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Haemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected

individuals presents a substantial global disease burden. Carrier identification and prenatal diagnosis represent valuable

procedures that identify couples at risk for having affected children, so that they can be offered options to have healthy

offspring. Molecular diagnosis facilitates prenatal diagnosis and definitive diagnosis of carriers and patients (especially

‘atypical’ cases who often have complex genotype interactions). However, the haemoglobin disorders are unique among all

genetic diseases in that identification of carriers is preferable by haematological (biochemical) tests rather than DNA analysis.

These Best Practice guidelines offer an overview of recommended strategies and methods for carrier identification and prenatal

diagnosis of haemoglobinopathies, and emphasize the importance of appropriately applying and interpreting haematological

tests in supporting the optimum application and evaluation of globin gene DNA analysis.
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INTRODUCTION

These Best Practice guidelines offer an overview of recommended
strategies and methods for carrier identification and prenatal
diagnosis of haemoglobinopathies. They are complementary to,
and can be used in conjunction with, other guidelines, for example
from the British Society for Haematology,1 the ENERCA
recommendations for preconception or antenatal screening,
prenatal diagnosis and genetic counselling of haemoglobinopathies2

and the UK NHS Sickle Cell and Thalassaemia screening
programme.3 They cover not only DNA analysis but include also
details of haematological (biochemical) tests. This is to emphasize the
importance of appropriately applying and interpreting haematological
tests in supporting the optimum application and evaluation of globin
gene DNA analysis. Most of the methods recommended in these
guidelines, especially for haematology, have been in use for several
years, and few technical advances have been translated into clinical
practice.4 Due to worldwide population migrations, carrier
identification and prenatal diagnosis of the haemoglobinopathies is
currently appropriate in most countries, even the traditionally non-
endemic countries of Northern and Western Europe. Thus these
guidelines are expected to be useful for laboratories in all regions of
the world, and not only those where the haemoglobinopathies are
traditionally endemic.

External Quality Assessment (EQA) is an intrinsic part of Best
Practice. EQA provides a long-term, retrospective assessment of
laboratory performance. Participation in EQA (when available) is
encouraged and essential, for any laboratory already accredited or
seeking accreditation to international standards, for example ISO
17025, ISO 15189 or equivalent.5,6 Unless dictated by legislation,
choice of EQA provider lies with the laboratory, but use of an
accredited EQA programme (to ISO 17043) is recommended,
wherever possible.

Throughout the guidelines, for reasons of space, some globin gene
variants have been referred to using ‘traditional’ names rather than
nomenclature recommended by the Human Genome Variation
Society (HGVS). Relevant HGVS nomenclature can be found in the
supporting information (Supplementary Table 1) and the HbVar
database: http://globin.bx.psu.edu/hbvar/menu.html.

Description of the disease group
Haemoglobinopathies constitute the commonest recessive monogenic
disorders worldwide.7,8 They are caused by variants that affect the
genes that direct synthesis of the globin chains of haemoglobin, and
may result in altered synthesis (thalassaemia syndromes and
hereditary persistence of fetal haemoglobin (HPFH)) or structural
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changes (sickling of the red blood cells, haemolytic anaemia,
polycythaemia or more rarely cyanosis).

Thalassaemia variants and various abnormal haemoglobins interact
to produce a wide range of disorders of varying degrees of severity.
There are four main categories of severe disease states, for which
genetic counselling, and possibly prenatal diagnosis, is indicated, as
follows (Tables 1, 2 and 3).9

� Thalassaemia major (co-inheritance of two b-thalassaemia variants
including inheritance of db-thalassaemia variants and Hb Lepore).

� Sickle cell syndromes (for example Hb S/Hb S, Hb S/Hb C, Hb
S/bthalassaemia, Hb S/Hb D-Punjab, Hb S/Hb O-Arab, Hb S/Hb
Lepore, Hb S/Hb E).

� Hb E thalassaemia (co-inheritance of b-thalassaemia variants with
Hb E).

� Hb Bart’s Hydrops Fetalis syndrome (homozygous a0-thalassaemia,
genotype �/�), and (rarely) Hb H Hydrops Fetalis syndrome
(genotype �/aTa or aTa/aTa).

In many populations b-thalassaemia syndromes (and related
conditions caused by haemoglobin variants such as Hb S and Hb
E) are clinically more relevant than the a-thalassaemias, since the
severe forms are more common and require life-long treatment and
clinical management. However, in populations that have a high
prevalence of a1-thalassaemia defects, such as the Chinese and many
South East Asian populations, or in countries with significant
immigrant populations from these areas, a-thalassaemias are also

relevant. The severest form of a-thalassaemia, Hb Bart’s Hydrops
Fetalis, is usually fatal as infants either die in utero (23–38 weeks) or
shortly after birth (unless subjected to intrauterine blood transfusion
therapy). Even with perinatal treatment it is a very severe condition
with these patients requiring lifetime transfusion therapy and iron
chelation and some children also have long term neurological
complications.10 Furthermore, hydropic pregnancies are frequently
associated with serious complications in the mother, and most
pregnancies in which the fetus is diagnosed as affected are
terminated due to the increased risk of both fetal and maternal
morbidity.

The genes and disease-causing variants
The major haemoglobin in adult life is Hb A, a tetramer composed of
two alpha and two beta globin chain subunits (a2b2). Each subunit
consists of a globin chain wrapped around a haem group containing
iron to which O2 can bind. The single gene encoding b-globin chains
is located on the short arm of chromosome 11 (11p15.5), within the
so-called b-globin gene cluster, and the two genes encoding the
a-globin chains are located on the short arm of chromosome 16
(16p13.3), within the a- globin gene cluster.

In the HBB gene locus, more than 280 genetic variations (variants)
causing b-thalassaemia have been described, the majority of which are
point variants. In the HBA1 and HBA2 genes and wider locus, more
than 100 a-thalassaemia variants have been reported most of which
involve deletions within the a-globin gene cluster.11 In addition, more
than 1150 DNA variants causing structural protein variants have been

Table 1 b-Thalassaemias and b-globin gene disorders—genotype interactions, disease states and recommendations for prenatal diagnosis and

preimplantation genetic diagnosis (PGD)

Genotype interaction Disorder expected Appropriate to offer PND

Homozygous

b1 or severe bþ -thalassaemia Thalassaemia major Yes

Mild bþ -thalassaemia Thalassaemia intermedia Occasionallya

Mild bþ þ -thalassaemia (silent) Very mild thalassaemia intermedia No

db1-thalassaemia Thalassaemia intermedia Occasionallya

Hb Lepore Thalassaemia intermedia to major (variable) Occasionallya

HPFH Not clinically relevant No

Hb C Not clinically relevant No

Hb D-Punjab Not clinically relevant No

Hb E Not clinically relevant No

Hb O-Arab Not clinically relevant No

Compound heterozygous

b1/severe bþ -thalassaemia Thalassaemia major Yes

Mild bþ /b1 or severe bþ -thalassaemia Thalassaemia intermedia to major (variable) Occasionallya

