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Abstract

Enhancers are short regulatory sequences bound by sequence-specific transcription factors and
play a major role in the spatiotemporal specificity of gene expression patterns in development
and disease. While it is now possible to identify enhancer regions genomewide in both cultured
cells and primary tissues using epigenomic approaches, it has been more challenging to
develop methods to understand the function of individual enhancers because enhancers are
located far from the gene(s) that they regulate. However, it is essential to identify target genes
of enhancers not only so that we can understand the role of enhancers in disease but also
because this information will assist in the development of future therapeutic options. After
reviewing models of enhancer function, we discuss recent methods for identifying target genes
of enhancers. First, we describe chromatin structure-based approaches for directly mapping
interactions between enhancers and promoters. Second, we describe the use of correlation-
based approaches to link enhancer state with the activity of nearby promoters and/or gene
expression. Third, we describe how to test the function of specific enhancers experimentally by
perturbing enhancer–target relationships using high-throughput reporter assays and genome
editing. Finally, we conclude by discussing as yet unanswered questions concerning how
enhancers function, how target genes can be identified, and how to distinguish direct from
indirect changes in gene expression mediated by individual enhancers.
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Introduction

There are two main types of regulatory elements involved in

transcriptional activation, promoters, and enhancers. Whereas

promoters are easy to identify, usually defined as a distance

that spans a few kilobasepair (kB) on either side of a

transcription start site (TSS) of a coding or noncoding gene,

enhancers are more elusive. Enhancers, first identified in viral

genomes more than 30 years ago (Banerji et al., 1981), were

initially defined simply as DNA fragments that are located

outside of core promoter regions and that can increase

transcription from a particular gene. Early studies in which

enhancers were removed from their normal genomic location

and analyzed in reporter assays indicated that their enhancing

activities can be independent from their exact location or

orientation relative to the activated promoter [reviewed in

(Bulger & Groudine, 2011; Plank & Dean, 2014)], suggesting

that enhancers can be located at long distances upstream or

downstream of target genes. Although the early reporter

assays did not identify the natural target(s) of the tested

enhancers, the hypothesis that most enhancers work at a

distance has been adopted as a general consensus in the field.

Multiple models have been proposed to explain how enhan-

cers regulate transcription of a target gene from a distance

(Blackwood & Kadonaga, 1998; Bulger & Groudine, 2011).

The two most common models are ‘‘scanning or tracking’’, in

which TF-containing protein complexes bind at an enhancer

and diffuse (perhaps via rapid on/off events) along the

genome to search for a target promoter (Blackwood &

Kadonaga, 1998) and ‘‘looping’’, in which an enhancer

directly interacts with a target promoter by forming a physical

interaction mediated by protein–protein contact (Blackwood

& Kadonaga, 1998; Bulger & Groudine, 1999) (Figure 1a).

The ‘‘scanning’’ model is consistent with a proposed

mechanism by which insulator proteins such as CTCF

function (i.e. by creating distinct chromatin domains on

either side of the bound protein). One study in support of this

model detected short RNAs transcribed from the DNA

between an enhancer and the nearest promoter (Zhu et al.,
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2007) and the second study observed that TF-containing

protein complexes, which include RNA polymerase II, bind at

the DNA between an enhancer and nearby gene promoter

(Hatzis & Talianidis, 2002). The ‘‘scanning’’ model implies

that an enhancer should regulate the nearest active promoter

and thus would not be consistent with long-range interactions

in which an enhancer bypasses multiple promoters to regulate

a more distally located gene (Wang et al., 2005). Although it

is possible that some enhancers function via the ‘‘scanning’’

model and some function via the ‘‘looping’’ model, recent

evidence provided by multiple nuclear architecture studies

(Krivega et al., 2014; Tolhuis et al., 2002) has tipped the

balance in support of the ‘‘looping’’ model.

In the looping model, two genomic regions separated by a

distance are brought together via protein–protein interactions

mediated by transcription factors bound at a distal element
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Figure 1. Enhancer-mediated gene regulation. (A) Shown are two models for gene regulation by enhancers. The left panel illustrates the ‘‘scanning or
tracking’’ model in which a transcription factor (TF)-containing protein complex binds at an enhancer and moves along the genome, searching for a
target promoter (the nearest promoters are labeled in brown and distal promoters are labeled in red). The right panel illustrates the ‘‘looping’’ model in
which an enhancer directly interacts with a target promoter by forming a DNA loop mediated by protein–protein contacts. (B) Shown is an illustration
of the distinctive chromatin signatures at active versus inactive enhancers and promoters. Active enhancers provide nucleosome-free regions for the
binding of clusters of TFs and are flanked by nucleosomes marked by H3K4me1 (cyan dots) and H3K27ac (green dots); active promoters have flanking
nucleosomes marked by H3K4me3 (blue dots). CpG sites throughout the human genome have high levels of DNA methylation (red dots) except at
active enhancers and promoters. (C) DNA methylation (WGBS), ENCODE ChIP-seq data (labeled according to the antibody used in each experiment),
and the location of DHSs and TF binding data for HCT116 cells from the University of California, Santa Cruz genome browser are shown for an
enhancer and a promoter region. (See the color version of this figure at www.informahealthcare.com/bmg).
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and at a promoter. One ramification of this model is that it

should be possible to identify distal enhancers by the location

of transcription factor (TF) binding motifs. Unfortunately, TF-

binding motifs are usually less than 10 nts in length (Stewart

et al., 2012) and thus are found throughout the genome,

making it difficult to identify an enhancer using only

bioinformatics approaches. However, recent improvements

in genomewide technologies, such as ChIP-seq and DNase-

seq (ENCODE_Project_Consortium, 2012; Thurman et al.,

2012), now allow what is thought to be a comprehensive

identification of distal regulatory regions within a given cell

type. The most common distal regulatory elements are DNase

I hypersensitive sites (DHSs), which are regions of nucleo-

some-free chromatin that harbor clusters of transcription

factor (TF)-binding sites (ENCODE_Project_Consortium,

2012; Roadmap Epigenomics Consortium, 2015). There are

estimated to be �3 million DHSs in the human genome,

although not all DHSs are present in a given cell type

(Thurman et al., 2012) and different subsets of DHSs have

flanking regions marked by specifically modified histones

that are thought to distinguish enhancers from promoters. For

example, potentially active enhancers have flanking regions

with well-positioned nucleosomes in which histone H3 is

marked by monomethylation (H3K4me1) (Heintzman et al.,

2007) and fully active enhancers have flanking regions with

well-positioned nucleosomes in which histone H3 is marked

not only by the monomethylation of lysine 4 but also by

acetylation of lysine 27 (H3K27Ac) (Heintzman et al., 2009;

Rada-Iglesias et al., 2011); (Figures 1b and c). Enhancers also

have low levels of histone H3 trimethylated on lysine 4

(H3K4me3). In contrast, promoters are marked by high levels

of H3K4me3, low levels of H3K4me1, and variable levels of

H3K27Ac. In addition to modified histones and site-specific

DNA-binding TFs, such as TCF7L2, transcriptional coacti-

vators, such as EP300 and CBP, also localize at enhancer

regions (Blow et al., 2010; Visel et al., 2009a). The

combination of DHSs, modified histones, and TFs has

allowed the identification of putative enhancer elements

throughout the genome in more than 100 cell types (Roadmap

Epigenomics Consortium, 2015; Whitaker et al., 2015).

Recent studies have also shown that enhancers can be

identified as distal regions that have low levels of DNA

methylation (ENCODE_Project_Consortium, 2012; Roadmap

Epigenomics Consortium, 2015; Stadler et al., 2011;

Thurman et al., 2012).

Reporter assays using model organisms have revealed a

high degree of spatiotemporal cell-type specificity of enhan-

cers. An early genomewide ChIP-seq study in human cells

compared undifferentiated embryonic stem cells (hESCs) to

induced early mesendoderm or neuroepithelium cells, finding

that the enhancer marks showed cell-type-specific patterns

but that the promoter mark H3K4me3 was largely invariant

across cell types (Hawkins et al., 2011). A large ChIP-seq

study across seven developmental time points and three

developmental lineages showed a very high degree of lineage

and temporal specificity at enhancer regions, but very few

differences in promoter regions (Nord et al., 2013). In

addition, a recent study comparing enhancers in many

different types of human cells has shown that different cell

lineages can be revealed using enhancer marks (Roadmap

Epigenomics Consortium, 2015). It is thought that cell-

type-specific enhancers bound by critical lineage-specifying

transcription factors help to orchestrate the precise order of

expression of both protein-coding genes (e.g. SHH (Petit

et al., 2015)) and noncoding RNAs (e.g. let-7 family

microRNAs (Cohen et al., 2015)), to ensure proper develop-

ment and differentiation (Boland et al., 2014; Buecker &

Wysocka, 2012; Rada-Iglesias et al., 2012).

Considering the important role of enhancers in orchestrat-

ing development and differentiation, it is not surprising that

many diseases are associated with changes in enhancer

activity. Mutations in sequence-specific enhancer-binding

TFs (e.g. GATA factors (Zheng & Blobel, 2010) and Hox

factors (Quinonez & Innis, 2014)) and transcriptional

coregulators (e.g. CBP and RB (Iyer et al., 2004; Janknecht,

2002; Vile & Winterbourn, 1989)) have long been associated

with disease. However, such mutations are likely to affect all

genes regulated by these enhancer-binding factors. In con-

trast, abnormal sequence variants that alter the activity of

individual enhancers can lead to disease by altering expres-

sion of specific genes. Early examples showed that inherited

deletions of enhancers in the b-globin locus led to the

decreased b-globin expression underlying b-thalassemia

(Kioussis et al., 1983; Kulozik et al., 1988). Genomewide

association studies (GWAS) have identified thousands of

single-nucleotide polymorphisms (SNPs), defined as germline

nucleotide variations that occur within a population at a

frequency above 1%, that are associated with particular

diseases [reviewed in (Freedman et al., 2011; Hindorff et al.,

2009)]. Interestingly, most SNPs identified by GWAS are

located in noncoding regions (Freedman et al., 2011; Yao

et al., 2014) and recent studies from the ENCODE Project,

the Roadmap Epigenome Mapping Consortium, and other

groups, have found that many disease-associated SNPs fall

within enhancer regions, suggesting that these SNPs cause

changes in gene expression that lead to an increased risk of

that disease (Akhtar-Zaidi et al., 2012; Farh et al., 2015;

Gjoneska et al., 2015; Roadmap Epigenomics Consortium,

2015; Yao et al., 2014). In support of this hypothesis, multiple

studies have shown that SNPs at disease-relevant enhancers

are likely to impact the binding of transcription factors

(Hazelett et al., 2014; Herz et al., 2014).

