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Pathway analysis with next-generation sequencing data

Jinying Zhao1, Yun Zhu1, Eric Boerwinkle2 and Momiao Xiong*,2

Although pathway analysis methods have been developed and successfully applied to association studies of common variants,

the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators

observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated

false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for

gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the

smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data.

The developed statistic has the ability to capture position-level variant information and account for gametic phase

disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with

either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based

statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power

than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is

applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three

pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the

SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
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INTRODUCTION

It is increasingly realized that evolutionary forces produce substantial
genetic heterogeneity in human disease.1 Different affected individuals
may have a large number of different risk variants. These different risk
variants may be located in the same genes or in different genes, but in
the same or related pathways. Vast allelic, locus and phenotypic
heterogeneity in common disease implies that identifying pathways
associated with disease is a key approach to unraveling the
pathogenesis of the disease.2 Pathway analysis typically tests the
association of a predefined set of related genes, which are often
defined by biological knowledge.3 Although pathway analysis methods
have been developed and successfully applied to association studies of
common variants,4–17 the statistical methods for pathway-based
association analysis of rare variants have not been well
developed.18–21 The current methods for pathway-based association
analysis of rare variants are classified into two approaches. One
approach is a two-step strategy, first generate gene-level statistics
(combining information on all rare variants in the gene) or P-values
and then aggregate the gene-level statistics or combining P-values
across all genes in a pathway by gene set enrichment analysis (GSEA).
An alternative approach is to aggregate all rare variants (combining all
rare variants within genes in a pathway) in a pathway directly and to
collectively test the association of all rare variants in the pathway by
rare variant association test statistics.18 However, many investigators
have observed highly inflated false-positive rates and low power in
pathway-based tests of association of rare variants.22,23 The inflated
false-positive rates and low true-positive rates of the current methods
are mainly due to their lack of ability to account for gametic phase
disequilibrium and to reduce the high dimensionality of the data in
the pathway-based association analysis.21

To overcome these limitations, we develop a novel statistical
method for pathway-based association studies, which are based on
the smoothed functional principal component analysis (SFPCA). The
SFPCA is used to view the genotype profiles of SNPs as a function of
genomic position of the SNPs and perform basis function expansion
of genotype function. Therefore, the SFPCA takes information across
all variants in the genomic region into account and hence, includes all
individual varaint distribution. The SFPCA statistic globally compares
differences in the average of functional principal component scores
between cases and controls. In other words, it tests accumulation of
differences in all variant variation in the genomic region between
cases and controls. We extend SFPCA from a single gene to multiple
genes and compare the difference in functional principal component
scores that are calculated from all genes in a pathway between cases
and controls. The SFPCA-based statistic for testing the association of
pathway with the disease combines a measure of goodness-of-fit with
a roughness penalty to retain the advantages of basis expansion and
reduce the dimensionality of the data in the pathway. The SFPCA can
utilize merits of both individual variant analysis and group tests. It
can also efficiently use information of both risk and protective
variants and allow for sign and size heterogeneity of genetic variants
in the pathways. Many statistics can be used to test for association of
either common variants or rare variants, but very few can test
association of both common and rare variants. The SFPCA is
designed to test the association of the entire allelic spectrum of
genetic variation.

To evaluate the performance of the SFPCA-based statistic for
pathway analysis, we will use large-scale simulations to calculate the
type I error rates and systematically evaluate the power of 23 statistical
methods: SFPCA, functional principal component analysis (FPCA),
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the weighted sum (WSS),24 variable-threshold (VT),25 combined
multivariate and collapsing (CMC),26 linear combination test
(LCT/LCT),13 quadratic test (QT/QT),13 de-correlation test (DT/DT),13

WSS/Sidak, WSS/Fisher combination, WSS/Fisher exact, WSS/GESA,
VT/Sidak, VT/Fisher combination, VT/Fisher exact, VT/GESA,
CMC/Sidak, CMC/Fisher combination, CMC/Fisher exact,
CMC/GESA, PCA, SKAT27 and GESA.28

To further explore and illustrate some valuable features of the
SFPCA, SFPCA and other popular statistics for pathway analysis are
applied to the early-onset myocardial infarction (EOMI) exome
sequence data sets, which contain individuals with European origin
(EA) and African origin (AA) from the NHLBI’s Exome Sequencing
Project (ESP). The ESP may be the largest publically available exome
sequencing data set when this paper is completed. Our results show
that although sample sizes are small, we still can identify pathways
significantly associated with EOMI, which can be replicated in two
independent studies and confirmed in the literature.