Mild bþ þ /b1 or severe bþ -thalassaemia Mild thalassaemia intermedia (variable) Occasionallya

db1/b1 or severe bþ -thalassaemia Thalassaemia intermedia to major (variable) Occasionallya

db1/mild bþ -thalassaemia Mild thalassaemia intermedia Occasionallya

db1/Hb Lepore Thalassaemia intermedia Occasionallya

Hb Lepore/b1 or severe bþ -thalassaemia Thalassaemia major Yes

Hb C/b1 or severe bþ -thalassaemia b-thalassaemia trait to intermedia (variable) Occasionallya

Hb C/mild bþ -thalassaemia Not clinically relevant No

Hb D-Punjab/b1 or severe bþ -thalassaemia Not clinically relevant No

Hb E/b1 or severe bþ -thalassaemia Thalassaemia intermedia to major (variable) Yes

Hb O-Arab/b1-thalassaemia Severe thalassaemia intermedia Yes

aaa/b1 or severe bþ -thalassaemia Mild thalassaemia intermedia No

aaaa/b1 and aaaaaa/b1-thalassaemia Mild to severe thalassaemia intermedia (variable) Occasionallya

Note: The decision to have prenatal diagnosis belongs to the couple, once they have had comprehensive counselling.
aCouples with genotypes that may lead to offspring with unpredictable phenotypes occasionally select to have prenatal diagnosis or PGD.
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characterized.11 Some structural variants are additionally associated

with an altered rate of synthesis. (Summarized in the HbVar database:
http://globin.bx.psu.edu/hbvar/menu.html).

Approaches for carrier detection
Within the context of managing the health burden of the haemoglo-
binopathies, laboratory diagnosis plays a key role, identifying carrier
couples and offering them reproductive choices. Haemoglobinopathies
are unique among all genetic diseases in that detection of carriers is
possible by haematological and biochemical tests rather than DNA
analysis. Thus, it is recommended that, with currently available
technologies, carrier detection should be mandatory using haemato-
logical and biochemical tests. However, DNA analysis should be
employed for the determination of carrier status in complex cases or
when the haematological/biochemical results are unclear. Depending
on acceptable practices in each society, at-risk couples can then be
offered the reproductive choice to avoid the birth-affected children, or
helped to prepare for the possible birth of a severely affected child.
Among the available options to avoid having affected children are,
before marriage, a change in partner choice; or, after marriage, by
remaining childless, opting for gamete donation or adoption. However
couples rarely take these options. Instead it is more common for
at-risk couples to avoid the birth of an affected child by opting for

a conventional prenatal diagnosis in early pregnancy, or before

pregnancy by choosing preimplantation genetic diagnosis (PGD).
Both conventional prenatal diagnosis and PGD involve prior variant
characterization in the parents and subsequent fetal (or embryo) DNA
analysis. Thus genetic services for haemoglobinopathies require close
collaboration between several specialities, most notably haematology,
genetic counselling, molecular genetics and fetal medicine.

These guidelines will focus on best practice in laboratory methods
and interpretation of results for carrier identification and prenatal
diagnosis. For the best strategy to detect at-risk couples there are
certain factors that should also be taken into consideration, including
the frequency of the disease in endemic and non-endemic immigra-
tion countries,12,13 the heterogeneity of the genetic defects in the
target society, the knowledge of genotype–phenotype correlation
(supported by access to original papers as well as to genomic
databases), the resources available and finally the social, legal, cultural
and religious factors.

In addition screening may target newborns or adolescents, or
premarital, preconceptional or antenatal stages. For families wishing
to avoid the birth of affected children, preconception or antenatal
screening is the most effective approach and is widely applied in
many high-risk populations. Newborn screening is less effective for
primary screening and prospectively informing carriers about their

Table 2 Sickle cell disorders—interactions and indications for prenatal diagnosis and preimplantation genetic diagnosis (PGD)

Genotype interaction Disorder expected Appropriate to offer PND

Homozygous

Hb S Sickle cell disease Yes

Compound heterozygous

Hb S/b1 or severe bþ -thalassaemia Sickle cell disease Yes

Hb S/mild bþ -thalassaemia Mild sickle cell disease Occasionallya

Hb S/db1-thalassaemia Mild sickle cell disease Occasionallya

Hb S/Hb Lepore Mild sickle cell disease Occasionallya

Hb S/HbC Sickle cell disease (variable severity) Yes

Hb S/Hb D-Punjab Sickle cell disease Yes

Hb S/Hb O-Arab Sickle cell disease Yes

Hb S/Hbs C-Harlem, S-Southend, S-Antilles Sickle cell disease Yes

Hb C/Hb S-Antilles Sickle cell disease Yes

Hb S/Hbs Quebec-Chori, C-Ndjamena, O-Tibesi Sickle cell disease Yes

Hb S/Hbs I-Toulouse, Shelby, Hope, North Shore Haemolytic anaemia No

Hb S/Hb E Mild to severe sickle cell disease Occasionallya

Hb S/HPFH Very mild sickle cell disease No

Note: The decision to have prenatal diagnosis belongs to the couple, once they have had comprehensive counselling.
aCouples with genotypes that may lead to offspring with unpredictable phenotypes occasionally select to have prenatal diagnosis or PGD.

Table 3 a-Thalassaemias—interactions and indications for prenatal diagnosis and preimplantation genetic diagnosis

Genotype interaction Disorder expected Appropriate to offer PND

Homozygous

a1-thalassaemia (�/�) Hb Bart’s hydrops fetalis Yes

aþ -thalassaemia (�a/�a) Not clinically relevant No

aþ -thalassaemia (aTa/aTa) Severe a-thalassaemia carrier to severe Hb H disease Occasionallya

Compound heterozygous

a1-thal/aþ -thal (�/�a) Hb H disease No

Note: The decision to have prenatal diagnosis belongs to the couple, once they have had comprehensive counselling.
aCouples with genotypes that may lead to offspring with unpredictable but potentially severe phenotypes occasionally select to have prenatal diagnosis or PGD. Reported examples of potentially
severe phenotypes include genotype combinations involving variants in the polyadenylation signal in the HBA2 gene, Hb Adana, Hb Agrino, Hb Constant Spring and Hb Taybee (see Supplementary
Table S1 for HGVS nomenclature).
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reproductive risks, but it is applied in certain countries to support
better infant healthcare through prompt identification of affected
babies. Pre-operative screening of individuals from populations with
increased incidence of sickle cell is also indicated.

