 15 elements. The joint angle 

transform produces a dimensionality transformation between the PC domain and the joint 

angle domain. The mathematical coupling defined by the principal components of grasping 

enables this transformation to take place using biomimetic patterns. However, the resulting 

posture is also limited by this coupling. For example, the posture used when describing the 

number two (or the “peace” sign) cannot be accomplished using this controller since the 

mathematical coupling described by the principal components flexes all four digits in near 

unison. This controller is designed to command grasping postures and can achieve all the 

functional grasps, as shown in Fig. 1.

IV. Experimental Methods

A. Subject Information

An experimental protocol was developed to validate the performance of the controller and to 

determine a preferred map. Ten healthy, nonamputee subjects aged 22–58 were selected for 

the study. All experiments were conducted using the dominant arm (nine subjects were 

right-hand dominant and one was left-hand dominant). The study took place over a single 

three hour meeting in the Integrated Teaching and Learning Laboratory at the University of 

Colorado at Boulder for each subject. The Institutional Review Board at the University of 

Colorado at Boulder reviewed and approved the experimental protocol.

B. Experimental Protocol

The experiment was separated into three sessions. First, a joystick control session developed 

a performance benchmark for each subject using a Parallax two-axis joystick (DigiKey 

Corporation). Then a practice session where the subjects were first introduced to each map 

and posture using myoelectric control. The experimental session produced the dataset 

analyzed in Section V using myoelectric control.

Each session presented the subject with a randomized series of trials. The task was to match 

the controlled posture to the target posture in ten seconds or less. The subjects were 

provided instantaneous feedback on the number of joints controlled accurately through the 
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testing interface. The feedback was produced by comparing the joint angle command vector 

[calculated in real time using (1) and (2)] and the target posture. The four target postures 

(lateral prehension—“zipper,” power grasp—“fry pan,” cylindrical prehension—“sugar 

cone,” and hand flat—“ashtray”) are shown in Fig. 1. These grasps were chosen because 

they are evenly distributed between the four quadrants of the PC domain and constitute four 

of the six functional grasps described by [4]. The target posture and the map used in each 

trial were varied for a total of 16 unique combinations. The target postures were randomized 

within each map. The order of the maps was randomized between subjects. The 10-s trial 

was followed by a 5-s break before the next trial. The joystick control session, practice 

session, and experimental session consisted of 16, 16, and 64 trials, respectively, for each 

subject as prescribed by a power analysis [33].

C. Testing Interface and Virtual Hand Model

The testing interface developed in Labview is shown in Fig. 4. The target posture is static 

image that varies across trials. The maximum accuracy score displays the highest number of 

joints controlled accurately at any time during the trial. The pause button allows the subject 

to pause the experiment at any time. The controlled posture morphs as the subject 

manipulates control signal. The current accuracy instantaneously displays the number of 

joints controlled accurately. The four normalized EMG waveforms are displayed in real 

time.

The custom-built, virtual hand model can be controlled using a variety of interfaces 

(joystick, EMG, computer mouse, etc.). The model has 15 articulating joints corresponding 

to the 15 joints measured in [7] and is further described in Table II. All 15 joints can be 

manipulated in real time. Joint angle limits corresponding to their anatomical range of 

motion were developed in order to disallow nonanthropomorphic motions [34]. The hand 

dimensions and joint ranges of motion (ROM) are modeled after a 50% percentile male hand 

[34]. The thumb joint locations and axes of rotation were based upon anthropometric data 

and modeling studies of the thumb [35], [36].

D. Metrics

Several metrics were used to study the performance of each subject. All the metrics were 

based on the postural envelope. The postural envelope was defined as 25% of the total range 

of motion of each joint [23]. If a commanded joint angle was within the postural envelope, 

then that joint was considered to be controlled accurately. The number of joints controlled 

was defined as the maximum number of joints (out of 15 possible joints) that were ever 

simultaneously within the postural envelope during the 10-s trial. The completion rate (CR) 

metric was defined as the number of successful trials per total number of trials. A successful 

trial was when all 15 joints were held in the postural envelope for 0.5 s. The time to 

completion (TC) metric measured the duration of the trial (in seconds) before a success 

occurred. Finally, the path efficiency (PE) metric was defined the measured rotational 

distance [denominator in (3)] compared to the shortest possible rotational distance 

[numerator in (3)] between the starting posture and the target posture to produce an 

efficiency measure between 0%–100%. The measured rotational distance was found by 
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summing the difference in joint angle between sequential updates of the hand posture. The 

total number of updates (N) depended on the length of the trial in time

(3)

The various maps altered the distance between the EMG axes and the postures in the PC 

domain. A correlation analysis was performed to study the relationships between the 

distance between the EMG axes and the postures in the PC domain. The diagonal distance is 

defined as the distance between the origin and the posture (shown in Fig. 5 by dashed lines). 