MATERIALS AND METHODS

FPCA for pathway association
Let t be a genomic position in the gene. Define a genetic variant function xi(t)

of the i-th individual as 1, 0, �1, if the number of major alleles at the SNP

located at the genomic position t is 2, 1 and 0, respectively.

Consider k genes in a pathway. The j-th gene is located in the genomic

region [aj,bj]. Let R(s,t) be a covariance function between xi(t) and xi(s),

and b(t) be a functional principal component. By extension of multivariate

PCA to functional PCA, the formula for the variance of stochastic integral29

and calculus of variations,30 we obtain the following k eigenequations

(Supplementary Information):

Xk

l¼1

Z b1

a1

Rðs; tÞblðtÞdt ¼ lbjðsÞ; j ¼ 1;:::; k ð1Þ

Equation (1) can be solved by basis function expansion (Supplementary

Information).

The observed genetic variant functions are often not smooth, which will lead

to substantial variability in the estimated functional principal component

curves.31,32 To improve the smoothness of the estimated functional principal

component curves, we impose the roughness penalty on the functional

principal component weight functions. The smoothed functional principal

components can be found by solving the following integral equations

(Supplementary Information):

Xk

l¼1

Z b1

a1

Rðs; tÞblðtÞdt ¼ l½bjðsÞþ mD4bjðsÞ�; j ¼ 1; 2;:::; k ð2Þ

Note that when m¼ 0 the smoothed functional principal components analysis

is reduced to unsmoothed FPCA. Again, integral Equation (2) can be solved by

basis function expansion, which leads to the principal component function

bðmÞj ðtÞ (Supplementary Information).

Test statistic
We use the pooled genetic variant functions Xi(t) of cases and Yi(t) of controls

to estimate the principal component function bðmÞj ðtÞ, j¼ 1,...,k using the basis

expansion methods (Supplementary Information). Using orthonormality of

the functional principal components, we can obtain the functional principal

component scores xðmÞj and ZðmÞi of Xi(t) and Yi(t) (Supplementary

Information). Let �x ¼ ½�xð1Þ; :::; �xðMÞ�T and �Z ¼ ½�Zð1Þ; :::; �ZðMÞ�T , where M is

the number of functional principal components in the eigenfunction expan-

sion. Define the pooled covariance matrix.

S ¼ 1

nA þ nG� 2
½
XnA

i¼1

ðxi� �xÞðxi� �xÞT þ
XnG

i¼1

ðZi� �ZÞðZi� �ZÞT �

where xi ¼ ½xð1Þi ; :::; xðMÞi �
T ; Zi ¼ ½Z

ð1Þ
i ; :::; ZðMÞi �

T :

Define

L ¼ ð 1

nA
þ 1

nG
ÞS

Then, the statistic is defined as

TSFPCAP ¼ ð�x� �ZÞTL� 1ð�x� �ZÞ ð3Þ

Under the null hypothesis of no association of pathway with the disease, the

statistic TSFPCAP is asymptotically distributed as a w2
ðMÞ distribution where M is

the number of functional principal components in the eigenfunction expan-

sion (Supplementary Information).

Table 2 Type 1 error rates of 15 statistics for testing the association

of pathway that includes all variants with disease

Nominal level

Test statistics 0.001 0.01 0.05

SFPCA 0.0010 0.0102 0.0510

FPCA 0.0012 0.0108 0.0504

Integral 0.0008 0.0082 0.0414

LCT/LCT 0.0016 0.0158 0.0638

QT/QT 0.0016 0.0172 0.0682

DT/DT 0.0014 0.0120 0.0608

WSS/Fisher exact 0.0014 0.0138 0.0622

WSS/Sidak 0.0007 0.0092 0.0456

WSS/GESA 0.0008 0.0080 0.0434

VT/Fisher exact 0.0014 0.0124 0.0556

VT/Sidak 0.0008 0.0089 0.0458

VT/GESA 0.0008 0.0085 0.0440

CMC/Fisher exact 0.0012 0.0102 0.0500

CMC/Sidak 0.0006 0.0090 0.0454

CMC/GESA 0.0008 0.0104 0.0476

Abbreviations: CMC, combined multivariate and collapsing; DT, de-correlation test; FPCA,
functional principal component analysis; LCT, linear combination test; QT, quadratic test;
SFPCA, smoothed functional principal component analysis; VT, variable-threshold;
WSS, weighted sum.