HAEMATOLOGICAL METHODS FOR CARRIER DETECTION

‘Screening’ is distinct from ‘definitive’ diagnosis in that the purpose of
screening is to test for a defined set of conditions using simple
haematological/biochemical tests. Screening programme strategies use
first- and second-line methods in order to obtain a reliable diagnosis,
albeit essentially a presumptive diagnosis. If an unequivocal, definitive
diagnosis is required, characterization methods based on either
protein or DNA analysis must be used.

With the thalassaemias, screening will detect most cases of raised
Hb A2 b-thalassaemia trait. However, there are often samples that
present with haematology that is not consistent with typical
b-thalassaemia trait (Tables 4 and 5) and, furthermore, there is no
specific screening test of high-enough sensitivity for the clear
identification of heterozygous a-thalassaemia, which is usually
indicated once other states have been excluded. Definitive diagnosis

of atypical cases and a-thalassaemia can only be made by DNA
analysis.

When an abnormal haemoglobin is identified by screening
methodology, the results obtained constitute a presumptive iden-
tification of the variant haemoglobin. It is important to remember
that with phenotypic screening it is possible that some rarer
conditions will not be detected and this has to be taken into
account in the interpretation and reporting of results. For all
samples, screening using haematological methods14 precedes
genetic diagnosis.9

Good laboratory practice also includes the minimization of
clerical errors, particularly a danger in haematology laboratories
undertaking carrier screening on large numbers of samples, some-
times numbering more than 1000 blood counts each day. Careful
sample identification is essential (including: Full Name, Date of
Birth, Sample date, if transfused in last 4 months). Bar coding is
recommended for sample tracking. If acceptable and permitted, it is
useful to note the ethnic origin, since many haemoglobin disorders are
population-specific.7,11–13 Laboratory error rates for the methods
utilized (if known), or a link to their availability, should be stated
on reports.

Table 4 Interpretations to consider when the haematology is not consistent with typical b-thalassaemia trait

Haematological parameters Possible interpretation

Reduced red cell indices (MCVo79 fl, MCHo27pg), normal Hb

electrophoresis/HPLC/CE, normal %Hb A2 & %Hb F)

(i) Iron deficiency

(ii) heterozygous a-thalassaemia

(iii) heterozygosity for mild b-thalassaemia variants (sometimes Hb A2 is borderline raised)

(iv) co-inheritance of heterozygous d- with b-thalassaemia

(v) heterozygous egdb-thalassaemia

Normal/borderline reduced red cell indices with raised Hb A2 Interaction of a- with b-thalassaemia

Carriers of b-thalassaemia with folic acid or vitamin B12 deficiency or hepatitis

Normal or reduced red cell indices with raised Hb F (45%)

and normal or low Hb A2

Heterozygous db-thalassaemia, Agdb-thalassaemia or HPFH

Normal red cell indices with normal/borderline Hb A2 Triplication of a-genes (when implicated in family studies), KLF1 variants or mild b-thalassaemia variant

Severely reduced red cell indices and raised Hb A2 Multiple a-globin genes (44) and heterozygous b-thalassaemia

Note 1: Some Hb variants are not detected by electrophoretic or chromatographic procedures, but may be suspected due to the presence of abnormal haematological parameters and/or clinical
symptoms. In such cases it is recommended that samples are analysed using mass spectrometry or DNA methods. Occasionally hyperunstable variants are present and these may only be found by
DNA methodology as the protein produced is so unstable.
Note 2: When evaluating cases be aware of potential complex genotype interactions.

Table 5 Genetic variations associated with normal/borderline Hb A2 levels—a guideline of related haematological and biosynthetic

characteristics

Variation HGVS nomenclature NM_000518.4 (HBB) Variation traditional nomenclature MCV fl MCH pg Hb A2 a/b ratio

c.�151C4T b �101 (C-T) 88.5±7.8 30.1±1.0 3.1±1.0 1.3±0.4

c.�142C4T b �92 (C(T) 83.0±6.0 28.3±2.0 3.5±0.4 1.3±0.8

c.�18C4G b þ33 (C(G) 82.0±9.2 27.1±3.4 2.5±1.4 1.3±0.6

c.316-7C4G bIVS2-844 (C-G) 96.0±4.0 30.3±1.8 3.2±0.2 1.0±0.6

c.*6C4G b þ1480 (C-G) 88.3±9.5 27.9±6.0 2.7±0.8 1.6±0.4

aaa/aa 85.5±7.8 30.4±5.0 2.8±0.6 1.2±0.4

KLF1 variants (29) 82.7±5.7 27.8±2.2 3.6±0.2

c.�50A4C Capþ1 (A(C) 23–26* 75–80* 3.4–3.8* —

c.92þ6T4C b IVS1-6 (T-C) 71.0±4.0 23.1±2.2 3.4±0.2 1.9±1.0

dþb thalassaemia 64.3±4.0 20.9±1.4 3.6±0.2 1.7±0.6

Values (mean±2SD or range (*)) are a guideline and represent those reported in various studies on carriers of these variants (prepared by R Galanello).
Note: It is recommended that subjects with borderline Hb A2 levels, particularly if their partner is a typical b-thalassaemia carrier, should be extensively investigated (a and b gene analysis, globin
biosynthesis), although the majority usually have normal HBB and HBA genes. Borderline-raised Hb A2 levels in normal individuals are usually explained as the extreme distribution of the normal
range of the Hb A2.
Furthermore, in couples where one partner is heterozygous for a severe a-thalassaemia defect and the other is a b-thalassaemia carrier, it is recommended that the HBA gene cluster be fully
characterized in the b-thalassaemia carrier in order to preclude any risk of offspring with severe Hb H disease or Hb Bart’s hydrops.
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It is strongly recommended that all haematological parameters be co-
evaluated to avoid spurious conclusions. In addition, the extent to
which the genetic test results explain the haematology results should
be evaluated and stated.

FIRST-LINE HAEMATOLOGY METHODS

All haematological testing14 should be carried out on blood samples
that are as fresh as possible. The complete blood count (CBC) or full
blood count (FBC), haemoglobin pattern analysis and haemoglobin
component quantification requires whole blood drawn into
anticoagulant (EDTA). If necessary, bloods can be transported and
stored at 4oC.

Complete blood count
Electronic measurement is recommended, especially for MCV (mean
cell volume), for which the measurements should be direct. All red
cell indices (and other parameters) are important in evaluation,
including Hb (haemoglobin), RBC (red blood cell count), MCH
(mean corpuscular haemoglobin content), MCV and some labs use
RDW (red cell distribution width), which is the standard deviation of
the red cell size measurements expressed either as a percentage of the
mean or a coefficient of variation.

RDW can potentially discriminate between thalassaemia carriers
and iron deficiency and sometimes between thalassaemia carriers and
a thalassaemia disorder or other rare causes of microcytosis, as
indicated by decreased MCV (see notes below). It is a measure of the
degree of anisocytosis and is simpler and faster than performing red
cell morphology analysis (see Supplementary Information), although
not as comprehensive. RDW alone is not a diagnostic parameter for
b-thalassaemia trait.