The perpendicular distance is the distance between the posture and the closest point along 

any axis (shown in Fig. 5 by solid lines).

MATLAB (The Mathworks, Inc.) was used to analyze the results. One way analysis of 

variance (ANOVA) tests and Tukey–Kramer comparisons were used to determine 

significance. The error bars in the figures represent one standard deviation. A least square fit 

line was used in the correlation analysis and was derived by minimizing the sum of the 

squared residuals. The goodness of fit (R2) measure describes the variance of the data about 

the least square fit line and was found by subtracting the ratio of the sum of squared 

residuals over the total sum of squares from one. The p-value describes the significance of 

the correlation and was considered statistically significant when having a value less than 

0.05.

V. Experimental Results and Discussion

A. Joystick Control Versus Myoelectric Control

The number of joints controlled accurately for both myoelectric control and joystick control 

trials across maps for all subjects is compared in Fig. 6. There was not a significant 

difference between the performance of each control method within each map or across 

maps. This is an interesting finding since joystick control was developed to be a benchmark 

for the best possible performance. Joystick control provides independent, or co-activation 

free, command input signals as compared to EMG signals. Also, subjects using joystick 

control could command any PC coordinate free of bias to the location of the posture in the 

PC domain. In contrast, subjects had to co-contract in order to reach regions of the PC 

domain not close to an EMG axis when using myoelectric control. The results in Fig. 6 show 

that the bias in the PC domain introduced when using myoelectric control did not 

significantly change the performance when compared to joystick control. In other words, the 

use of myoelectric command signal is equally as effective as a joystick command signal in 

this experimental paradigm.

2Not all scatter plots contain the same number of datum. Missing datum are due to unsuccessful combinations of postures and maps 
across all subjects.
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B. Highest Performing Map

The performance of all four maps for all metrics is displayed in Fig. 7. The maps 

respectively directed over 11, 13, 10, and 11 joints accurately. The completion rate for each 

map was over 21, 37, 21, and 14 percent, respectively. The performance of Map 2 was 

statistically more accurate (p < 0.05) and had a statistically higher completion rate than any 

of the other maps (p < 0.05). The seemingly low completion rates (less than 50%) are due to 

the complexity of the task. The subject must position all 15 joints into the postural envelope 

at the same time in order for a successful trial. These values were expected. The time to 

completion metric shows a similar trend in that Map 2 had the fastest average time to 

completion. However, Maps 3 and 4 tended to have the highest path efficiency measures. 

This result led to the correlation analysis discussed in Part C. In general, an increase number 

of control sites (Maps 3 and 4) do not increase performance using the postural controller.

The design of Map 2 stemmed from the bimodal distribution of postures in the PC domain 

(see Fig. 1). Santello et al. describe that the trends seen in the distribution of the postures in 

the PC domain “points to the possible existence of two main synergies through which hand 

shape is modulated.” Map 2 transforms the PC domain to align the two EMG control axes 

with these two main synergies. This transformation yielded the highest performing map. The 

other maps do not follow the distribution of postures in the PC domain and do not perform 

as well. This result motivates further investigation into the optimization of the projections of 

EMG input signals onto the PC domain for specific users.

C. Correlation Analysis of Distance Versus Performance

In light of the results described in Part B, we posit that having to co-contract to reach 

postures lying far from EMG control axes was more difficult to achieve and therefore would 

tend to bias our results. To test this hypothesis a correlation analysis was performed in order 

to determine if the diagonal and perpendicular distances from the EMG axes to the postures 

in the PC domain affected the performance of the controller (see Fig. 5). The scatter plots2 

of the diagonal and perpendicular distances compared to each performance metric are shown 

in Fig. 8.