Certain rare somatic mutations (nucleotide changes that

occur after birth in the genome of specific tissues and thus are

not inherited) at enhancers have been associated with various

diseases. For example, a mutation that disrupts an enhancer

for the RET gene (located 15 kB away from the TSS) results

in a 20-fold greater contribution to the risk of Hirschsprung’s

disease than other known RET mutations (Emison et al.,

2005). Large-scale chromosomal changes that affect enhan-

cers can also lead to disease, such as the translocation of the

active IgH enhancer to the MYC locus in Burkitt’s lymphoma

(Siebenlist et al., 1984). Also, chromosomal rearrangements

can relocate an enhancer that regulates GATA2 expression,

leading to aberrant expression of the proto-oncogene EVL1

and causing acute myeloid leukemia (Groschel et al., 2014).

This type of oncogene ‘‘enhancer hijacking’’ appears to be

common in nonhematopoietic cancers as well. For example,

large deletions between the TMPRSS2 enhancer and various

E-twenty-six (ETS)-family oncogenes (such as ERG) are
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common in prostate cancer (Tomlins et al., 2005) and

translocations between various active enhancers and the

glioma-associated (GLI) oncogenes appear to underlie �10%

of pediatric medulloblastoma cases (Northcott et al., 2014).

More complex structural changes involving enhancers can

also underlie disease. For example, a large genomic deletion

(660 kB) results in the loss of a topological domain boundary

that normally prevents interaction between forebrain-specific

enhancers and the LMNB1 promoter. This deletion is

responsible for the acquisition of autosomal dominant adult-

onset demyelinating leukodystrophy in some patients because

of the overexpression of LMNB1 (Giorgio et al., 2015).

Most sequencing of disease tissues has thus far been

limited to exonic sequences. With the addition of whole-

genome sequencing of patients to the toolkit of personalized

medicine, it is certain that many more enhancers harboring

germ line variants, somatic nucleotide mutations, or located

within or nearby chromosomal alterations will be identified.

In fact, a recent analysis of 436 complete cancer genomes

(Melton et al., 2015) generated by the TCGA Consortium

identified recurrent mutations in distal regulatory elements.

Mutated or variant enhancers, when associated with a

particular disease, may become potential therapeutic targets.

Importantly, the cell-type-specific activity of enhancers may

enable more precise therapy, as compared to agents that

inhibit entire signaling networks. A good example of an

enhancer that may be appropriate for such targeted therapy is

one that regulates BCL11A, a transcription factor that

represses expression of fetal hemoglobin (Sebastiani et al.,

2015). There are different types of hemoglobin that show

specificity of expression in adult versus fetal cells. Patients

with sickle cell disease (SCD) have mutations in the HbA

hemoglobin proteins that are normally expressed in adult

cells. Clinical observations have shown that SCD patients

with higher levels of the fetal-specific type of hemoglobin

(HbF) have a better prognosis (Dong et al., 2013; Peterson

et al., 2014). Therefore, it has been suggested that reducing

levels of BCL11A (which would allow reactivation of fetal

hemoglobin) might be an appropriate therapy for patients with

SCD. However, although BCL11A would seem to be an

attractive therapeutic target for SCD, there are concerns about

directly inactivating this transcriptional repressor because it

plays important roles in other cell types (Yu et al., 2012;

Wakabayashi et al., 2003). The discovery of a red blood cell-

specific enhancer for BCL11A located �65 kB away from

TSS (Sebastiani et al., 2015) suggests an alternative approach.

That is, to specifically downregulate BCL11A expression

only in blood cells by disabling the blood cell-specific

enhancer using chromatin editing or genomic nucleases,

alleviating off-target effects in other cell types.

Due to their cell-type-specific roles in specifying gene

expression patterns that regulate both normal development

and human diseases, it is clearly important to fully understand

the function of enhancers. However, very few enhancers have

been studied in the same detail as those described above. In

addition, there is still an unsolved fundamental question: what

are the target genes of the hundreds of thousands of enhancers

that have been identified in the human genome? The most

recent Gencode release has identified �60 000 coding and

noncoding genes (http://www.gencodegenes.org/stats/

current.html) that are expressed from �200 000 promoters

(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/

CAGE_peaks/). Current estimates are that 10 000–15 000

genes are expressed in a given cell type (Bengtsson et al.,

2005) and that each cell type has 44 000–294 000 active

enhancers (resulting in a total of 389 967 nonoverlapping

enhancer regions across 98 tissue and cell lines) (Roadmap

Epigenomics Consortium, 2015; Yao et al., 2015). Thus, at

both the global level and within a given cell type, there are

many more enhancers than expressed genes. Also, as

discussed earlier, enhancers tend to be cell-type specific,

suggesting that a gene can be regulated by different enhancers

in different cell types. In addition, an enhancer can regulate

different promoters in different cells, as observed at the b
globin locus (Holwerda & de Laat, 2013). Thus, enhancer

targets must be identified in a cell-type-specific manner.

Although these numbers suggest that in a particular cell type,

an enhancer may, on average, regulate only one or a

small number of genes, the flexibility of the distances

between enhancers and target genes makes it very compli-

cated to predict which gene is regulated by a specific

enhancer.

To date, very few experiments have been performed in

mammalian cells with the goal of linking an enhancer to a

specific target gene. In model organisms such as fruitfly and

mouse, linkages have been established using in vivo reporter

constructs followed by in situ imaging of developmental

expression patterns. When an enhancer reporter construct has

a highly specific spatiotemporal pattern that matches that of a

neighboring gene, it is taken as strong functional evidence

that an enhancer–gene target pair has been identified. An

analysis of thousands of candidate enhancers in Drosophila

suggests that even in a relatively compact genome enhancers

operate at large distances from the gene they regulate and that

significant numbers do not regulate the nearest annotated

gene (Kvon et al., 2014). Such developmental approaches to

study enhancers are impractical in mammals. However, recent

advances in experimental techniques that allow the investi-

gation of the 3D architecture of chromatin, as well as

analytical approaches that take advantage of large multidi-

mensional epigenomic datasets, provide methods by which

investigators can predict which genes are regulated by

specific enhancers. We review (1) methods based on physical

interactions, including chromosome conformation capture

(3C) (Dekker et al., 2002; Hagege et al., 2007), circular

chromosome conformation capture (4C) (Simonis et al., 2006;

Zhao et al., 2006), chromosome conformation capture carbon

copy (5C) (Dostie & Dekker, 2007), Hi-C (Lieberman-Aiden

et al., 2009; van Berkum et al., 2010), tethered conformation

capture (TCC) (Kalhor et al., 2011), capture Hi-C (Chi-C)

(Jager et al., 2015), capture-C (Hughes et al., 2014), DNase I

Hi-C (Ma et al., 2015), and chromatin interaction analysis by

paired-end tag sequencing (ChIA-PET) (Fullwood & Ruan,

2009) and (2) methods based on gene expression associations

using SNPs (Westra & Franke, 2014), DHSs (Sheffield et al.,

2013; Thurman et al., 2012), histone modifications (Ernst

et al., 2011; Shen et al., 2012), and DNA methylation (Aran

et al., 2013; Aran & Hellman, 2013; Yao et al., 2015) at

enhancer regions. Of course, each of these methods produces

predictions of cell-type-specific enhancer–gene linkages that
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should be verified by follow-up experiments. Therefore, we

also describe methods, such as genomic deletion or epigenetic

inactivation of an enhancer, which can be employed in such

experiments. By combining results from these computational

and experimental methods, an encyclopedia of enhancer–gene

linkages can be developed to help guide future biological

studies or clinical therapeutic treatments.

Identifying target genes of enhancers using methods
based on physical interactions between separated
regions of chromatin

Methods used to identify enhancer–promoter
linkages

Many methods that study chromatin interactions are based on

a technique termed 3C. The principle of 3C technology relies

on formaldehyde crosslinking of interacting chromatin frag-

ments, restriction enzyme digestion, ligation of the interacting

fragments, and finally polymerase chain reaction (PCR)

analysis using primers specific for the fragments of interest

(Dekker et al., 2002; Hagege et al., 2007; Tolhuis et al.,

2002). Multiple variations of 3C (4C, 5C, Hi-C, and TCC)

have been developed, the most recent ones being adapted for

genome-wide analyses; see previous reviews for methodo-

logical details (Dekker et al., 2013; de Wit & de Laat, 2012;

Lan et al., 2012). In brief, 3C and 4C-seq methods can

produce interaction profiles for individual genomic loci of

interest, such as promoters and enhancers; see Figure 2 plus

Table 1 for a list of software associated with 3C-based

methods. 3C investigates possible long-distance interactions

between two loci based on prior knowledge of a potential

interaction in a ‘‘one-to-one’’ manner (Dekker et al., 2002).

In contrast, 4C-seq identifies all chromosomal regions

interacting with a single specific genomic locus (described

as a ‘‘viewpoint’’ or ‘‘bait’’), in a ‘‘one-to-all’’ manner

(Simonis et al., 2006; Zhao et al., 2006). The 5C, Hi-C, and

TCC methods use distinct approaches to overcome the

limitation of choosing an individual locus for study, poten-

tially allowing the investigation of all chromatin interactions

throughout the genome. For example, 5C detects ligation

products in a 3C library using ligation-mediated amplification

(LMA) (Dostie & Dekker, 2007; Dostie et al., 2006). Hi-C

labels ligation products in a 3C library using biotin so that all

ligated fragments can be enriched for sequencing (Lieberman-

Aiden et al., 2009). Finally, TCC uses a similar biotin-based

enrichment strategy as in Hi-C except that the ligation is

performed on a solid substrate rather than in solution to

improve the signal-to-noise ratio (Kalhor et al., 2011). As

expected, 5C provides less comprehensive interaction profiles

than the other two methods because genomic coverage of 5C

is limited by the requirement for large numbers of primers.