The RBC count is also a parameter that can potentially distinguish
between iron deficiency and thalassaemia. High RBC (erythrocytosis)
results from a mechanism that compensates for the chronic low MCH
present in thalassaemia carriers. This compensating mechanism needs
folic acid levels to be maintained and may restore the Hb level of a
markedly microcytic thalassaemia carrier to near normal values,
raising RBC to 6–7 (1012/l) or higher, without exceeding the normal
packed cell volume (PCV) level. On the other hand, RBC compensa-
tion might be less evident in case of folic acid deficiency, a vitamin
with limited body reserves, which is essential for cell division and thus
for erythropoiesis. In case of folic acid deficiency carriers may become
more anaemic, and microcytosis may become less evident, even
disappearing in cases with coexisting vitamin B12 deficiency. In
addition, RBC compensation is less evident in cases when MCH is
only moderately reduced.

Interpretation of CBC, should consider the following:

� Key cut-off values in adults are MCV below 79 fl and an MCH
below 27 pg, below which heterozygosity for thalassaemia is
indicated. However, each laboratory should establish their own
cut-off ranges for these parameters, based on the ethnicity of their
patient population(s) and patient age group(s).

� Evaluation of CBC in samples more than 24 h after sampling
should be made with caution, as the red cells increase in size,
leading to falsely raised MCV. On the other hand, the MCH may be
stable for up to 5 days, depending on storage conditions (4–20 1C);

� In advanced pregnancy the RBC is not a useful parameter,
due to possible haemodilution. Furthermore, iron-deficient
women who are responding to iron supplementation may have
increased RBC.

� The RDW may be altered in several cardiac and hepatic condi-
tions15 and may have a limited discriminating potential especially
in cases with combined iron deficiency.

Haemoglobin (Hb) pattern analysis
For a presumptive identification of abnormal haemoglobins at
least two methods should be used. These methods include
haemoglobin electrophoresis at pH 8.6 using cellulose acetate
membrane, haemoglobin electrophoresis at pH 6.0 using acid
agarose or citrate agar gel, isoelectric focusing (IEF), high
performance liquid chromatography (HPLC) and capillary
electrophoresis (CE).16–18 More details of these methods are
described in the Supplementary information.

There are many recommendations related to the optimum applica-
tion and interpretation of haemoglobin pattern analysis. The use of
both HPLC and CE will maximize the detection of any Hb variant
present in a sample and minimize false evaluation of artefacts. With
automated systems, standards and controls are essential to verify
that the equipment is working satisfactorily.16,17 Other important
recommendations are summarized in the Supplementary Information.

Interpretation of Hb pattern analysis when common b-variants
interact with a-thalassaemia
In carriers of the most common b-chain variants (Hb S, Hb
D-Punjab, Hb E and Hb C) the percentage of the variant
haemoglobin is directly dependent on the number of a-globin
genes. In the presence of a-thalassaemia it is usually decreased, e.g.,
to less than B35% for Hb S, D-Punjab and Hb C and less than
B25% for Hb E,19 although precise measurements may
vary depending on the technology used. In the absence of iron
deficiency, the percentage of Hb variant may therefore indicate the
presence of co-inherited a-thalassaemia and help exclude
b-thalassaemia as a cause of red cell microcytosis; it is a
particularly useful observation to make in people of ancestral
origins where both Hb E and a0-thalassaemia are prevalent.
However, this information is not reliable enough to definitely
exclude the presence of a-thalassaemia because of the possibility of
additional co-inheritance of multiple a-globin gene duplications
(e.g. triplicated or quadruplicated rearrangements).

It is of note that for some stable b-chain variants that
are more negatively charged than Hb A, such as Hb J, the
relationship is inversed, as the number of a-globin genes decreases,
so the percentage of Hb variant increases in the presence of
a-thalassaemia.

Quantification of Hb A2

Measurements should be carried out on freshly drawn anti-coagulated
blood. Methods include16,20,21 electrophoresis and elution, micro-
chromatography, HPLC, capillary electrophoresis, Hb electrophoresis
(not recommended).

It is important to note that the quantification of Hb A2 using
both HPLC and CE may still be compromised in the presence
of common or rare a-chain variants, or d chain variants,
which split the Hb A2 peak, or coexisting d thalassaemia, which
decreases the Hb A2 peak.22 The use of internal controls are
recommended16 as well as adherence to instructions provided by the
manufacturers.

Haemoglobin variants which elute with or close to Hb A2 on HPLC
or capillary electrophoresis may affect Hb A2 quantification.16
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Important points for the interpretation of results for Hb A2

quantification include:

� Hb A2 levels above 3.5% is the standard cut-off value, above which
heterozygosity for b-thalassaemia is indicated.

� Borderline levels of 3.1–3.5% Hb A2 (depending upon the method,
the laboratory reference range and coefficient of variation) indicate
further investigation required (see Tables 5, 6 and Supplementary
Table 3).

� Reference intervals in normal subjects are usually between 2.0 and
3.3%, but have been observed to differ slightly depending on the
method and population group.

� Rare genetic23 and acquired factors that may increase or reduce Hb
A2 levels are reported in Supplementary Table 3.

Quantification of Hb F
Methods reliable for the measurement of Hb F levels include alkali
denaturation,24 HPLC and CE, with the latter two methods being
more recent and much more accurate.16 More details on these
methods are outlined in the Supplementary Information.

Important points for the interpretation of results for Hb F
quantification include:

� Normal levels of Hb F are usually below 1% after the age of 2 years.
Adults with Hb F42% should undergo further investigation.

� In carriers of typical elevated Hb A2 b-thalassaemia or in carriers
of Hb S, Hb F levels are usually within the normal range. When
elevated (up to B7–8%) this is usually due to co-inheritance of
other globin gene variations (e.g. co-inheritance of a triplicated
a-globin allele with heterozygous b-thalassaemia) or specific
b-globin gene cluster haplotypes (e.g. g-globin gene promoter
variations such as the Gg gene promoter Xmn-I polymorphism
or the Arab-Indian or Senegal haplotypes in Hb S carriers) or
variants of non-globin genes that affect g-globin gene transcription.

� Elevated Hb F values, usually 45%, are associated with db or gdb-
thalassaemia heterozygotes (along with normal or low Hb A2 levels
and reduced RBC indices) or hereditary persistence of fetal
haemoglobin (HPFH).

� Raised Hb F levels can also be caused by bone marrow malig-
nancies, aplastic anaemia, Fanconi anaemia, erythropoietic stress,
treatment with certain cytotoxic agents (e.g. hydroxyurea) or
pregnancy.17

� In pregnancy Hb F may increase up to around 3%, making values
in the range of 3–5% difficult to interpret. Values of Hb F above 5%
during pregnancy may indicate the presence of heterocellular
HPFH, and follow-up 6 months after delivery is recommended to
clarify the Hb F levels.