The trends of the least square fit lines all show an inverse relationship between the 

performance and the Euclidian distance but only the correlation between path efficiency 

(PE) and the distance from the origin shows a statistically significant correlation (p < 0.05). 

This result mirrors the trend shown in Fig. 7 where the PE for Maps 3 and 4 were highest 

and have the shortest diagonal distances.

This finding does not substantiate the authors’ hypotheses that an increase in distance from 

the control axes makes the task more difficult to achieve. This finding suggest that subjects 

were able to use co-contraction to achieve the target postures readily enough and that co-

contraction did not adversely affect their performance.

The correlation between PE and diagonal distance shows the greatest goodness of fit (R2) 

and is the only correlation of statistical significance (p < 0.05). This trend suggests that 

Maps 3 and 4 have greater PE because they have on average lower diagonal distances than 

Maps 1 and 2. The distance between the origin and the postures is shortened because the 
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origin for Maps 3 and 4 is centered on the origin of the PC axes and therefore closer to the 

postures. The path efficiency metric describes the amount of “wandering” in the PC domain 

that the subject performs during a successful trial (3). The results suggest that the less 

wandering occurs when the required distance is shorter. This analysis also confirmed that 

the other performance metrics (accuracy, time to completion, and completion rate) were not 

significantly correlated to the diagonal or perpendicular distance metrics. The metrics 

measured performance independent of the location of the target posture in the PC domain.

D. Practice Session Versus Experimental Session

The average number of joints controlled accurately during the experimental session (11.7 ± 

0.3) was significantly greater (p < 0.05) than during the practice session (10.5 ± 0.4) across 

all subjects. This result indicates a brief practice session (i.e., less than 10 min in duration) 

increases the performance of the subjects significantly. It should also be noted that the 

subjects were not provided any instruction as to how to best perform the task for each 

posture/map combination. The subjects were naïve to the map used in each trial and 

therefore were not able to learn strategies for how to accomplish each specific map/posture 

combination. This protocol forced the subjects to guess the function of each control site at 

the beginning of the trial before determining the best strategy. As shown in [30], the authors 

would expect that additional instruction would increase the performance of the subjects.

E. Future Development

Further development will be required in order to implement the controller on a physical 

prosthesis. This controller is a high level controller compared to low level controllers that 

function inside a motor control feedback loop. The goal of a high level controller is to 

decipher user intent and define the desired task. Low level controllers convert the output of 

the high level controller to motor commands. We anticipate implementing a low level 

position control system using a proportional-derivative (PD) architecture. A “time-out” 

function will be integrated into the low level controller. The “time-out” function will lock 

the system into the desired posture if that posture is held for a certain time period. We 

anticipate implementing these control schemes on a physical prosthesis and performing 

experimental trials to measure grasping metrics such as grasp stability.

Finally, the motivation for using the variety of number of DOFs and projections onto the PC 

domain has a larger goal. The authors plan to investigate postural control algorithms that can 

be optimized for an individual (i.e., maps tuned to a specific user). This study was focused 

on proving that certain maps provide benefit over others and therefore encouraging the 

pursuit of optimal maps for each user in the future.

VI. Conclusion

Our study verifies that a myoelectric controller based on principal components of human 

grasping can control a multi-multifunctional virtual hand in a continuously morphing 

fashion. A validation experiment studied the performance of the controller using clinically 

practiced techniques including myoelectric control site selection, commercially available 

surface electrodes, and standard EMG filtering. The map that mimicked the bimodal 
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distribution of postures in the PC domain (Map 2) achieved the highest performance by 

directing over 13 joints accurately. A correlation analysis was performed in order to 

understand the relationship between distance in the PC domain and performance. The 

experimental results presented indicate that the controller based on PCA of human grasping 

provides an effective method for nonamputee subjects to morph a high DOM virtual hand 

into functional grasps.
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Fig. 1. 
The distribution of grasping postures in the principal component domain (PC domain) found 

by Santello et al., 1998. Santello et al. found that the first and second principal components 

(PC1 and PC2) accounted for more than 80% of the variance in the joint angles of grasping 

postures. Therefore mapping two control input signals to PC1 and PC2 provides a means to 

command a prosthetic hand into numerous grasping postures using just two control inputs. 