Table 1 Type 1 error rates of 15 statistics for testing the association

of pathway that includes only rare variants with disease

Nominal level

Test statistics 0.001 0.01 0.05

SFPCA 0.0012 0.0106 0.0520

FPCA 0.0012 0.0104 0.0516

Integral 0.0008 0.0084 0.0422

LCT/LCT 0.0018 0.0186 0.0742

QT/QT 0.0016 0.0017 0.0782

DT/DT 0.0014 0.0132 0.0614

WSS/Fisher exact 0.0016 0.0154 0.0682

WSS/Sidak 0.0008 0.0096 0.0504

WSS/GESA 0.0008 0.0088 0.0476

VT/Fisher exact 0.0014 0.0148 0.0596

VT/Sidak 0.0008 0.0092 0.0498

VT/GESA 0.0010 0.0096 0.0486

CMC/Fisher exact 0.0012 0.0118 0.0556

CMC/Sidak 0.0006 0.0102 0.0508

CMC/GESA 0.0008 0.0106 0.0512

Abbreviations: CMC, combined multivariate and collapsing; DT, de-correlation test; FPCA,
functional principal component analysis; LCT, linear combination test; QT, quadratic test;
SFPCA, smoothed functional principal component analysis; VT, variable-threshold;
WSS, weighted sum.
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RESULTS

Type 1 error rates
To assess the type 1 error rates of the test statistics, we performed a
series of simulation studies. We randomly sampled (with replace-
ment) from the exome sequence data in the TGF-b signaling pathway
(19 genes) with 2242 European Americans in the NHLBI’s ESP
project to simulate 100 000 individuals. A total of 1394 SNPs with
minor allele frequencies (MAFs) ranging from 4.06� 10�4 to 0.4523
and 595 rare variants (MAFr 0.05) were included in the analysis. A
total of 2000 individuals were randomly sampled (with replacement)
and equally assigned to cases and controls. A total of 5000 simulations
were repeated.

Two approaches are usually taken in pathway analysis. One
approach is to first generate gene-level statistics or P-values assessed
by marginal association analysis or a group test, and then aggregate
the gene-level statistics or combine P-values across all genes in a
pathway by GSEA. An alternative approach is to aggregate all SNPs in

the pathway directly and to collectively test the association of all SNPs
in the pathway by association test statistics. In this paper, the gene-
based statistics that test for association of a gene with disease were the
LCT, QT, DT, CMC method, WSS, VT approach and SKAT method.
The statistics for aggregating the gene-level statistics in the pathway
analysis in which LD information in the pathway can be explored
were LCT, QT and DT. The methods for combining P-values across all
genes in the pathway were GSEA with Kolmogorov-Smirnov test,
Fisher’s exact test and Sidak test. FPCA and SFPCA that aggregated all
SNPs in the pathway were used to jointly test the association of all
SNPs in the pathway. The CMC, WSS and VT were also used to serve
this purpose.

Table 1 summarized type 1 error rates of 15 statistics to test pathway
association including rare variants (MAF o0.05) only with disease.
We observed that LCT/LCT and QT/QT tests were inflated at three
significance levels, DT/DT, WSS/Fisher-exact and VT/Fisher-exact were
inflated at a 0.05 significance level, but other tests were not appreciably
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Figure 1 The power curves of 23 statistics for testing the association of a pathway including rare variants (MAF r0.05) only with disease as a function of

the total number of individuals at the significance level a¼0.05, where six risk genes and 20% of the risk rare variants in each gene were randomly

selected. The power curves of SFPCA, FPCA, WSS, VT, CMC, LCT/LCT, QT/QT, DT/DT, WSS/Sidak, WSS/Fisher Combination, WSS/Fisher exact, WSS/GESA,

VT/Sidak, VT/Fisher combination, VT/Fisher exact, VT/GESA, CMC/Sidak, CMC/Fisher Combination, CMC/Fisher exact, CMC/GESA, PCA, SKAT and GESA

were denoted by red solid (-), red dashed (–), blue dashdot (-.), blue solid (-), green solid (-), black solid (-), magenta solid (-), magenta dashed (–),

magenta dotted (..), blue dashed (–), blue dashdot (-.), blue dotted (..), blue solid with * marktype (-*), green dashed (–), green dashdot (-.), green dotted