� Hb F can be equally distributed in all cells (pancellular) or limited
to a sub-population of red cells called Hb F cells (heterocellular)
depending upon the underlying cause. Since Hb F cells in
heterozygous b- or db-thalassaemia are larger than those with
low amounts of Hb F, microcytosis may be masked. Alternatively an
increased RDW may be observed.

Iron (Fe) status
There are several parameters that can be measured to evaluate the the
iron status of an individual, including Zinc protoporphyrin (ZnPP)
serum ferritin and transferrin saturation measurements.

The interpretation of all three parameters should be done with some
caution.25 Measurement of iron status in samples with hypochromic,
microcytic indices but with normal Hb A2 and F is useful to
distinguish between cases of iron deficiency and those with possible
a-thalassaemia trait or certain form of ‘silent’ b-thalassaemia trait, the
latter of which should have normal iron status. This distinction is
useful to prevent unnecessary further investigation as well as
inappropriate iron therapy. However, it is important to note that
iron deficiency can co-exist with the thalassaemias, which could lead
to misinterpretation. If an individual is found to be iron deficient, it is
recommended to repeat the haematology screen once the individual is
iron replete, although this may not always be practical or feasible in a
couple with an on-going pregnancy.

SECOND-LINE HAEMATOLOGICAL METHODS

There are several methods which are not necessarily first-line methods
for identifying thalassaemia carriers but may be useful in supporting
the diagnosis in cases which do not have a clear diagnosis with first-
line methods described previously. These (Supplementary Methods)
include measurement/evaluation of red cell morphology (RCM),
reticulocytes and F-cells,14,26 HbH inclusions,14 the single tube
osmotic fragility test (OF),27 globin chain synthesis,28 globin chain
separation, solubility or sickling tests for Hb S, DCIP (2.6
dichlorophenolindophenol) test,29 Heinz body formation and the
measurement of an oxygen dissociation curve. Mass spectrometry is
also described as a second-line method for the characterization of Hb
variants identified by first-line methods such as HPLC.30 However, it
potentially has a role as a first-line test, where it may be used more
widely for carrier screening. All these second-line tests are discussed in
the Supplementary Information.

REPORTING HAEMATOLOGY RESULTS

Haematology results should be given following complete evaluation of
all relevant haematological parameters. Reporting should be done in a
format complying with local legislation, regulations and acceptable
practice. The report should be written clearly to avoid misinterpreta-
tion. If possible it should be accompanied by relevant information
materials, currently most important for health practitioners in non-
endemic countries who may not have experience with the haemoglo-
binopathies. The report should recommend referral of carrier couples
or affected children to a relevant healthcare professional and
encourage that testing be offered to additional family members.

Recommended formats for reporting haematology results can be
found in the UK NHS Sickle Cell and Thalassaemia: Handbook for
Laboratories.3

METHODS FOR DNA ANALYSIS

Almost all methods for DNA analysis of haemoglobinopathies
currently in use are based on the polymerase chain reaction (PCR).
There are many different PCR-based techniques that can be used to
detect the globin gene variants. Those in current use for detecting
and/or characterizing nucleotide variations include the amplification
refractory mutation system (ARMS), restriction-endonuclease PCR
(RE-PCR), denaturing gradient gel electrophoresis (DGGE), high
resolution melting analysis (HRMA), Sanger sequencing, pyrosequen-
cing, real-time PCR, reverse dot blot analysis and microarrays (the
latter two usually as commercially available systems rather than as in-
house protocols) (Tables 6a and 6b). For detecting and/or character-
izing deletions, Southern blot analysis has been largely replaced by
PCR-based methods including gap-PCR, multiplex ligation-depen-
dent probe amplification (MLPA) and array comparative genome
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hybridization (aCGH). All are recommended for in the context of best
practice, each method having its own advantages and limitations
(Tables 6a and 6b). The particular methods chosen by a laboratory for
the diagnosis of the globin gene nucleotide variants or deletions
depends not only on the technical expertise available but also on the
type and variety of the variants likely to be encountered in the

individuals (population groups) being tested. All molecular genetic
methods should be validated before clinical use.

It is paramount that all DNA diagnostic laboratories take appro-
priate measures to preclude false-positive and especially false-negative
results. The correct characterization of genotypes in carriers is
extremely important to support appropriate genetic counselling and

Table 6a Advantages and limitations of methods for detecting and/or characterizing globin gene nucleotide variations (point variants) in

carriers and conventional PND

Method Advantages Limitations

Reverse dot blot hybridization (RDB) Multiplexed variant screening

Relatively inexpensive

Simple, rapid and reliable

Difficult to standardize and validate in-house

Commercial kits/systems available* (see Note 2 below)

ARMS-PCR Simple, rapid and inexpensive

Can be modified for multiplexed variant screening

Stringent PCR conditions paramount for accuracy

If primers degrade at the allele-specific 30end, then PCR will be non-specific

Restriction enzyme (RE)-PCR Simple and rapid

Reliable

Not all variants are amenable

Needs care to avoid partial digestion problems

‘Frequent cutter’ enzymes not very useful

Some enzymes costly

Real-time PCR For quantitative or qualitative evaluation of PCR

products

Rapid and high throughput

No post-PCR processing

Wide dynamic range of detection and high

sensitivity

Instruments are relatively costly

Sample diagnosis can be costly when screening for many variants (although

it can be cost effective for prenatal diagnosis with prior knowledge of

parental samples)

Protocols require in-house validation

Denaturing gradient gel electrophoresis

(DGGE)

Allows medium-scale screening

Predictive software can support optimization

Robust heteroduplex detection

Relatively cheap

Variant samples need definitive characterization with another method

Some regions (especially when CG-rich) may be difficult to optimize and

analyse

Overall technically demanding

High-resolution melting analysis (HRMA) Simple (once standardized)

Rapid and suited to automation

Predictive software can support optimization

Technically demanding, with stringent assay design

Variant samples need definitive characterization with another method

Specialized and relatively costly instrumentation

Sanger sequencing (automated) Generic method for detecting point variants

Economical running costs

Instrument costly

Can be technically demanding (laboratory processing and data

interpretation)

Pyrosequencing Results are quantitative

Faster and more sensitive than Sanger sequencing

Targeted DNA sequence is only 20–50 nucleotides

Any variant in target sequence must be known

Table 6b Advantages and limitations of methods for detecting and/or characterizing globin gene cluster rearrangements (deletions/

duplications) in carriers and conventional PND

Method Advantages Limitations

GAP-PCR Simple, rapid and inexpensive

Can be multiplexed

Only for deletions with known breakpoint sequences

Amplification of GC rich region technically difficult

Susceptible to allele drop-out (not recommended as

a stand-alone method for prenatal diagnosis)