For example, a 5C study using primers designed to identify

interactions between 628 TSS-containing restriction frag-

ments and 4535 distal restriction fragments identified less

than 2000 promoter–distal interactions (Sanyal et al., 2012),

whereas �60 000 promoter–distal interactions were identified

using Hi-C (Jin et al., 2013). The resolution for detecting

interactions by the three genomewide technologies is limited

by sequencing depth and the frequency of restriction enzyme

(RE) cutting sites. In a typical Hi-C experiment, 3.4–8.4

billion reads can produce interaction profiles at a 5 kB –1 MB

resolution, depending on bin size (Jin et al., 2013; Lieberman-

Aiden et al., 2009). A recent study of 3D nuclear architecture

using a method called in situ Hi-C, which uses the original

Hi-C protocol but performs the digestion and ligation steps in

intact nuclei, produced over 25 billion reads for nine human

cell types, and improved the resolution of chromatin

interactions to 1 kB to detect over 15 billion distinct

interactions across the nine cell types (Rao et al., 2014).

Although the above-mentioned studies suggest that deep

sequencing of Hi-C data can improve resolution of a

chromosome interaction map, it is monetarily and computa-

tionally expensive to obtain and analyze the number of reads

necessary to reach 1 kB resolution. Also, among the more

than 1 million interactions detected in IMR90 fetal lung cells

using Hi-C, only 57 585 were linkages between a known

promoter and a distal region (Jin et al., 2013). Thus, the

interactions of major interest in the investigation of enhancer–

gene regulatory networks constitute a minority of all

chromosomal interactions identified using Hi-C-based meth-

ods. One way to increase resolution is to focus only on a

subset of interactions of interest, using methods such as

ChIA-PET and Capture Hi-C (CHi-C) methods. ChIA-PET is

a ChIP-based method that employs 3C principles but uses

antibodies to a specific protein to collect the interacting

fragments. This method can be used to map all interactions at

a subset of enhancers bound by a specific TF (e.g. using an

antibody to CTCF (Handoko et al., 2011) or estrogen receptor

a (Fullwood et al., 2009)) or at all active promoters (using an

antibody to RNA polymerase II (Li et al., 2012)). CHi-C is a

new approach that uses sequence capture technology to enrich

a Hi-C library for annotated promoters. This technique

resulted in a 10-fold enrichment of reads involving promoters,

allowing more promoter coverage at a fraction of the cost;

sequencing of 754 million uniquely mapped paired-end reads

identified approximately 1 million promoter-based inter-

actions. In addition to increasing sequencing depth at

regulatory regions, another way to fundamentally improve

resolution in identifying interaction loci is to replace the

typically used REs having a six nt recognition sequence (e.g.

HindIII) with REs having more frequent recognition sites in

the genome or to change to DNase I-based digestion or

chromatin fragmentation by sonication. The capture-C

method, which combines a 3C method using a RE that has

a four nucleotide recognition sequence (DpnII) with a

hybridization-based capture of targeted regions and high-

throughput sequencing, can provide an unbiased, high-reso-

lution profile of cis interactions for hundreds of genes in a

single experiment (Hughes et al., 2014). DNase I Hi-C

replaces the RE digestion step in the conventional Hi-C

protocol with digestion by DNase I and performs slightly

better than RE-based Hi-C in terms of biases in G+C content

and mappability (Ma et al., 2015).

3D enhancer–promoter interaction patterns

A decade of 3D chromatin conformation studies has resulted

in highly ordered and complicated long-range chromosomal

interaction maps for human and mouse cells; these studies

have challenged a common assumption that enhancers
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regulate the nearest genes. Instead, the complicated long-

range enhancer–promoter interactions identified from

chromosome interaction studies strongly suggest that enhan-

cers frequently skip the nearest promoter to regulate a more

distal gene. For example, a 5C study of GM12878, K562 and

HeLa-S3 cells found that only 27% of the distal elements

interact with the nearest TSS, with the number increasing to

47% when only expressed genes were used in the analysis

(Sanyal et al., 2012). Another study using ChIA-PET and an

antibody to RNA polymerase II found that �40% of the

Chromatin
crosslinking

SonicationRE DNase I

Fragmentation

RE

Protein biotinylation and tethering ChIP

ligation

add  
A linker

add  
B linker 

self-ligationinter-ligation

DNA purification

MmeI and   
reverse crosslink 

2nd 
RE

ligation
inverse PCR

One-to-one

One-to-all

Sequencing

ChIA-PET

Sequencing

PCR

3C

4C

PCR

Multiplexed
LMA 

Sequencing

many-to-many

5C

DNA shearing

Sequencing Sequence capture
 and sequencing

DNA shearing

Hi-C, TCC CHi-C, Capture-C, 
DNaseI Hi-Call-to-all

all-to-all for selected 
regions

all-to-all for interactions 
involving in a particular 

protein

fill ends and mark with biotin

pull down with  Streptavidin

3C, 4C, 5C, Hi-C TCC DNaseI Hi-C ChIA-PET

Hi-C

3C, 4C, 5C

3C 4C 5C

Figure 2. 3C-based technologies used to identify enhancer–promoter loops. All 3C-based technologies begin with formaldehyde treatment, leading to
crosslinking of DNA fragments in close proximity. The 3C, 4C, and 5C methods begin with restriction enzyme (RE) digestion of the chromatin into
small pieces (digestion sites represented by black bars). Crosslinked fragments are ligated to form unique hybrid DNA molecules, and then, the DNA is
purified. In 3C, a predicted ligation product can be analyzed by PCR using a pair of primers; this is termed a one-to-one approach. In 4C, the 3C
ligation library is digested with a second RE to digest the DNA to smaller sizes (second digestion sites are labeled as green ovals), and then, the
fragments are ligated to form a circle. Inverse PCR is utilized to generate a genomewide interaction profile for a single locus (analyzed by high-
throughput sequencing); this is termed a one-to-all approach. 5C detects ligation products from a 3C library using ligation-mediated amplification
(LMA) followed by high-throughput sequencing; this is termed a many-to-many approach. Starting from 3C fragmentation products, Hi-C includes a
unique step in which sticky ends resulting from the RE digestion are filled in with biotinylated nucleotides (shown as red dots). This facilitates a
streptavidin-based enrichment of the ligation products for sequencing. The difference between TCC and Hi-C is that TCC adds an initial protein
biotinylation and tethering step, such that the fragmentation and ligation are performed on a solid substrate; TCC and Hi-C are termed all-to-all
approaches. Specific subsets of TCC and HCC products can be selected prior to sequencing using oligonucleotides or arrays in CHI-C and Capture-C,
allowing an all-to-all analysis of selected genomic regions. DNase Hi-C uses the conventional Hi-C protocol but replaces the RE fragmentation step
with DNase I digestion and thus is an all-to-all approach. ChIA-PET, which is quite different from the other 3C-based methods, begins with sonication
of the chromatin, which is followed by a conventional chromatin immunoprecipitation step. Then, A (purple) and B (orange) linkers are added to two
groups of materials that are mixed together for the ligation step, the ligation products are digested with MmeI, and the DNA is sequenced. The
frequency of random ligations between the two different linkers (AB) is used to estimate the frequency of nonspecific ligation. ChIA-PET is termed an
all-to-all approach for interactions involving a specific protein. (see the color version of this figure at www.informahealthcare.com/bmg).
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enhancer elements did not interact with the nearest promoter

(Li et al., 2012). Studies have also shown that the distances

between interacting enhancers and promoters can be quite

large. For example, only 25% of the enhancer–promoter

interacting fragments were within 50 kB and about 57% of the

contacts spanned more than 100 kB, as reported from Hi-C

experiments in IMR90 cells (Jin et al., 2013). In addition,

enhancer–promoter interactions are not limited to one-to-one

relationships. Rather, an enhancer can contact multiple

promoters and a promoter can contact multiple enhancers

(Li et al., 2012; Sanyal et al., 2012; Schoenfelder et al., 2015).

The different types of chromatin interactions have been

classified into two categories of higher-order interaction

clusters: ‘‘single-gene’’ complexes, which consist of inter-

actions between a single gene and one or more enhancers and

‘‘multigene’’ complexes, in which multiple genes are

involved in interactions with one or more enhancers.

Interestingly, the genes in the ‘‘single-gene’’ interaction

complexes tend to be cell-type-specific (Li et al., 2012).

Surprisingly, some promoter sequences in the multigene

interaction complexes show enhancer capacity affecting the

expression of other linked genes (Li et al., 2012).

As described earlier, the high-resolution analyses of

chromatin interactions by 5C, Hi-C, and ChIA-PET have

identified thousands of enhancer–promoter interactions.

Although the rules governing enhancer–promoter specificity

are still not clear, some experiments have suggested that

enhancers are restricted to regulating promoters within

specified chromatin boundaries. For example, low-resolution

analyses of 3D chromatin data have introduced two new

concepts: ‘‘genome spatial compartmentalization’’ and

‘‘topologically associated domains’’ (TADs) (Figure 3). The

first concept, based on chromatin interactions at low

resolution (1 MB) and histone modifications, divides the

genome into two compartments. Compartment A is char-

acterized by gene dense regions and has active chromatin

marks and compartment B is associated with repressive

chromatin (Dekker et al., 2013; Lieberman-Aiden et al., 2009;

van Berkum et al., 2010;); analyses suggest that most

interactions occur within the same compartments. A recent

deeply sequenced in situ Hi-C experiment with 25 kB

resolution suggested that there are also subcompartments

(�300 kB in size) with distinct patterns of histone modifica-

tions, with compartment A consisting of two subcompart-

ments and compartment B consisting of four

subcompartments (Rao et al., 2014). The second concept,

based on TADs (�1 MB in size), comes from the observation

that regions are bounded by segments where the chromatin

interactions end abruptly. Although TADs are defined inde-

pendently from compartments (Dekker et al., 2013; Jin et al.,

2013; Pope et al., 2014), several adjacent TADs can organize

to create a compartment (Rao et al., 2014). Studies suggest

that most chromatin interactions occur between elements

within a TAD, with many fewer interactions occurring

between elements from different TADs. TADs are highly

conserved among species (Dixon et al., 2012) and most TADs

are invariable across cell types and developmental stages.