(..), green solid with plus marktype (-þ ), black dashed (–), black dashdot (-.), black dotted (..), black solid with * marktype (-*), magenta solid with

* marktype (-*) and magenta dashed with plus marktype (–þ ), respectively.
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different from the nominal levels. To examine the validity of the tests
for testing the pathway association including both common and rare
variants, we presented Table 2. Similar to Table 1, LCT/LCT and QT/
QT tests were inflated at three significance levels. DT/DT, WSS/Fisher-
exact and VT/Fisher-exact were inflated at a 0.05 significance level, and
other tests were not appreciably different from the nominal levels.

Power evaluation
To evaluate the performance of the proposed statistics for testing
the pathway association, we used simulated data to estimate their
power to detect true associations. Again, we used exome sequence
data in the TGF-b signaling pathway (19 genes) of 2242 European
Americans in the ESP project to simulate 100 000 individuals. The
number of SNPs and range of allele frequencies were the same as
that described in the previous selection. We randomly selected six

risk genes. In each risk gene, we selected a proportion of variants as
the risk variant.

We assumed that the relative risks across all variant sites are equal
and that the variants influence disease susceptibility independently
(ie, no epistasis). Each individual was assigned to the group of cases
or controls depending on their disease status (Supplementary
Information). The process for sampling individuals from the popula-
tion of 100 000 individuals was repeated until the desired samples
were reached for simulations. A total of 5000 simulations were
repeated.

By simulations we evaluated the power of 23 statistics: SFPCA,
FPCA, WSS, VT, CMC, LCT/LCT, QT/QT, DT/DT, WSS/Sidak,
WSS/Fisher combination, WSS/Fisher exact, WSS/GESA,VT/Sidak,
VT/Fisher combination, VT/Fisher exact, VT/GESA, CMC/Sidak,
CMC/Fisher combination, CMC/Fisher exact, CMC/GESA, PCA,
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Figure 2 The power curves of 23 statistics for testing the association of a pathway including rare variants (MAF r0.05) only with disease as a function of

the total number of individuals at the significance level a¼0.05, where six risk genes were selected, and 15% of the rare variants in each gene were
assumed to be risk variants and 15% of the rare variants in each gene were assumed to be protective variants. The power curves of SFPCA, FPCA, WSS,

VT, CMC, LCT/LCT, QT/QT, DT/DT, WSS/Sidak, WSS/Fisher Combination, WSS/Fisher exact, WSS/GESA, VT/Sidak, VT/Fisher combination, VT/Fisher exact,

VT/GESA, CMC/Sidak, CMC/Fisher Combination, CMC/Fisher exact, CMC/GESA, PCA, SKAT and GESA were denoted by red solid (-), red dashed (–), blue

dashdot (-.), blue solid (-), green solid (-), black solid (-), magenta solid (-), magenta dashed (–), magenta dotted (..), blue dashed (–), blue dashdot (-.),

blue dotted (..), blue solid with * marktype (-*), green dashed (–), green dashdot (-.), green dotted (..), green solid with plus marktype (-þ ), black dashed

(–), black dashdot (-.), black dotted (..), black solid with * marktype (-*), magenta solid with * marktype (-*) and magenta dashed with plus marktype (–þ ),

respectively.

Pathway analysis
J Zhao et al

510

European Journal of Human Genetics



SKAT and GESA. Figure 1 and Supplementary Figure 1 plotted the
power curves of 23 statistics for testing the pathway association
harbored rare variants (MAF r0.05). All variants including both rare
and common variants, respectively, as a function of the total number of
individuals at the a¼ 0.05 significance level, assuming that 20% of the
variants in each of six genes were randomly selected as risk variants.
Several remarkable features emerged from Figure 1 and Supplementary
Figure 1. First, the SFPCA-based statistic had the highest power,
followed by the FPCA-based statistics and other statistics. Second, the
SFPCA and FPCA are designed to directly test the association of all
SNPs in the pathway. We observed that SFPCA, FPCA and direct
application of WSS, SKAT, PCA, VT and CMC statistics to test the
pathway association had higher power than the two-stage approache.
Third, the power pattern of test statistics for pathway analysis of all
variants was similar to that for pathway analysis of rare variants.