Multiplex ligation-dependent probe amplifica-

tion (MLPA)

Once primer-probe sets are validated,

it is simple, rapid and suited to automation

Can detect any copy number variation within the locus

Commercial kits available (see Note 2 below)

Automated sequencer required for fragment analysis (costly)

Unknown/sporadic SNPs may interfere with primer-probe

hybridization

DNA quality and concentration may be critical

Micro-arrays (deletions and insertions) High throughput

Useful for detecting any deletion or insertion (copy number

variation)

Does not provide precise characterization of deletion/inser-

tion

Instruments and assays quite costly

Southern blotting Generic method for detecting large deletions/insertions Time consuming and cumbersome, technically demanding

Note 1: All PCR methods should be run simultaneously with positive and negative controls to avoid spurious results and conclusions.
Note 2: There are a limited number of commercial kits available, but as with any other method they should not be used in the absence of alternative methods in the diagnostic lab.
Note 3: Methods such as allele-specific oligonucleotide hybridization (ASO) are no longer widely used.
Note 4: Samples identified to vary from normal with DGGE and HRMA need definitive characterization with another method. In some cases this may also apply to samples identified to have
deletions or duplications using MLPA.
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essential prior to performing prenatal diagnosis if this is the choice of
the woman (or carrier couple).

Recommendations
For genotype characterization in carriers, optimal DNA analysis
results can be achieved by adhering to the following:

� Before DNA analysis, to evaluate haematology so as to direct the
most appropriate molecular analysis for each sample.

� Post DNA analysis, to co-evaluate haematology to preclude a
serious misinterpretation of results (misdiagnosis).

� Evaluation of family history and haematology in some cases if
relevant.

� Preferably to have available for use more than a single DNA analysis
protocol for characterizing the genotype in carriers (prospective
parents), in order to support cross-checking of results (see Tables 6a
and 6b).

� If Sanger sequencing is the only method available for characterizing
nucleotide variations then it is recommended that the target region
in the gene of interest be analysed in duplicate, and in both the
forward and reverse directions. Ideally the Sanger sequencing
reaction should be performed on templates amplified by two
alternative sets of primers, or, if this is not feasible, at least on
duplicate templates independently amplified from the original
DNA sample. In the latter case, false-negative results should be
prevented by careful co-evaluation of haematology results (see
above).

� If a GAP-PCR analysis produces a negative result in individuals
with haematology otherwise indicating a carrier status involving a
likely deletion-variant (for example a-thalassaemia), then it is
recommended that either MLPA or aCGH be used to further
investigate the DNA sample.

DNA extraction methods for the diagnosis of haemoglobinopathies
are the same as for the molecular analysis of any other genetic
disorder. General guidelines for DNA extraction methods can be
found within the Best Practice Guidelines for Laboratory Internal
Quality Control (http://www.cmgs.org/).

Diagnostic strategy for DNA analysis
The most common haemoglobinopathies (which have autosomal
recessive inheritance) are traditionally population-specific, with each
population having a unique combination of abnormal haemoglobins
and/or thalassaemia disorders. The spectrum of variants and their
frequencies have been published for most populations, and usually
consist of a limited number of common variants and a slightly larger
number of rare variants.12,13 Therefore knowledge of the ethnic origin
and family history (including consanguinity) of a patient may
support the diagnostic strategy, to expediate identification of the
underlying defects in most cases. With the advent of global migration,
however, this is becoming less practical and useful.7,12

a-Thalassaemia: Gap-PCR (amplification across the breakpoints of
a deletion) provides a quick diagnostic test for most of the known
aþ -thalassaemia and a1-thalassaemia deletion variants. For prenatal
diagnosis Gap-PCR requires careful application and interpretation,
since it may be susceptible to false negative results caused by allele
drop out (ADO). The first gap-PCR assays were subject to technical
failure through ADO, but the more recently published primers and
conditions support more robust assays.31,32

Many of the common a0-thalassaemia deletions can be diagnosed
by gap-PCR: the –SEA allele, found in Southeast Asian individuals; the

–MEDI and -(a)20.5 alleles found in Mediterranean individuals; the –FIL

allele, found in Filipino individuals and finally the –THAI allele, found
in Thai individuals. The two most common aþ -thalassaemia dele-
tions (the -a3.7 and -a4.2 alleles) can be detected by gap-PCR. The -a3.7

deletion is found most commonly in African, Mediterranean, Asian
and Southeast Asian populations, while the -a4.2 deletion is found
most commonly in Southeast Asia and the Pacific populations.
However it is good practice to screen for both deletions in all
individuals suspected of being an aþ -thalassaemia carrier. (For
HGVS nomenclature of variants, see the HbVar database: http://
globin.bx.psu.edu/hbvar/menu.html and Table 1 in the Supplementary
Information.)

Southern blotting using z-gene and a-gene probes was traditionally
used to diagnose all other a0- and aþ -thalassaemia deletion variants
as well as a-gene triplications and quadruplications. However, it can
only detect larger segmental duplications or deletions for which
probes are available. For these rare copy number variations (deletions
and duplications) involving larger chromosomal regions multiplex
ligation-dependent probe amplification (MLPA) represents a robust
method, which has largely replaced Southern blotting in many
laboratories.

MLPA is a technology based on ligation of multiple probe-pairs
hybridized across the entire locus of interest, followed by amplifica-
tion, facilitated through the use of universal-tag PCR primers for all
ligated probe pairs, and subsequently fragment analysis.The use of
universal PCR means that amplicons are generated with comparable
efficiency and thus the method is semi-quantitative. In this way
MLPA can detect deletions or duplications across the locus analysed
and represents a valuable alternative or supplementary method to
gap-PCR when investigating known and unknown deletions and
duplications underlying a-, b- or db-thalassaemia.33–36 Commercially
available MLPA kits for the a- and the b-globin gene clusters are
available35 (www.lgtc.nl).
aþ -Thalassaemia may also be caused by nucleotide variants in

either of the duplicated a-globin genes. All non-deletion alleles can be
detected by PCR using a technique of selective amplification of each
a-globin gene, followed by DNA sequence analysis.37,38 Alternatively if
the common non-deletion variants in the local population are known,
the use of variant-specific tests is practical and can be recommended
(Table 6a).
b-Thalassaemia: Traditionally, a limited number of b-thalassaemia

variants were prevalent in most of the populations at risk for severe
thalassaemia syndromes and this permitted the most appropriate
targeted methods to be selected according to the ethnic origin. The
most commonly used procedures for known variants included the
reverse dot blot analysis with allele specific oligonucleotide probes,39

primer specific amplification (ARMS),40 and RE-PCR for a limited
number of variants.41 Currently, with the trend of global migration,
variant spectrums within geographical regions have become much
broader. Thus the more generic method of direct Sanger sequencing
(automated) has become more relevant for detecting and
characterizing point variants. Real-time PCR42 and pyrosequencing43

are robust alternative methods in laboratories with the necessary
instrumentation.