Interestingly, although the boundaries of the TADs are

relatively constant, a TAD can switch between the active

compartment A and the repressive compartment B in different
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cell types (Dekker et al., 2013; Phillips-Cremins et al., 2013;

Pope et al., 2014; Vietri Rudan et al., 2015). If, as proposed,

enhancer–promoter interactions are constrained by the

boundaries of the TADs, then altering these boundaries

should have critical impacts on gene expression. Early work

showed that a shift in topological domain boundaries

accompanied expression changes of homeotic genes during

mouse development (Noordermeer et al., 2011) and deletion

of a TAD boundary on the X-chromosome has been shown to

result in novel chromatin interactions and alteration of gene

expression (Nora et al., 2012). It is also important to note that

the invariability of TADs across cell types does not conflict

with the concept of cell-type-specific enhancer–promoter

interactions. This is because the specific enhancer–promoter

UCSC Genes

IMR90 H3K9me3

IMR90 CTCF

IMR90 H3K27ac

IMR90 H3K4me1

IMR90 H3K4me3

IMR90 Repli-seq

21 p12 3435
> 58

< 12

Cohesin

Mediator

CTCF sites involved in loops
arrowhead indicates motif orientation

long distance

long 
distance

CTCF not involve loops

5Mb

Repressed
TAD

Active
TAD

Interaction 
counts

Figure 3. Chromatin 3D structures. Shown is a two-dimensional heatmap of Hi-C interaction frequencies in IMR90 cells from a 5 MB region of Chr2
generated using the website: http://www.3dgenome.org and the color key represents the interaction counts between two loci. Highlighted in gray is a
repressed compartment and highlighted in orange is an active compartment. Also shown is ChIP-seq data for CTCF and histone modifications, as well
as a wavelet-smoothed Repli-seq track representing DNA replication timing; all datasets were taken from the University of California, Santa Cruz
genome browser. For each compartment, a model of chromatin interactions is shown (which are more frequent within a TAD than between TADs)
facilitated by CTCF, Cohesin, and Mediator. Long-distance constitutive interactions require a pair of CTCF sites with convergently orientated motifs as
anchors; any combination of CTCF, cohesin, and mediator can facilitate median distance interactions. Many other CTCF-binding sites (green bars) are
not involved in chromatin interactions and occur within loops. (see the color version of this figure at www.informahealthcare.com/bmg).
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interactions within a TAD can vary from cell type to cell type

(Dixon et al., 2012; Li et al., 2012).

Three major components have been shown to contribute to

the formation of the 3D chromatin architecture: CCCTC-

binding factor (CTCF), cohesin, and mediator (Handoko

et al., 2011; Parelho et al., 2008; Phillips-Cremins et al.,

2013; Rao et al., 2014; Sanyal et al., 2012; Zuin et al., 2014;

Wendt et al., 2008) (Figure 3). CTCF is a site-specific DNA-

binding protein that has insulator capacity that can interfere

with enhancer–promoter communications and block hetero-

chromatin spreading (Ong & Corces, 2014); cohesin is a

protein complex important for the separation of sister

chromatids during mitosis and meiosis (Brooker &

Berkowitz, 2014) and is also involved in gene regulation

(Losada, 2014); and mediator is a large, multiprotein complex

that functions as a transcriptional coactivator. CTCF, cohesin,

and mediator were shown to anchor480% of the interactions

identified in ES cells (Phillips-Cremins et al., 2013) and

another study showed that these three components are located

at 86% of �10 000 constitutive chromatin interactions in nine

cell lines (Rao et al., 2014). These complexes appear to have

overlapping, but not equivalent, roles in defining chromatin

looping. For example, CTCF alone or CTCF plus cohesin is

highly associated with constitutive long-range interactions,

whereas mediator plus cohesin complexes are more asso-

ciated with proximal enhancer–promoter interactions (Dowen

et al., 2014; Ing-Simmons et al., 2015; Phillips-Cremins

et al., 2013; Vietri Rudan et al., 2015). Also, CTCF and

components of the cohesin complex are present at most of the

TAD boundaries (Dixon et al., 2012; Nora et al., 2012) and

the CTCF motifs at these sites are conserved across species

(which may explain the invariance of TADs (Vietri Rudan

et al., 2015). Pairs of CTCF motifs, which have an orientation

because of the nonpalindromic motif sequence

(50CCACNAGGTGGCAG-30), involved in constitutive long-

range interactions on the same chromosome are positioned in

a convergent manner on opposite strands of the DNA (Rao

et al., 2014; Vietri Rudan et al., 2015). Other evidence that

suggests non-equivalent functions of CTCF versus cohesin

comes from depletion studies. For example, in HEK293 cells,

the depletion of CTCF results in a higher frequency of inter-

TAD interactions and fewer intra-TAD interactions, whereas

reduction in cohesin has no impact on TAD structure but leads

to a global loss of intra-TAD interactions (Zuin et al., 2014).

Also, a conditional deletion of a component of cohesin in

thymocytes weakens enhancer–promoter interactions, without

affecting the location or strength of the histone marks

H3K27ac and H3K4me1 (Ing-Simmons et al., 2015).

Moreover, CTCF tends to bind to the boundaries of large

enhancer regions, restraining the cohesin-anchored inter-

actions within the regions (Dowen et al., 2014; Ing-Simmons

et al., 2015). The deletion of a CTCF site at one side of a large

enhancer region caused alteration of expression of genes

within and nearby the enhancer region (Dowen et al., 2014).

These results indicate that CTCF plays an important role in

maintaining chromosomal structure. However, it is important

to note that only a small portion of CTCF-binding sites reside

at the boundaries of TADs or enhancer regions; rather, most

CTCF sites are located within TADs (Cuddapah et al., 2009;

Handoko et al., 2011). Although there is evidence that CTCF

sites located at enhancer or promoter regions can facilitate

enhancer–promoter interactions (Handoko et al., 2011; Jager

et al., 2015; Pena-Hernandez et al., 2015), 79% of long-

distance interactions between distal elements and promoters

actually bypass one or more CTCF sites (Sanyal et al., 2012),

suggesting a situation more complex than a simple ‘‘insula-

tor’’ or ‘‘bridge’’ model. Perhaps the bypassed CTCF sites are

involved in enhancer–promoter interactions that occur in

other cell types or poise cells for changes in physical

interactions in response to developmental progression or

external cues. Taken together, these recent studies support a

critical role of CTCF, cohesin, and mediator in organizing

chromatin interactions and gene regulation, but the details of

the mechanisms by which they govern the 3D architecture of

the genome are still unsolved.

The chromatin interactions identified by the 3C-based

technologies described previously provide evidence that distal

elements can physically interact with specific promoter

regions, allowing the prediction of potential target genes.

However, an interaction between a distal element and a

promoter does not guarantee that the distal element is actually

involved in regulating expression of the linked gene. For

example, chromatin interactions in IMR90 cells show very

few changes upon treatment with TCF-a, even though large

changes in gene expression occur (Jin et al., 2013). This

suggests that either enhancers are looped to the target

promoters even before the genes are activated or many

chromatin interactions are not related to gene expression.

Other potential nonfunctional interactions identified by 3C-

based methods, such as random collision in the nucleus or

within a defined topologically associated domain, have been

recently discussed (Dekker et al., 2013). It is likely that the

chromatin interaction profile in a given cell type is composed

of several different types of interactions, some involved in

maintaining overall nuclear structure, some involved in gene

regulation, and some representing stable, but nonfunctional,

loops. Importantly, it is also possible that some enhancers

regulate their target gene via a mechanism distinct from

looping. Thus, 3D studies may not provide a definitive

identification of the set of target genes of an enhancer.

However, computation tools have been developed to predict

enhancer–gene linkages based on the association of target

gene expression with dynamic enhancer activities (as defined

by sequence changes in the population or differences in

epigenetic marks); some of these tools integrate multiple

layers of genetic and epigenetic information to improve the

accuracy of prediction. These computational tools, which

provide alternative methods for understanding enhancer

function, are described in the next section.

Identifying target genes of enhancers using
computational analyses to link altered enhancer
structure or activity to specific gene expression
patterns

Predicting target genes based on changes in enhancer
sequence

Expression quantitative trait loci (eQTL) refers to the method

of using the correlation between genetic polymorphism and

variation of gene expression across many different individuals
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to identify genomic loci that influence gene expression

(Westra & Franke, 2014). This method requires matched SNP

information and gene expression patterns from multiple

individuals (Figure 4a). To date, eQTL studies have been

performed for multiple cell types and tissues, such as

fibroblasts, liver, lung, brain, muscle, adipose tissue, skin,

whole blood, specific blood cell types (B cells, monocytes,

and T cells), and lymphoblastoid cell-lines (Castaldi et al.,

2015; GTExConsortium, 2015; Nica et al., 2011; Ramasamy

et al., 2014; Yang et al., 2010); see Table 2 for a list of eQTL

databases. A comparison of eQTL results using different cell

or tissue types suggests that SNPs can influence the

expression of different genes in different cell types and can

even have opposite effects on a given gene in different cell

types (Fairfax et al., 2012; Francesconi & Lehner, 2014; Fu

et al., 2012). Approximately, 14 million validated SNPs have

been identified in human populations. Although modern

genotyping arrays only contain features for �1 million or so

SNPs, they capture most of the common SNPs through

linkage disequilibrium-based SNP imputation (Howie et al.,

2012; Porcu et al., 2013).