To examine the impact of the direction of association of alleles with
disease risk on the power of the tests, we assume that the risk genes in
the pathway include both risk and protective variants. Figure 2 and
Supplementary Figure 2 plotted the power curves of 23 statistics for
testing the pathway association that harbored rare variants (MAF
r0.05), and all variants including both rare and common variants,
respectively, as a function of the total number of individuals at the

a¼ 0.05 significance level. We assumed that 15% of rare (all) variants
in each of six genes were randomly selected as risk variants and 15%
of the rare (all) variants in each gene were protective variants. Figure 2
and Supplementary Figure 2 showed that the power pattern of the
statistics for testing the association of pathway with both risk and
protective variants was similar to the power patterns of the statistics
for testing the pathway association with only risk variants. However,
we also observed that the impact of the direction of association of
alleles on the power of SFPCA and FPCA was much less than on the
power of other test statistics.

To further systematically compare the power of 23 statistics for
testing the pathway association, we studied the power of the tests as a
function of the ratio of risk variants. For simplicity, again we selected
six genes as risk genes and assumed that the proportion of risk
variants in each of the six genes was the same. Figure 3 and
Supplementary Figure 3 plotted the power of 23 statistics for testing
the pathway association that harbored rare variants (MAF r0.05),
and all variants including both rare and common variants, respec-
tively, as a function of proportion of risk variants under the dominant
model at the a ¼ 0.05 significance level, assuming that 1600 cases and
1600 controls were sampled. We observed that the smoothed FPCA-
based statistics had the highest power, followed by the FPCA in all
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Figure 3 The power curves of 23 statistics for testing the association of a pathway including rare variants (MAF r0.05) only with disease as a function of

the proportion of risk rare variants within the six selected risk genes at the significance level a¼0.05, where 1600 cases and 1600 controls were sampled.

The power curves of SFPCA, FPCA, WSS, VT, CMC, LCT/LCT, QT/QT, DT/DT, WSS/Sidak, WSS/Fisher Combination, WSS/Fisher exact, WSS/GESA, VT/Sidak,

VT/Fisher combination, VT/Fisher exact, VT/GESA, CMC/Sidak, CMC/Fisher Combination, CMC/Fisher exact, CMC/GESA, PCA, SKAT and GESA were denoted
by red solid (-), red dashed (–), blue dashdot (-.), blue solid (-), green solid (-), black solid (-), magenta solid (-), magenta dashed (–), magenta dotted (..),

blue dashed (–), blue dashdot (-.), blue dotted (..), blue solid with * marktype (-*), green dashed (–), green dashdot (-.), green dotted (..), green solid with

plus marktype (-þ ), black dashed (–), black dashdot (-.), black dotted (..), black solid with * marktype (-*), magenta solid with * marktype (-*) and

magenta dashed with plus marktype (–þ ), respectively.
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settings. Varying the number of genes, or the proportion of disease
variants across genes (so some genes have a higher proportion),
influenced the magnitude of the power, but did not change the
relative performance of methods (data not shown).

APPLICATION TO A REAL DATA EXAMPLE

To further evaluate their performance, 23 statistics for pathway
analysis were applied to the EOMI exome sequence data from the
NHLBI’s ESP, where a total of 544 (188 cases and 356 controls) with
EA and 312 (39 cases and 273 controls) with AA were exome
sequenced. Genotype calling and quality control were described as
previously.33 After quality control of the data (Supplementary
Information), a total of 18 737 genes with 575 259 SNPs were included
in the analysis. We assembled 249 pathways from KEGG34 and 308
pathways from Biocarta (http://www.biocarta.com). The assignment
of SNPs to a gene including all SNPs within 5 kb of the gene region
was obtained from the NCBI GRCh37/hg19 (ftp://ftp.ncbi.nih.gov/
gene/Data/GENE_INFO). P-value for declaring significance after
the Bonferroni correction is 8.98� 10�5. We first studied
pathway association including only rare variants (MAF r0.05). We
identified two pathways: vascular endothelial growth factor (VEGF)
signaling pathway and TGFb signaling pathway that were significantly
associated with EOMI in the EA population by the SFPCA-based test.
Table 3 listed P-values of 11 statistics for testing the association of
these two pathways with EOMI in the EA (113 201 rare variants) and
AA (179 701 rare variants) populations, where P-values were calcu-
lated by permutation. Table 3 showed that the SFPCA-based statistic
had the smallest P-value among 11 statistics, followed by FPCA. We
also observed that the significant results by the SFPCA-based test in
the EA population could not be replicated in the AA population.