Gene scanning methods such as DGGE44 or HRMA45 are also
useful for locating (or excluding) possible variants within the b-globin
gene, HBB. They are advantageous as they provide a means to reduce
the use (effort and cost) of targeted assays or sequencing, and have
proved reliable and relatively inexpensive to run. However, since they
do not definitively characterize nucleotide changes, when they are
used within a diagnostic setting, it is imperative to subsequently
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characterize any nucleotide variation indicated, using either targeted
direct variant assays or automatic sequencing.

Small deletions can be detected by polyacrylamide gel electrophor-
esis of an amplified b gene product. Some of the known larger
deletions that remove the b-globin gene may be identified by gap-
PCR (including Hb Lepore, some db-thalassaemia and HPFH
deletions)46 or more recently by MLPA using one of the
commercially available kits.33

Common Hb variants: The clinically important variants, Hb S, Hb
C, Hb E, Hb D-Punjab and Hb O-Arab, can be diagnosed by dot blot
hybridization, the ARMS technique or direct sequencing. All except
Hb C can also be diagnosed by RE-PCR. For the many other
haemoglobin variants, positive identification at the DNA level is
achieved by selective globin gene amplification and DNA sequence
analysis.

Reporting molecular genetic (DNA) analysis results
It is strongly recommended that molecular genetic analysis for all
haemoglobinopathy cases be reported in relationship to the haema-
tology screening results, and confirm that the genotype and pheno-
type are consistent. If the haematology screening results are
unavailable to the DNA lab then the molecular haemoglobinopathy
report should recommend that the referring physician/clinician co-
evaluate the molecular result with the patients’ haematology and (if
relevant) clinical phenotype.

Reporting should be done in a format which conforms to local
legislation, regulations and acceptable practice. The HGVS nomen-
clature should be used to avoid ambiguity between laboratories but
whenever possible the traditional variant description should also be
given. Most of these are available on the HbVar Globin Gene Server:
http://globin.bx.psu.edu/hbvar/menu.html.

There are several guidelines available for reporting results including
those from the Swiss society of Medical Genetics (http://www.sgmg.ch/
user_files/images/SGMG_Reporting_Guidelines), the Clinical Molecular
Genetics Society (CMGS) (http://www.cmgs.org/BPGs/Reporting%20
guidelines%20Sept%202011%20APPROVED.pdf), the OECD (http://
www.oecd.org/science/biotechnologypolicies/38839788) and the UK
NHS Sickle Cell and Thalassaemia screening programme.

FETAL DNA ANALYSIS

It is best practice for all couples undergoing prenatal diagnosis to be
counselled by a qualified health professional well versed in the
molecular diversity of the haemoglobinopathies. No woman should
undergo prenatal diagnosis unless she has been counselled by a
qualified health professional, and preferably been provided with
appropriate information materials. A good selection of these
are available on the web-pages www.chime.ucl.ac.uk/APoG1, http://
www.enerca.org, and the NHS web-page http://sct.screening.
nhs.uk/.2,3 Irrespective of the couples’ previous experience,
counselling should be offered for each pregnancy found to be at risk.

Prenatal diagnosis laboratories may or may not be associated with a
cytogenetics laboratory. Either way it is highly recommended that
women are also evaluated for the risk of transmitting other condi-
tions, and should be offered any relevant tests. One common example
is karyotype analysis for women with a high-risk of carrying a trisomy
21 pregnancy. The cytogenetics laboratory may also support the
option of fetal sample backup cultures.

Due to the number of individuals involved in the care of a patient,
many of whom may be at different geographical locations, good
communication between all health professionals involved is essential.

The laboratory also needs to have a good relationship with the genetic
counsellors’ team and the fetal medicine centres which carry out the
sampling. When a woman is booked for fetal sampling, the molecular
laboratory should be informed and the sample should be tracked from
one location to another, with each site confirming the exchange of the
sample (sending and receipt). The risk of misdiagnosis by the
laboratory, or the possible incidental detection of non-paternity during
testing, should be communicated during the counselling session.

PCR-based prenatal diagnosis is highly sensitive to maternal DNA
contamination and is technically demanding. Laboratories should
have access to a broad battery of probes and primers to support the
detection of a wide range of thalassaemia and variant haemoglobin
variants. The following procedures are intended to minimize the
diagnostic error rate.

Parental blood samples
Blood samples should be obtained from both parents to confirm the
phenotype of parents (by a full blood count and a haemoglobino-
pathy screen such as electrophoresis), and as a source of control DNA
for the molecular analysis. Copies of haematology results should be
sent to the molecular diagnostic laboratory. This should be repeated
with every prenatal diagnosis that a couple undergoes, unless the
identity of both parents is absolutely certain.

There are cases where a carrier woman requests prenatal diagnosis
although her partner is unavailable for testing. In such situations it is
important to evaluate the risk of a major haemoglobinopathy in the
fetus. If the fetal DNA diagnosis identifies the sickle cell or
thalassaemia variant inherited from the mother then it is recom-
mended that the entire b-globin gene of the fetal DNA is sequenced to
exclude a second HBB variant. In the report it should be stated that
the paternal genotype is unknown and that DNA analysis cannot
exclude all haemoglobin disorders.

Fetal sampling
There are three possible procedures for fetal samples, including
chorionic villus sampling (CVS), amniocentesis and fetal blood
sampling. The risk of miscarriage is low if the fetal sampling is
performed in an experienced centre.

Chorionic villus sampling. Prenatal diagnosis of haemoglobinopa-
thies is preferably carried out by analysing a chorionic villus sample in
the first trimester of pregnancy from 11 weeks of pregnancy.

The CVS provides a source of high-quality DNA in more than
sufficient quantity to complete the prenatal DNA analysis. Any risk of
maternal contamination is low, especially if careful microscopic
dissection to remove contaminating maternal deciduas is performed
prior to DNA extraction and analysis. There is a risk of maternal
contamination if the sample is cultured, although this should not be
necessary if the sample is of adequate size.

Amniocentesis. Amniocytes can be used for molecular analysis
directly spun down from the amniocentesis sample (amniotic fluid,
AF). The DNA yield is generally lower than from CVS samples but
usually sufficient for analysis with PCR-based methods. Of note is
that direct analysis from uncultured amniotic fluid cells should be
carried out with caution as the fetal cells can be contaminated with
maternal cells. Greater amounts of fetal DNA may be achieved if the
sample is cultured for 10-14 days and this additionally decreases the
risk of maternal contamination, although the reverse has been
observed, on very rare occasions. For these reasons it is recommended
that the laboratory evaluates all samples undergoing prenatal
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diagnosis for maternal contamination. The prenatal diagnosis result
based on an amniocentesis is available later in pregnancy compared to
CVS, as amniocentesis is not usually performed earlier than the 15th
week.