While some eQTL studies analyzed SNP-expression asso-

ciations genomewide, this approach requires expression

profiles from a large number of individuals in order to

attain statistical significance after adjusting for the large

number of hypotheses tested. A popular approach has been to

constrain eQTL analyses to genetic loci that have already

been implicated in human diseases or traits in genomewide

association studies (GWAS). Within the last decade, it has

become clear that the majority of disease-linked SNPs are

outside of gene coding regions and likely represent variation

within regulatory elements (Freedman et al., 2011), suggest-

ing that the SNP allele should covary with expression of a

nearby target gene. In support of this theory, enhancers and

other regulatory elements mapped experimentally by the

ENCODE and Roadmap Consortia have consistently been

found to be enriched for disease-associated SNPs identified in

GWAS studies (ENCODE_Project_Consortium, 2012;

Roadmap Epigenomics Consortium, 2015). Therefore, after

identifying an ‘‘index’’ SNP associated with a particular

disease, investigators have analyzed the expression of all

genes within a certain region to try to identify a gene whose
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Figure 4. Computational methods to link enhancers to putative target genes. (A) The eQTL method uses the association between genotypes of a SNP
within an enhancer and gene expression levels across multiple individuals to predict target genes. (B) A correlation between dynamic enhancer activity
and gene expression across multiple cell lines or tissues can be used to predict enhancer–gene linkages. Levels of H3K4me1, H3K27ac, and DHS show
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color version of this figure at www.informahealthcare.com/bmg).

Table 2. Available databases for eQTL.

Data source Cell type Website PMID

Genevar(GENe Expression VARiation) adipose, LCL, skin, fibroblast, and T
cell

https://www.sanger.ac.uk/resources/
software/genevar/

20702402

GTExPortal Blood, esophagus mucosa, esophagus
muscularis, heart lung, muscle
skeletal, nerve tibial, skin, stomach,
thyroid, adipose, and artery

http://www.gtexportal.org/home/ 25954001

MuTHER adipose, LCL, Bkin http://www.muther.ac.uk/Data.html 21304890
UKBEC Brain http://www.braineac.org/ 25174004
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expression covaries with the SNP allele across multiple

individuals. To gain insights into risk of breast cancer,

Li et al. conducted an eQTL-based analysis of 15 breast

cancer risk SNPs, integrating multilevel information, such as

copy number variation, promoter methylation, and enhancer

annotations from TCGA and ENCODE (Li et al., 2013).

Using a similar method, expression of the TMED6 gene was

linked to an enhancer, located 600 kB away, which harbors

three colon cancer-associated SNPs (Yao et al., 2014). Similar

studies have combined epigenomic enhancer data with eQTL

mapping to link particular enhancers to other diseases, such as

chronic obstructive disease (Castaldi et al., 2015), asthma

(Sharma et al., 2014), prostate cancer (Hazelett et al., 2014),

and schizophrenia (Roussos et al., 2014).

A working model in the field is that the disease-associated

SNPs located within enhancers affect enhancer function by

disrupting or improving TF-binding motifs, thus causing

changes in the expression of target genes. This model has

been investigated for certain important risk alleles, such as the

risk variant for both colon and prostate cancer rs6983267 that

affects expression of the MYC oncogene via altered transcrip-

tion factor binding (Pomerantz et al., 2009; Yeager et al.,

2008). Other studies (Gjoneska et al., 2015; Hazelett et al.,

2014; Li et al., 2013;Yao et al., 2014) have used TF-binding

motif prediction within eQTL-linked enhancers to generate

hypotheses that can be tested experimentally. Li et al.

combined eQTL mapping, epigenomic enhancer maps, and

TF motif prediction in an innovative way to understand how

risk variants might affect entire transcriptional networks. In

addition to predicting direct cis-interactions, eQTL can predict

putative indirect trans-interactions between a risk locus and

distant loci in the genome. For example, Li et al. identified a

breast cancer risk SNP within 1 MB of the gene for the ESR1

transcription factor that affected expression of 476 different

genes having nearby putative enhancers containing an ESR1-

binding motif. This approach represents an integrated method

for correlating genomewide enhancer analyses with modifica-

tions in the expression of upstream transcription factors to

understand the role of transcriptional networks in disease.

Although eQTL mapping has produced lists of putative

target genes for specific enhancers, the results should be

interpreted with caution. First, although a large sample size is

required to generate robust linkage predictions, many studies

have been performed using small sample sizes and thus may

include false positives. Second, associations between genomic

loci and gene expression predicted by eQTL represent a

mixture of direct (i.e. cis) and indirect (i.e. trans) regulation,

and these are often not easy to distinguish due to the large

distances that can separate enhancers and their gene targets.

However, allele-specific expression linked to a heterozygous

SNP can help to identify direct targets (Crowley et al., 2015;

Dixon et al., 2015). Third, because most enhancers are cell-

type-specific, eQTL mapping should be performed using the

cell type or tissue most relevant for a particular disease.

Finally, it is important to note that the SNPs identified by

array-based GWAS studies may not be the causal SNP; all

SNPs in LD with the GWAS-linked SNP should be

considered, along with fine mapping or a whole-genome

sequencing-based approach.

Predicting target genes based on changes in enhancer
activity

Epigenomic-mapping techniques make it possible to correlate

enhancer activity, via changes in DNA hypersensitivity,

histone modifications, or DNA methylation levels, with

target gene expression across different tissues or cellular

conditions; see Table 3 for a summary of the computational

tools used for these correlative analyses. A change in the

nuclear level of a TF is perhaps the most straightforward

mechanism by which an enhancer activity can change. For

example, upon hormone stimulation, estrogen receptors (ERs)

can translocate to the nucleus, bind to their motifs in enhancer

regions, cause changes in histone modifications, and stimulate

expression of target genes (Levin, 2005; Vrtacnik et al.,

2014). Several methods have been developed to link target

genes to regulatory TFs using dynamic binding patterns of

TFs; in general, TF binding is measured by ChIP-chip or

ChIP-seq and gene expression profiles are measured using

microarrays or RNA-seq under conditions of differential

expression of the relevant TF. Although yeast are not

considered to have distal enhancers per se, the regulation of

RNA polymerase II initiation by sequence-specific transcrip-

tion factors is highly conserved, and thus, S. cerevisiae has

been an important model system for developing these

approaches. For example, Gao et al. used a multivariate

regression model to identify correlations between TF activity

and gene expression across various conditions in S. cerevisiae

to produce lists of putative target genes of TFs (Gao et al.,

2004). Over the last decade, a number of different approaches

have been developed to correlate model organism or human

TF ChIP-chip and ChIP-seq data with gene expression; such

methods include partial least squares (PLS) regression

(Boulesteix & Strimmer, 2005), a genetic regulatory modules

(GRAM) algorithm (Bar-Joseph et al., 2003), a probabilistic

model termed target identification from profiles (TIP) (Cheng

et al., 2011), a support vector machine (SVMs) (Qian et al.,

2003), a linear activation model based (Honkela et al., 2010),

and an unsupervised machine learning with an expectation

maximization algorithm (EMBER) (Maienschein-Cline et al.,

2012). All of these methods are based on positive correlations

of TF activity and target gene expression, ignoring the

important fact that TFs can also repress target gene expres-

sion. However, one method, called binding and expression

target analysis (BETA), does include a step to evaluate if the

effects of a given TF are activating or repressing (Wang et al.,

2013b). Also, BETA considers the distance between TF

binding sites and the putative target gene, as well as the

location of conserved CTCF-binding sites (which may

delineate the boundaries of TADs, as described earlier),

when predicting the targets of TFs. Overall, these methods are

useful to predict target genes of TFs if one has available ChIP-

seq and expression profiles performed in different conditions

(such as knockdown or overexpression of a TF or activation of

a pathway). However, these methods, which cannot distin-

guish direct from indirect effects, only produce a list of

putative target genes for a particular TF without pinpointing

individual enhancer–gene linkages. Comparing the results of

these algorithms to direct interaction mapping approaches,

such as the 3C methods described above, will likely allow for
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improvements in predicting direct versus indirect targets;

however, this is an emerging area that has not been well

explored.

Recent genomewide studies from the ENCODE Project

and the Roadmap Epigenome Mapping Consortium have

confirmed that DHSs and certain histone modifications are

correlated with the binding of transcription factors and the

activity state of enhancers (Figure 4b). Ernst et al. developed

a method that combines multiple histone marks (including

H3K27ac and H3K4me1) into chromatin state signals for nine

ENCODE human cell types. Correlation of enhancer activity

states from this method and gene expression in the same cell

types identified putative target genes within a 5–125 kB range

(Ernst et al., 2011). Based on a similar principle, Shen et al.

used the signal intensity of H3K4me1 and RNA polymerase II

ChIP-seq data, representing enhancer activity and gene

expression, respectively, across 19 mouse tissues and cell

lines to calculate a Spearman correlation coefficiency (SSC)

between nearby elements. Enhancers and gene elements were

clustered into enhancer–promoter units (EPUs) based on the

SSC along each chromosome. On average, 5.6 enhancers were

linked to each promoter using this method; multiple Hi-C and

3C experiments have verified the enhancer–gene association

linkages identified by the EPU method (Shen et al., 2012). To

meet the need for publicly available tools to perform similar

analyses, a software package called predicting specific tissue

interaction of genes and enhancers (PresSTIGE) has been

developed which predicts enhancer–gene linkages using

H3K4me1 or H3K27ac and RNA-seq data (Corradin et al.,

2014; Van Bortle & Corces, 2014). Several groups have begun

to use DNase I signal intensity to represent enhancer activity.

For example, Thurman et al. calculated the SSC between the

DHS state at each TSS and all distal DHSs located within

500 kB of that TSS and separated from the TSS by at least one

other DHS. This analysis, performed with 79 diverse cell

types, identified 578 905 DHSs that have intensities that are

highly correlated with at least one promoter DHS signal

intensity; importantly, these DHS-promoter pairs are signifi-

cantly overrepresented in interactions identified by 5C and

ChIA-PET (Thurman et al., 2012). Instead of correlating the

DHS signals of TSSs and enhancers, another study used gene

expression levels to calculate Pearson correlations with DHSs

located within 100 kB of each gene across 72 cell types,

identifying 530 000 DHSs that have activities significantly

correlated with at least one gene (Sheffield et al., 2013).

These correlation-based analyses provide approaches to

predict individual putative enhancer–gene linkages on a

genome-wide scale. As with other correlation-based methods,

distinguishing direct versus indirect linkages remains a

challenge, and the distance-based rules used to date have

been relatively ad hoc.