VEGF has an important role in maintaining healthy vascular
integrity and promoting homoeostasis, and is involved in athero-
sclerosis plaque disruption.35,36 The VEGF signaling pathway is now
used as a target pathway for treatment of ischemic cardiovascular
disease.37,38 It is reported that TGFb signaling pathway is a risk factor
for cardiovascular disease39 and has an important role in the
development of myocardial infarction.40,41

To demonstrate that replication of the results of pathways in
independent samples is much easier than replication of genes, we
plotted in Figure 4 where the genes with red and blue color were
mildly associated with EOMI in the EA and AA populations,
respectively, and the genes with green color were mildly associated
with EOMI in both of the EA and AA population (see data
presented in Supplementary Table 1). Figure 4 and Supplementary
Table 1 showed that the EOMI studies in the EA and AA
populations shared no common significantly associated genes
with rare variants within the TGFb pathway, in other words, we
failed to replicate significantly associated genes within the TGFb
pathway in two independent studies. However, Table 3 showed
that the TGFb pathway in both studies was significantly associated
with EOMI using the SFPCA test. This example showed that
replication at the pathway level is easier than replication at the
gene level. We also observed no significant genes associated with
EOMI in both of the EA and AA populations. But, we observed a
number of mild associations of genes within the TGFb pathway
with EOMI in the EA and AA populations. In Figure 4, there were
14 genes and 10 genes that were mildly associated with EOMI
(P-value o0.05) in the EA and AA populations, respectively.
Figure 4 and Supplementary Table 1 showed that each gene in the
TGFb pathway may confer a small contribution, but their joint
actions may affect the function of the pathway, which in turn will

cause EOMI. Other mildly associated pathways with P-values
o0.0001were summarized in Supplementary Table 2.

Next we examined the association of pathways with both
common and rare variants. Table 4 listed top four best pathways
harboring both common and rare variants associated with EOMI.
Using the SFPCA test, pyrimidine metabolism was significantly
associated with EOMI in EA population, whereas association of
the metabolic pathway with EOMI in the AA population quite
closely reached significance level (9.40� 10�5). Although varaint
distribution association of four pathways was not significant, their
P-values of association were close to significance level. It is
reported that glycosaminoglycan influences the low-density lipo-
protein and is involved in atherosclerosis and ischemic heart
disease.42–45

To examine whether P-values of the pathway associations in our
real data set are dependent on pathway size, we generated three
types of pathway data sets. For the first type of data sets, we
randomly generated a pathway with the fixed number of genes (200
genes) and fixed number of SNPs (1764). 10 000 simulations were
repeated. For the second type of data sets, we randomly generated
10 000 data sets, each with 200 genes and varying number of SNPs
that range from 616 to 1162, selected from different pathways of
the whole EOMI data set. For the third type of data sets, we
randomly selected same number of genes and SNPs as that in the