Fetal blood sampling. With fetal blood sampling, 1–2 ml of fetal
blood is obtained, which can be used for molecular analysis, globin
chain synthesis studies or HPLC. Fetal blood sampling may be more
useful in women at-risk of a-thalassaemia hydrops fetalis when
ultrasound examination shows hydropic features in the fetus. In these
cases a quick diagnosis, available in a few minutes, may be obtained
on the fetal blood using haematological techniques such as HPLC, as
Hb F will be absent if the fetus is affected. For b-haemoglobinopathies
globin chain synthesis in fetal blood is no longer used by most centres
as it is technically more demanding than current DNA analysis
methods. In addition, fetal blood sampling is associated with a higher
rate of miscarriage and results are available much later in pregnancy
(after 18–20 weeks).

Molecular analysis
The laboratory carrying out the molecular analysis should choose the
technique(s) best suited to their laboratory infrastructure, expertise
and target population. The techniques, along with relative summary
of advantages and limitations, are listed in Tables 6a and 6b.

Diagnostic errors may be introduced by either technical pitfalls, for
example partial digestion by restriction enzymes, or inherent proper-
ties of the DNA sample such as rare nucleotide variations that may
prevent annealing of the PCR primers or probes used in the protocol/
method, leading to ADO. All logical steps should be taken to monitor,
and thus preclude, such events. If identical methods are used to
identify the variants in the parents and subsequently to analyse the
fetal DNA, then any pitfalls caused by rare nucleotide variations will
be previously identified and can be addressed by adapting the
diagnostic strategy accordingly.

Recommendations:

� Before performing a prenatal diagnosis, the genotypes in the
prospective parents should be accurately characterized and confirmed
(if the women’s partner not available for testing, see above).

� Simultaneously with the fetal DNA, always analyse parental DNA
sample(s) and appropriate control DNA’s within the test batch,
preferably all as duplicates. Always include PCR blanks and,
optionally, sample blanks (e.g. some labs include a DNA extraction
control sample using reagents from the extraction procedure).

� Perform repeat variant test(s) on the fetal DNA, along with relevant
controls, possibly with different DNA concentrations.

� Use a limited number of amplification cycles to minimize
co-amplification of any maternal DNA. This is especially important
when using ARMS PCR for prenatal diagnosis, as there may be a
risk of preferential amplification of maternal alleles.

� For optimal accuracy of a prenatal result, one approach is to base
all prenatal diagnosis results on two independent diagnostic
methods to identify/investigate each parental risk allele (variant).
In laboratories where Sanger sequencing is the only method
available for nucleotide variations, then all sequencing reactions
(on fetal and parental DNA) should involve both the forward and
reverse directions. If rare nucleotide variations are indicated within
a sample/family when analysing the parental DNA samples, this
pitfall can be addressed by performing a sequencing analysis using
alternative primer sets to generate the target PCR template.

Maternal contamination
It is recommended that a maternal cell contamination test be
performed on all prenatal specimens in order to rule out significant
contamination of fetal DNA with maternal DNA. It is important to
consider that all CVS and AF samples (with or without culture) may
have maternal contamination. Although chorionic villus samples
should be carefully dissected to remove maternal tissue,47 it is still
important to check that maternal contamination is not present.
Monitoring for maternal contamination is achieved by the analysis of
polymorphic DNA sites in the fetal versus parental DNA samples.48,49

Recommendations:

� The possibility of maternal DNA contamination should be inves-
tigated (and preferably excluded) in every case. It is recommended
to use a panel of short tandem repeat polymorphisms (STRs).
There are several commercially available STR kits, such as the Amp
FISTR Identifier kit (ABI), which analyses 16 STR markers. When
the fetal globin genotype is the same as that of the mother, and
there are no informative markers to indicate the presence or
absence of maternal contamination, the fetal diagnosis report
should state these findings and indicate a greater risk of error in
the fetal result.

� In dichorionic diamniotic twins (DCDA) where it is important to
obtain an accurate diagnosis for each twin, STR analysis should be
used to confirm there has been no twin-to-twin sample mixing,
during fetal sampling. This is particularly important if the sample
was obtained by CVS. In such cases, reporting the fetal sex may also
be beneficial to obstetricians in the event that they have to carry out
a selective termination.

� If the paternal DNA sample is analysed in addition to the fetal and
maternal DNA sample, then these tests may also identify non-
paternity. Such incidental findings should be handled according to
local practice. In laboratories which do not routinely analyse
paternal samples when performing prenatal diagnosis, paternity is
assumed to be true and the prenatal report should state that the
accuracy of the diagnosis is based on declared relationships.49

Patient consent and reports
According to local practices and legislation, there should be a consent
form signed by the patient and counsellor accompanying the
diagnostic samples, consenting to DNA testing, DNA storage and, if
appropriate, the use of the remaining DNA for standardizing and
developing new tests.

The fetal DNA report should detail the types of DNA analysis
performed and clearly state the risk of misdiagnosis based on the
reported technical errors of the protocols utilized.

Prenatal diagnosis follow-up
If there are no restrictions by local conditions and practices, it is
desirable to confirm the fetal DNA diagnosis at birth through a
request for a cord blood sample (the request may be sent out with the
fetal diagnosis report). Haematological, haemoglobin and DNA
analysis are also requested by some centres. It is important that
centres are trained in the collection of pure cord blood samples,
otherwise there is a risk the cord blood is contaminated with maternal
blood.

Where neonatal screening programmes for sickle cell and haemo-
globinopathies are available then networking to obtain neonatal
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screening results for babies that have undergone prenatal diagnosis,
will negate the need for requesting a cord blood sample.

When affected pregnancies are terminated, ideally fetal material
should be requested to confirm the prenatal diagnosis result. However,
these samples are rarely received by the requesting laboratory.

Audit
National registers should exist to audit services for prenatal diagnosis.
In the UK the three diagnostic laboratories enter data for each
diagnosis onto a shared register and aggregated data can be used for
national audit of antenatal carrier screening and utilization of prenatal
diagnosis by risk, ethnic group and region. It can also be used to
report on the accuracy of prenatal diagnosis.50–52 Audit should be an
on-going activity that aims to identify any weaknesses in the prenatal
diagnosis services, directing ways for improvement.

DEDICATION

Following the very sad news about the premature death of Professor
Renzo Galanello in May 2013, the authors of these Best Practice
Guidelines have decided unanimously to dedicate them to him, as he
made substantial contributions to all sections. Renzo was a pioneer in
the field of thalassaemia research, diagnosis and prevention, and also
in the treatment and management of patients with haemoglobino-
pathies. The global thalassaemia community has lost a great scientist,
researcher, compassionate clinician and colleague.
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