In addition to specific histone modifications and the

presence of DHSs, levels of 5-methylcytosine at CpG

dinucleotide sites is another epigenetic mark that can be

used to identify enhancers. In the majority of human cell

types, 70–80% of all CpG sites are methylated. However,

short CpG-rich regions called CpG islands (CGIs), which

occur primarily at promoters, remain unmethylated in somatic

cells [reviewed in (Jones, 2012)]. Early studies of DNA

methylation mainly focused on the CGIs located in promoter

regions, at which DNA hypermethylation was shown to

correlate with transcriptional repression. Studies of individual

enhancers reported that active enhancers have low levels of

DNA demethylation (Thomassin et al., 2001). However, an

understanding of the relationship between DNA methylation

and enhancer activity was limited until unbiased genomewide

DNA methylation analyses using whole-genome bisulfite

sequencing (WGBS) technology were performed. The geno-

mewide studies revealed that low levels of DNA methylation

in distal regions could be used to identify enhancers. For

example, a genomic DNA methylation pattern analysis of

mouse ES cell and neuronal progenitors (NP) identified low-

methylated regions (LMRs), which are nonpromoter CpG-

poor regions that have an average of less than 30%

methylation. Integrative analyses strongly suggest that these

LMRs are enhancers because they are DNase I hypersensitive,

have chromatin marks associated with active enhancers, are

occupied by TFs, and are associated with expression of

nearby genes (Stadler et al., 2011). Another WGBS study

showed that 90% of the regions at which the methylation state

changed from methylated in normal colon to unmethylated in

colon cancer overlapped with known enhancers (Berman

et al., 2012). Additionally, a comparison of methylomes for

30 distinct human tissues or cell lines showed that over 26%

of the regions displaying dynamic changes in DNA methy-

lation are enhancers occupied by cell-type-specific TFs; in

contrast, only 3% of the regions correspond to promoters

(Ziller et al., 2013). This cell-type-specific demethylation at

enhancers was confirmed by studies from the ENCODE and

REMC projects (Roadmap Epigenomics Consortium, 2015;

Thurman et al., 2012). Taken together, these studies demon-

strate that the level of DNA methylation at enhancers

negatively correlates with enhancer activity; thus, DNA

methylation can be used to predict enhancer–gene linkages

(Figure 4c).

Aran et al. used machine learning to study correlations

between DNA methylation at enhancers and gene expression

across 58 different cell lines. Strikingly, their results showed

that the level of DNA methylation at an enhancer closely

anticorrelates with putative target gene expression.

Importantly, 53% of the enhancer–gene linkage predictions

having a high score (40.85) were validated by 5C experiments

in three cell lines (Aran et al., 2013). Starting from

interactions identified by ChIA-PET in MCF7 breast cancer

cells, Aran et al. also employed anticorrelations (evaluated by

Pearson correlation coefficients) between the DNA methyla-

tion at enhancers and the expression level of genes physically

in contact with the enhancers to identify functional enhancer–

gene interactions in breast cancer cases from The Cancer

Genome Atlas (TCGA). Their results suggested that enhancer

regions associated with gene expression are enriched with

cancer-associated risk loci from GWAS and that DNA

methylation at enhancers can predict gene expression better

than can promoter methylation (Aran & Hellman, 2013).

Recently, another computational tool called ELMER was

developed to integrate DNA methylation and gene expression

profiles from primary tissues, to systematically infer multi-

level cis-regulatory networks (Yao et al., 2015). Using

ELMER, investigators can identify disease-specific enhan-

cers, which are then linked to putative target genes using a
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nonparametric statistical model to evaluate the significance of

anticorrelation between the DNA methylation at the enhancer

and the expression of putative target genes. ELMER also

identifies upstream regulatory TFs that drive the changes in

enhancer activity using motif analysis and TF expression pro-

files. Applying ELMER to TCGA data for 10 distinct cancer

types, Yao et al. derived a list of 4280 putative enhancer–TF–

gene linkages. A comparison of ChIA-PET enhancer–pro-

moter interactions identified using MCF7 cells (Li et al.,

2012) with the ELMER predictions in breast cancer con-

firmed that 166 of the 2038 enhancer–target gene pairs had a

physical interaction between the enhancer and the predicted

target gene promoter. It should be noted that most studies of

expression-associated DNA methylation at enhancers have

been limited to the small portion of enhancers that are

represented on DNA methylation arrays (typically

the Illumina Infinium HM450 array) or that can be analyzed

using reduced representation bisulfite sequencing (RRBS);

both types of assays cover the majority of promoter

regions but are limited in the number of enhancer loci that

can be analyzed. Early studies using WGBS to study primary

disease tissues have been able to predict enhancers corres-

ponding to disease-specific transcription factor motifs

(Berman et al., 2012; Hovestadt et al., 2014), suggesting

that the approaches described earlier will be applicable to

future normal versus disease tissue studies and will enable the

discovery of additional in vivo putative enhancer–gene

linkages.

Instead of simply using the correlation between enhancer

activity and gene expression, other studies have integrated

multiple layers of genetic and epigenetic data to predict

regulatory networks (Figure 4d). For example, studies have

included information such as P300 ChIP-seq data, gene

ontology (GO) similarities between the TFs and putative

target genes, phylogenetic similarity, and genomic proximity

to predict target genes within 2 MB intervals centered at

enhancers (He et al., 2014; Rodelsperger et al., 2011).

Another study started with eQTL-mapping data to predict

target genes of enhancers and then integrated the location of

insulators as enhancer-blocking elements, TF co-occurrence,

DHSs, and GO similarity terms between the TFs binding to

enhancers and nearby genes to validate the eQTL results

(Wang et al., 2013a). Lu et al. (2013) combined chromatin

interaction data from Hi-C experiments and phylogenetic

correlations across 45 vertebrate species to predict enhancer–

gene linkages.

The above-mentioned computational methods all have

advantages and disadvantages in terms of understanding

enhancer–gene regulatory networks. One obvious advantage

is that most of these approaches are relatively inexpensive.

Methods based on dynamic TF binding can provide a list of

putative target genes for a particular TF using only a few

ChIP-seq and RNA-seq experiments. The efforts of big

consortia, such as ENCODE, REMC, and TCGA, have

generated genetic and epigenetic profiles for various cell

lines and normal or diseased tissues (ENCODE_Project_

Consortium, 2012; Roadmap Epigenomics Consortium, 2015;

Weinstein et al., 2013) and investigators have made public

multiple methods using eQTL, DHS, histone modification,

eRNA and DNA methylation to predict individual enhancer–

gene linkages (Andersson et al., 2014; Aran et al., 2013;

Corradin et al., 2014; Ernst et al., 2011; Li et al.,

2013; Sheffield et al., 2013; Shen et al., 2012; Thurman

et al., 2012; Yao et al., 2015). Because Hi-C experiments are

fairly expensive and computationally time-consuming, there

is currently a limited number of cell lines for which

comprehensive chromatin interaction data are available;

however, it is anticipated that these new technologies will

be integrated into the collection of datasets by existing

consortia and other groups, such as those funded by NIH’s

new 4D nucleome project (https://commonfund.nih.gov/

4Dnucleome/index) and the proposed International

Nucleome Project (Tashiro & Lanctot, 2015). One common

disadvantage inherent to all of these association methods is

that they provide only predictions of putative target genes.

More importantly, the predictions from these methods are

limited to cis regulation and the distances allowed between

enhancers and putative target genes are limited to 100 kB to

2 MB, depending on the method. As these methods are based

on statistical associations, the limitations are largely due to

the limited number of samples available in current datasets

and can in principle be overcome by profiling large numbers

of samples from diverse tissues and individuals. Nevertheless,

experimental validation of enhancer–gene pairs is essential to

evaluate and improve the accuracy of the various prediction

methods. To date, relatively few enhancer–gene pairs have

been experimentally validated, but this is changing as new

technologies transform our ability to test enhancer activity

and predictions of enhancer–gene pairs using high-throughput

and efficient techniques.

Identifying target genes of enhancers using
experimental validation

Using reporter assays to monitor enhancer activity

A common tool to study gene regulation is the reporter assay,

which is based on the expression of certain genes whose

activity (monitored as either RNA or protein) is easily

identified and measured. Examples of such reporters include

luciferase, which is an enzyme catalyzing a reaction with

luciferin to produce light; green fluorescent protein (GFP);

LacZ which is an enzyme-turning X-gal to blue, and

antibiotic-resistant genes, such as neomycin and chloram-

phenicol acetyltransferase (CAT). In a reporter assay, a

regulatory sequence (such as an enhancer of interest) is

cloned adjacent to the reporter gene in a plasmid that will be

transfected either transiently or stably into cell lines, animals,

bacteria, or plants with the function of the regulatory element

being monitored as changes in levels or activity of the

reporter RNA or protein; transient transfection is often used

for human cell lines whereas stable integration is used to

create transgenic model organisms such as fruitflies or mice

(Figure 5a and b).

Reporter constructs have classically been used to validate

enhancers on a one-by-one basis, but the simplicity of transient

transfection, combined with the massive throughput of current

sequencing techniques, has recently allowed adaption of the

method for high-throughput multiplexed reporter readout

(Figure 5c). These methods begin with a plasmid reporter

library containing thousands of different putative regulatory
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elements, with different methods employing different designs

for the reporter construct. In the self-transcribing active

regulatory regions sequencing (STARR-seq) method, genomic

fragments are cloned downstream of a TSS driving an open

reading frame (ORF) such that activity of the enhancer results

in increased levels of RNAs encoding the enhancer, as detected

by RNA-seq (Arnold et al., 2013, 2014; Shlyueva et al., 2014).