Table 3 P-values of top 2 significant pathways with rare variants

associated with EOMI

Name of pathway VEGF signaling pathway TGFb signaling pathway

Number of genes 68 17

EA

SFPCA 7.26E-06 2.00E-05

FPCA 4.17E-03 8.30E-04

LCT/LCT 3.41E-01 6.93E-03

QT/QT 6.96E-01 5.51E-02

DT/DT 2.45E-01 3.92E-01

WSS/Fisher exact 1.18E-02 2.87E-01

VT/Fisher exact 2.37E-01 4.75E-02

CMC/Fisher exact 4.81E-01 5.79E-02

CMC 7.40E-01 8.94E-01

SKAT 4.07E-02 2.44E-03

GSEA 7.40E-01 7.04E-02

PCA 4.40E-03 1.20E-03

AA

SFPCA 2.85E-01 9.04E-05

FPCA 3.32E-01 5.48E-04

LCT/LCT 4.09E-01 4.28E-02

QT/QT 1.11E-01 1.09E-01

DT/DT 6.20E-01 1.91E-01

WSS/Fisher exact 2.04E-01 2.61E-01

VT/Fisher exact 3.98E-01 2.62E-01

CMC/Fisher exact 5.45E-02 1.99E-02

CMC 1.73E-01 4.68E-02

SKAT 1.25E-01 1.72E-02

GSEA 1.02E-01 6.06E-02

PCA 8.70E-01 3.20E-02

Abbreviations: AA, African origin; CMC, combined multivariate and collapsing; DT,
de-correlation test; EE, European origin; EOMI, early-onset myocardial infarction; FPCA,
functional principal component analysis; LCT, linear combination test; QT, quadratic test;
SFPCA, smoothed functional principal component analysis; VEGF, vascular endothelial growth
factor; VT, variable-threshold; WSS, weighted sum.
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four reported significant pathways identified by our method. We
used three data sets to generate empirical P-values of four pathways
(Supplementary Table 3). Supplementary Table 3 clearly showed
that using randomly selected genes and SNPs, the observed
pathway associations are no longer significant. This demonstrates
that the observed pathway associations were unlikely to be caused
by systematic inflation of association test statistics. Rather, our
results should have some biological implication.

DISCUSSION

We have developed a novel SFPCA-based statistic to addresses the
conceptual and analytical challenges raised by pathway-based associa-
tion studies for the entire spectrum of genetic variation. To our
knowledge, this is among the first one to systematically evaluate the
power of a large number of tests for pathway association with NGS
data using large-scale simulations and real data analysis. Using
simulations and real data analysis of EOMI, we have demonstrated
that the SFPCA-based statistic for pathway-based association studies
has broad applicability to NGS data and has several remarkable
advantages over many existing methods.

First, the SFPCA-based statistic not only can jointly test association
of all SNPs within a pathway, but also can capture position-level
variant information. The smoothed functional principal component
scores take into account information across all variants in the
pathway. The SFPCA-based statistic can account for gametic phase

disequilibrium. Therefore, it has a much higher power and smaller
P-value than the other 22 existing statistics in all scenarios.

Second, we have developed a unified statistic that can test the
association of either rare or common variants or both rare and
common variants without introducing any changes in the test
statistic. From large-scale simulations and real data analysis, we
showed that the SFPCA-based statistic for pathway-based association
studies had the correct type 1 error rate and high power.

Third, by large-scale simulations, we have shown that any GSEA
that does not employ correlation information among the variants
within the pathway has less power than the statistics that aggregate all
genetic variants within the pathway and directly test the association of
all aggregated genetic variants. The SFPCA-based statistic has the
highest power to test the association of pathway among 23 statistics.

Fourth, the SFPCA-based statistic can efficiently and automatically
use information of both risk and protective variants and allow for sign
and size heterogeneity of genetic variants. In general, the risk and
protective variants will be present in different locations in the
genomic regions within the pathway. Information of risk and
protective variants usually will be reflected in different eigenfunctions
and hence will be included in different functional principal compo-
nent scores. The SFPCA-based statistic is to summarize the square of
the differences in the smoothed functional principal component
scores between cases and controls. Therefore, the opposite effects of
risk and protective variants on the phenotype will not compromise
each other in the SFPCA-based statistics. Using simulations, we
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showed that the SFPCA-based statistics had substantially higher
power than the existing approach in the presence of both risk and
protective variants in the pathway being investigated.

Fifth, the SFPCA method can partially handle missing variant calls.
By functional expansion, the SFPCA method can automatically
predict genetic variation function of the missing variants from
information of other known variants. We can also redefine the
genetic variation function to incorporate the predicted genotypes
based on its MAF, that is, the probability of carrying a rare variant.

The developed SFPCA statistic was applied to pathway analysis of
EOMI with exome sequencing data. We identified the TGFb pathway
harboring rare variants significantly associated with EOMI, which
were replicated in two independent EA and AA studies. We also
discovered several pathways showing association, which can be
confirmed in the literature. However, surprisingly, we have not
observed overlap between significant pathways with common variants
and significant pathways with rare variants. This may imply that
genetic causes underlying diseases for common and rare variants are
different. Emerging NGS technologies enable sequencing individual
genomes and have the potential to discover the entire spectrum of
sequence variations in a sample of well-phenotyped individuals.

The results in this paper are quite preliminary. The number of
eigenfunctions in the expansion of genetic variant function and
penalty parameters will influence the performance of the SFPCA for
pathway-based association studies. How optimally select these para-
meters in pathway analysis are still open to questions in practice.
Great challenges in developing innovative approaches and general
framework for pathway-based association studies of NGS data need to
be dealt with effectively.
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