The four target postures used in this study are circled and shown. The target postures were 

chosen because they are evenly distributed between the four quadrants of the PC domain and 

constitute four of the six functional grasps described by [4]. The bimodal trend in the 

distribution of postures is shown by the dashed lines.
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Fig. 2. 
Block diagram of the controller architecture based on principal components of human 

grasping. Raw EMG control signals are processed using standard EMG processing 

techniques. Four different PC domain maps are tested using various transformations of the 

EMG control signals on the PC domain. The output of the maps is a PC coordinate (PC1, 

PC2). The joint angle transform converts the PC coordinate into an array of 15 joint angles 

(2). The virtual hand visualizes the 15 joint angles in real time.

Segil and Weir Page 15

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 December 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 3. 
Maps 1–4 on the PC domain. Map 1 translates the EMG signals to the third quadrant and 

aligns EMG A with PC1 and EMG B with PC 2. Map 2 translates and rotates the EMG A 

and EMG B signals. The rotation mimics the bimodal pattern seen in the grasping posture 

distribution from Santello et al. Map 3 divides the PC domain into three equal portions using 

EMG A, B, and C. Map 4 divides the PC domain into four equal portions using EMG A, B, 

C, and D.

Segil and Weir Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 December 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 4. 
Testing interface seen by the subjects. Target posture is static image that varies across trials. 

Maximum accuracy score displays the highest number of joints controlled accurately at any 

time during the trial. Pause button allows the subject to pause the experiment at any time. 

Controlled posture morphs as the subject manipulates the control signals. Current accuracy 

instantaneously displays the number of joints controlled accurately throughout the trial. 

Two-four normalized EMG waveforms are displayed in real time.
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Fig. 5. 
Example of diagonal and perpendicular distance definition using Map 2. Diagonal distance 

is measured from the origin of the map to the posture. The perpendicular distance is the 

shortest distance from the posture to the nearest axis. Amount of co-contraction necessary to 

acquire off axis target postures is quantified by the perpendicular distance metric.

Segil and Weir Page 18

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 December 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 6. 
Number of joints controlled accurately for both myoelectric control and joystick control 

trials across maps and all subjects.
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Fig. 7. 
Comparison of performance metrics over all maps. Performance of Map 2 was statistically 

greater than the other maps for both the number of joints controlled and completion rate 

metrics (p < 0.05).
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Fig. 8. 
Correlation analysis between distance and all performance metrics. The four rows 

correspond to the four performance metrics [number of joints controlled, completion rate 

(CR), time to completion (TC), and path efficiency (PE)] and the two columns correspond to 

the two distance metrics (diagonal and perpendicular distance). The least square fit line, 

goodness of fit measure, and p-value are shown for all comparisons. Correlation between 

path efficiency (PE) and diagonal distance (circled) is the only relationship with a significant 

correlation. This finding mirrors the trend shown in Fig. 7 where PE was greatest for Maps 3 

and 4 which have the shortest diagonal distances to all target postures.
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TABLE I

Definitions of Maps 1–4

Maps Transformation Matrix - [A] Offset Vector - [B]

1

2

3

4
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TABLE II

Joints of the Virtual Hand Model. Virtual Hand Model was Based on a 50th Percentile Male Hand and the 

Joints Match Those Studied by [7]

Joint Number Joint Name Joint Abbreviation Joint Description Range of Motion (degrees)

1. Thumb Rotation TR Rotation about CMC joint 180

2. Thumb MCP TM Flexion about length of thumb 90

3. Thumb PIP TP Flexion about length of thumb 90

4. Thumb Abduction TA Abducts towards palm 90

5. Index MCP IM Flexion about length of digit 90

6. Middle MCP MM Flexion about length of digit 90

7. Ring MCP RM Flexion about length of digit 90

8. Little MCP LM Flexion about length of digit 90

9. Index PIP IP Flexion about length of digit 90

10. Middle PIP MP Flexion about length of digit 90

11. Ring PIP RP Flexion about length of digit 90

12. Little PIP LP Flexion about length of digit 90

13. Index Abduction IA Abducts away from middle 30

14. Ring Abduction RA Abducts away from middle 30

15. Little Abduction LA Abducts away from middle 30
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