CapStarr-seq couples the standard STARR-seq protocol with a
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Figure 5. Experimental strategies to study enhancer activity. (A) In transient transfection assays, the enhancer (orange) is placed upstream of reporter
gene (green) driven by a heterologous promoter (brown) in a plasmid backbone, and then, the plasmid is transiently transfected into cells. The activity
of the enhancer is monitored by the level of reporter RNA or protein. (B) In a transgenic assay, a plasmid containing the enhancer and reporter gene is
microinjected into a mouse egg and then integrated into the mouse genome. Enhancer activity is monitored in the embryo using LacZ staining. (C)
High-throughput enhancer assays can be used to test enhancer activity. In STARR-seq, potential regulatory elements are inserted between an ORF and a
polyA tail and plasmids are transfected into cells; elements that can be detected in the RNA-seq data are functional enhancers. In the massively parallel
reporter assay (MPRA), sequence synthesis technology is used to link each potential regulatory element to a unique tag sequence. Then, an ORF is
inserted between the element and tag sequence to form plasmids that are transfected into cells. After performing RNA-seq, the enrichment ratio
between tag counts in the starting library and in the RNA-seq data is used to identify functional enhancers. In the enhancer-FACS-seq (eFS) method, a
pool of potential regulatory elements is cloned upstream of the GFP reporter gene. The plasmids are injected into fly embryos and GFP fly lines are
created which are crossed with a fly line that expresses CD2 under control of the tissue-specific enhancer Twi. Embryos from the cross are dissociated
and fluorescent-activated cell sorting (FACS) is used to select two group of cells: CD2+GFP+ and CD2+GFP�/+(input). Through sequence
enrichment analysis between the two groups, the elements that are functional enhancers can be identified. (see the color version of this figure at
www.informahealthcare.com/bmg).
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method by which enhancers of interest are captured by array

(Vanhille et al., 2015). In the massively parallel reporter assay

(MPRA), each reporter construct has a putative enhancer

followed by a reporter gene such as GFP with an identifying

sequence tag added downstream of the ORF of the reporter

gene. Deep sequencing of the mRNA produced from each

reporter plasmid in cells transfected with the construct library

is then performed to infer corresponding enhancer activity

(Kheradpour et al., 2013; Melnikov et al., 2014; Patwardhan

et al., 2012; Smith et al., 2013). While these high-throughput

methods make valuable contributions to validating putative

enhancers, they still suffer from the fact that (a) the reporter

plasmids do not represent in vivo chromatin conditions, (b) the

reporter genes have characteristics that may influence the

results (Arnone et al., 2004), (c) they do not take into

consideration the possibility that enhancers may only regulate

promoters with specific characteristics not represented in the

minimal promoter used in the reporter plasmid, and (d) the cell

line used for the study may lack certain characteristics (e.g.

specific TFs) required for activity of a particular enhancer.

As noted previously, studying enhancers identified by

chromatin structure using a transient reporter assay may not

reproduce the normal in vivo activity of the enhancer because

the plasmid lacks chromatin structure and modifications.

Thus, stable transfection assays or in vivo transgenic enhancer

assays are better models because the enhancer is in a

chromatinized state. In addition, transgenic assays allow one

to study cell-type-specific and development stage-specific

enhancer activity (Attanasio et al., 2013; Visel et al., 2009a,

2009c). Importantly, the spatiotemporal embryonic patterns of

enhancer reporter constructs allow high-confidence pairing of

enhancers with target genes (Kvon et al., 2014; Pfeiffer et al.,

2008) The VISTA Enhancer Browser is a central repository of

experimental validations analyzing human and mouse puta-

tive enhancers in transgenic mice; to date, approximately half

of the tested elements have shown enhancer activity.

Unfortunately, transgenic mice assays are not high through-

put. However, highly multiplexed libraries of enhancer

reporter constructs have been combined with FACS flow-

sorting and next-generation sequencing in a fly transgenic

reporter assay called enhancer-FACS-seq (eFS). For eFS, the

reporter construct contains a putative enhancer followed by a

reporter gene such as GFP (Figure 5c). Cell sorting is used to

select cells expressing the reporter gene (GFP) in a specific

tissue (identified using a separate tissue-specific reporter

gene). Then, the enhancer elements that are active in the

selected cells are identified by sequencing (Gisselbrecht et al.,

2013). In vivo reporter constructs do have fewer caveats than

transient assays and have been instrumental in understanding

the function of enhancers. However, they still have several

drawbacks. As noted earlier, the endogenous function of

enhancers often involves looping at long distances between

chromosomal domains in the 3D space of the nucleus and this

situation is not well reproduced by stably integrated reporter

constructs in which the enhancer and promoter are colocated

within a very short genomic distance. Reporter constructs can

also not reproduce other interactions present in the native

chromosomal context, such as the location of the enhancer

within a particular TAD.

Analyzing enhancers in their natural chromosomal
context

Attempts to alleviate the problems associated with reporter

assays lead to the development of new methods by which

enhancer function is disrupted within a normal chromosomal

context. The underlying rationale for these approaches is that

loss or reduction in the activity of a specific enhancer can

reveal its natural target genes through consequent changes in

gene expression. To delete or disrupt an enhancer, a genomic

nuclease must be brought to the enhancer using a sequence-

specific DNA-targeting method. The first DNA-targeting

method used in genomic technologies consisted of tandem

zinc finger DNA-binding domains (based on natural mam-

malian zinc finger TFs), each of which recognizes three

nucleotides. For example, an array of four to six zinc fingers

is able to recognize a specific 12–18 nucleotides sequence

(Urnov et al., 2010), which should theoretically provide

genomic specificity (Figure 6a). However, years of efforts in

engineering artificial zinc finger proteins suggest that the

recognition of DNA by the zinc finger domains is more

complex than originally thought. For example, the order of the

zinc finger domains within an array may impact on the

specificity. Although new strategies for screening and

assembling an array of zinc finger modules have been

developed (Maeder et al., 2008; Sander et al., 2011), these

strategies are still labor-intensive and not user-friendly.

Additionally, a recent study of the genomewide binding

pattern of an artificial zinc finger protein suggests that zinc

finger proteins have thousands of off-target binding sites

(Grimmer et al., 2014). Fortunately, zinc finger proteins are

not the only platform by which sequence-specific DNA-

binding domains can be used for genomic targeting.

Transcription activator-like effectors (TALEs) are derived

from the bacterial plant pathogen Xanthomona and contain

DNA-binding tandem repeats, each of which consists of

33–35 amino acids and can specifically bind to a single

nucleotide in a modular fashion (Figure 6b). TALEs have

several advantages over zinc finger DNA-binding domains:

they are easier to design because each module only recognizes

a single nucleotide, easier to construct, and have higher DNA-

binding specificity than do zinc fingers (Cermak et al., 2011;

Gaj et al., 2013; Ochiai et al., 2014). For both artificial zinc

fingers and TALEs, a nonspecific nuclease, such as Fok I, can

be fused to the DNA-binding array, creating sequence-

specific genomic scissors termed zinc finger nucleases

(ZFNs) or TALEs nucleases (TALENs) that can introduce a

double-strand break (DSB) at a specific genomic locus. A

complication is that the TALE and zinc finger platforms are

most commonly used as heterodimers, which means that 2

DNA-targeting constructs must be created for each targeted

site and four constructs must be created to delete an enhancer,

making these techniques laborious and time-consuming. The

most recent DNA-targeting platform is termed clustered

regularly interspaced short palindromic repeats (CRISPR).

This is an efficient and versatile genomic-targeting tool that

utilizes guide RNAs (gRNA) to bring a Cas9 bacterial

nuclease to a complementary DNA target (Figure 6c). The

CRISPR/Cas9 method, which does not involve a complex

assembly process, does not require heterodimerization, and
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has high targeting specificity, is rapidly becoming the

preferred genomic-targeting platform (Cho et al., 2014;

Sander & Joung, 2014).

Using genomic-editing tools, multiple studies have suc-

cessfully inactivated enhancers by introducing a DSB

(with consequent alteration of the nucleotides proximal to

the cut site) precisely at a critical TF-binding site (Figure 6d).

One such study showed that loss of CTCF sites at the

boundary of large enhancer regions caused expression

changes of genes within the large enhancer domain (Dowen

et al., 2014). Another study demonstrated that an enhancer

located 30 kB upstream of the Mmp13 promoter regulates

Mmp13 expression through RUNX2 binding and an enhancer

located 10 kB upstream of the promoter represses Mmp13

expression through binding of 1a,25-dihydroxyxitmin D3

(Meyer et al., 2015). However, introducing a DSB at a single

motif may not totally inactivate an enhancer because enhan-

cers usually consist of a cluster of TF motifs; removing one

motif may not substantially affect overall activity of the

enhancer. To achieve a total loss of enhancer activity, one can

use genomic-editing tools to create two DSBs flanking

the target enhancer region; the enhancer will be deleted and

the gap will be automatically repaired by nonhomologous end

joining (NHEJ) (Figure 6e). Alternatively, one can replace the

enhancer by coupling a single DSB with homologous

recombination, using a plasmid-containing sequences having

homology to the regions flanking the enhancer. One study

deleted an allele-specific sequence of a large enhancer located

100 kB downstream of Sox2 in a mouse ESC line and, using

allele information, showed that the enhancer is responsible for

90% of Sox2 expression (Li et al., 2014); these results were

supported by an independent CRISPR/Cas9-mediated

enhancer deletion study (Zhou et al., 2014). Also, the deletion

of enhancers that harbor colorectal cancer-associated SNPs

showed dramatic impacts on expression of MYC, even though

the enhancer is �350 kB away [(Yao et al., 2014) and

unpublished data]. Another study successfully validated

enhancer–gene linkages identified by ChIA-PET or 5C

using a TALEN-mediated homologous recombination knock-

out system (Kieffer-Kwon et al., 2013).

Deletion and disruption are not the only in vivo approaches

for targeting an enhancer. As described earlier, enhancers are

characterized by distinct histone modification and DNA

methylation patterns, and thus, artificial modification of these

epigenetic marks should be able to influence enhancer

activity. Fusing chromatin-modifying domains, such as his-

tone acetylases, histone methylases, DNA methylases, or

DNA demethylases, to artificial zinc finger proteins and

TALEs can create tools that can enhance or repress enhancer

activity (Grimmer et al., 2014). Also, fusion of a chromatin-

modifying domain to a catalytically deactivated Cas9 (dCas9)

can be used to alter the activity of the enhancer at a target

sequence (Hilton et al., 2015; Kearns et al., 2015). A

chromatin-modifying tool created by fusion of TALE

domains and the lysine-specific demethylase 1 (LSD1) that

can demethylate H3K4 showed that four of the nine tested

TALE-LSD1 fusions can reduce the level of H3K4me1 or

H3K27ac at enhancers and cause downregulation of nearby

genes by at least 1.5-fold (Mendenhall et al., 2013). Finally,

both dCas9-LSD and dCas9-KRAB fusion proteins have been

shown to decrease Oct4 and Tbx3 expression upon targeting

their distal enhancers in mouse embryonic stem cells.

However, the LSD and KRAB effectors appear to use

different mechanisms to repress gene expression when
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Figure 6. Experimental strategies to identify target genes. (A) DNA-targeting tools can consist of tandem zinc finger DNA-binding domains, each of
which binds to three nucleotides of DNA. Top: fusion of the nonsequence-specific nuclease FokI to zinc finger arrays creates genomic scissors called
zinc finger nucleases (ZNFs); dimerization of two ZFNs targeting a specific sequence from opposite sides is required for DNA cleavage. Bottom:
effector domains can also be fused to zinc finger arrays; the ZNF-effector proteins do not require heterodimerization to function. (B) DNA-targeting
tools can consist of tandem TALE DNA-binding domains, each of which binds to one nucleotide of DNA. Top: fusion of the nonsequence-specific
nuclease FokI to the DNA-binding array creates TALENs. Bottom: effector domains can be fused to TALE domains. Similar to ZNFs, two TALENs are
necessary to perform a site-specific DNA cleavage, but only one TALE-effector is needed for modify the genome. (C) The CRISPR/Cas9 system
utilizes guide RNAs (gRNAs) to bring a Cas9 nuclease to a complementary DNA target to perform site-specific genomic editing. Effector domains can
also be fused to a nuclease-deficient Cas9 (dCas9). (D) Genomic-editing tools can be used to create a single DNA cleavage event that disrupts a TF
motif. (E) Two sets of heterodimeric ZFNs or TALENs or one pair of guide RNAs can be used to create two DSBs flanking the target enhancer region.
The enhancer will be deleted, and the gap will be repaired by nonhomologous end joining (NHEJ). (F) Enhancer activity can be repressed using
chromatin-editing tools if an effector domain, such as a DNA methyltransferase (DNMT) that can methylate an enhancer or a histone demethylase
(LSD1), that can remove methylation from H3K4me1, is fused to the zinc finger or TALE arrays or to a nuclease-deficient Cas9 (dCas9). (see the color
version of this figure at www.informahealthcare.com/bmg).
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tethered to an enhancer (Kearns et al., 2015) (Figure 6f).

Instead of repressing enhancer activity, another study used a

fusion of dCas9 and the p300 histone acetylase transferase

domain to increase enhancer activity, upregulating expression

of four nearby genes, the farthest of which was 54 kB away

(Hilton et al., 2015). Although genome-editing and chromatin

modification technologies have great potential for the studies

of gene regulation networks, these technologies are still in

early developmental and low-throughput stages.

Conclusions and future perspectives

Many studies suggest that enhancers are critical regulators of

cell-specific phenotypes and that they contribute to the altered

transcriptomes of diseased states (Giorgio et al., 2015;

Groschel et al., 2014; Sur et al., 2012). However, investigators

face many challenges in trying to understand the function of

enhancers, including cell-type specificity, flexibility of

distances between enhancers and target genes, and multiway

interactions between enhancers and target genes. Fortunately,

the advent of a plethora of genomewide assays based on next-

generation sequencing has revolutionized our ability to

interrogate enhancer–gene regulatory networks, enabling a

deeper understanding of the roles of enhancers in develop-

ment and disease. In earlier sections, we described three

general approaches to study enhancer–gene regulatory net-

works: chromosome interaction maps, computational predic-

tions, and experimental validations. However, there are still

unanswered questions to consider and additional datasets that

must be collected to further our understanding of the

mechanisms by which enhancers work.

Are all H3K27Ac-marked enhancers functional?

It is a common assumption in the field that all DHSs that are

flanked by nucleosomes having H3K27Ac are active in that

cell type. However, recent experiments suggest that this is not

necessarily true. For example, reporter studies have shown

that only a subset of enhancers predicted by DHS and histone

modification are functionally validated using transgenic

mouse assays (Nord et al., 2013). This may result from

limitations of the transgenic mouse model; e.g. only enhan-

cers active in a specific embryonic stage may show function-

ality or the reporter constructs may lack important higher

order chromosomal context as described previously.

Alternatively, the relatively low rate of enhancer validation

may suggest that DHS and histone modification are not the

best way to predict the subset of functional enhancers. For

example, in a recent study, enhancers that had lower levels of

H3K27Ac were reported to have a higher validation rate in

reporter assays than enhancers that had higher levels of that

mark (Kwasnieski et al., 2014). One can imagine that the

level of H3K27Ac at an enhancer is a direct consequence of

the efficiency of binding of a TF that can recruit a HAT to that

site. However, the most efficient HAT-containing complexes

might not include the factors most important for interacting

efficiently with promoters via looping. It is possible that all

functional enhancers will have some level of H3K27Ac but

that not all enhancers with H3K27Ac are functional; clearly,

further studies are needed.

Are all enhancer–promoter loops functional?

Three-dimensional nuclear architecture studies clearly show

that enhancers physically contact promoters in a cell-

type-specific manner and that these interactions are con-

strained by TADs that are associated with boundary proteins

such as CTCF and cohesin. However, the 3D datasets have

been collected in relatively few cell types and under a small

number of conditions. Fortunately, future improvements in

sequencing technologies, further reduction in sequencing

costs, and the improvement of computational analysis

methods will result in high-resolution chromosome inter-

action maps becoming available for more and more cell types.

At this point, it is not clear if all enhancer–promoter loops can

be identified by methods such as Hi-C, or if this method is

more amenable for identifying certain classes of structural

chromatin interaction loops. More importantly, it is not

known if most enhancer–promoter loops are functional. There

have been few focused analyses to understand the epigenetic

marks that are directly involved in these loops. It is possible

that loops mediated by TF–TF interactions between enhancers

and promoters could occur prior to the recruitment of critical

coactivators needed to stimulate transcription; this could

serve as a mechanism for poising genes for proper expression

in response to a later developmental or environmental cue. In

this sense, the enhancers would be available but not active;

perhaps active enhancers are the subset of those distal

regulatory elements that loop to promoters and that also

recruit a co-activator such as CBP (i.e. the enhancer must be

involved in a loop and have H3K27Ac).

How do enhancers choose target genes?

A priori, it would seem reasonable that enhancers would

regulate the nearest promoter, and early studies may have

propagated this view due to the fact nearby sequences were

the easiest to test. However, there is a paucity of data

documenting the actual percentage of enhancers that regulate

the nearest gene. Most studies that address this question are

based on looping assays. For example, a 5C study in K562,

GM12878, and Hela cells showed that 73% of the tested distal

elements do not link to the nearest gene (Sanyal et al., 2012),

an RNA polymerase II ChIA-PET study in K562 and MCF7

cells found that �40% of the enhancers involved in loops do

not interact with the TSS of the nearest gene (Li et al., 2012),

a CHi-C study in GM12878 cells found that one-third of the

distal interactions were not directed to the promoter of

the nearest gene (Mifsud et al., 2015), and a study using the

ELMER computational method found that 85% of tumor-

specific enhancers that could be linked to the expression of a

nearby gene skipped the nearest gene (Yao et al., 2015). The

reasons behind this high level of nearest-promoter skipping

are not clear. It is possible that the chromatin conformation

studies do not have the resolution or read depth to detect

looping between closely spaced genomic elements. For

example, the CHi-C data, which as noted previously is

enriched for reads involving promoters, showed a higher
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percentage of nearest-gene enhancer loops than did other

assays (Mifsud et al., 2015). It is also possible that how

enhancers choose target genes is affected by genomic or

epigenomic context. In support of this hypothesis, multiple

studies have shown that a skipped gene is not expressed in that

cell type. For instance, the percentage of enhancers interact-

ing with nearest genes in the 5C study in K562, GM12878,

and Hela cells increased from 27% to 47% when only

expressed genes were used in the analysis (Sanyal et al.,

2012). Additionally, a study in Drosophila showed that 79%

of a set of intragenic enhancers regulates their host gene

(Kvon et al., 2014) and an ELMER analyses of primary

tumors found that 66% of a set of intragenic enhancers

were linked to their host gene (Yao et al., 2015). This higher

percentage of nearest-gene regulation in the set of

intragenic enhancers, as compared to the set of all enhancers,

may be due to the fact that intragenic enhancers tend to

fall within genes that are actively expressed within that cell

type; therefore, the nearest promoter to an intragenic enhan-

cer is usually an active promoter. Although these limited

studies provide some clues as to how enhancers choose target

genes, this important topic still needs further investigation

to define the relevant factors ruling target gene selection;

e.g., does gene density and/or the presence of a boundary

element such as a certain class of CTCF binding sites

influence target gene choice? Clearly, it will be important

to determine the percentage of ‘‘nearest promoter’’ regulation

observed upon enhancer deletion to see whether the same

low percentage is observed as in the looping studies.

However, this will require large numbers of enhancers to be

deleted and, to date, only a handful have been studied in this

way (Dowen et al., 2014; Kieffer-Kwon et al., 2013; Meyer

et al., 2015; Li et al., 2014;Yao et al., 2014; Zhou et al.,

2014).

How do we distinguish direct from indirect actions of
enhancers?

In general, predictions for connectivity between genes and

enhancers (generated either from chromosome interaction

maps or from computational methods) have considered only

interactions on the same chromosome and within a defined

genomic distance. However, it is theoretically possible that

interactions between enhancers and promoters on different

chromosomal arms or even on different chromosomes could

occur. Genome-editing tools provide the most unbiased

method by which to obtain a list of putative target genes.

However, even in these cases, assumptions are generally made

that the nearest gene that shows a decrease in expression is

likely the direct target and that genes located farther away or

on other chromosomes are indirectly affected due to changes

in cell phenotype caused by a decreased expression of the

direct target(s); this is particularly plausible if the nearest

gene that shows a change in expression is a TF or a regulator

of a signaling pathway. Perhaps one could begin to separate

the direct target genes from the indirect target genes in a

follow-up experiment by simply providing another copy of the

‘‘nearest regulated’’ target gene at a separate chromosomal

location. The consequences of lowered expression of that

target gene would then be eliminated and then perhaps only

direct targets of the deleted enhancer would show changes in

expression.
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