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Abstract

1. Populations in variable environments are described by both a mean growth rate and2

a variance of stochastic population growth. Increasing variance will increase the width of

confidence bounds around estimates of population size, growth, probability of and time4

to quasi-extinction. However, traditional sensitivity analyses of stochastic matrix models

only consider the sensitivity of the mean growth rate.6

2. We derive an exact method for calculating the sensitivity of the variance in pop-

ulation growth to changes in demographic parameters. Sensitivities of the variance also8

allow a new sensitivity calculation for the cumulative probability of quasi-extinction. We

apply this new analysis tool to an empirical dataset on at-risk polar bears to demonstrate10

its utility in conservation biology

3. We find that in many cases a change in life history parameters will increase both the12

mean and variance of population growth of polar bears. This counterintuitive behaviour

of the variance complicates predictions about overall population impacts of management14

interventions. Sensitivity calculations for cumulative extinction risk factor in changes

to both mean and variance, providing a highly useful quantitative tool for conservation16

management.

4. The mean stochastic growth rate and its sensitivities do not fully describe the18

dynamics of population growth. The use of variance sensitivities gives a more complete

understanding of population dynamics and facilitates the calculation of new sensitivities20

for extinction processes.

Keywords: conservation, extinction, polar bears, population growth, population via-22

bility, sensitivity, stochastic matrix model, variance of population growth
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Introduction24

All natural populations experience some random environmental variation. Mounting ev-

idence suggests that the frequency and severity of environmental variation is changing,26

at local and global scales. Consequently, stochastic modeling approaches have become

increasingly common in conservation studies concerned with predicting population per-28

sistence (Lande et al., 2003; Morris and Doak, 2002; Boyce et al., 2006). Environmental

variation is also important when studying life history evolution, where the degree of vari-30

ation is expected to contribute to the evolution of lifespan and reproductive traits (Morris

et al., 2008; Tuljapurkar and Horvitz, 2006).32

Stochastic matrix models have become a standard tool for investigating population

growth in variable environments. These models describe populations in terms of tempo-34

rally and/or spatially variable vital rates that quantify transition rates between stages

that may be age classes, ontogenetic stages, spatial regions, or other characteristics. The36

long-run growth rate of such a population is the stochastic growth rate a. This growth rate

is widely used in biology as a fitness measure in evolutionary problems(see Tuljapurkar38

et al. (2009) for a discussion), and as a descriptor of growth or persistence in ecological

and PVA analyses (eg. Morris and Doak (2002)).40

As important as the growth rate itself is its sensitivity to changes in model parame-

ters. Deterministic sensitivities measure the effect on growth rate of a small change in42

one or several matrix elements, assuming all other rates remain constant (ie, its deriv-

ative) (Caswell, 2001). These changes are called perturbations, and they can be chosen44

to evaluate sensitivities with distinct biological meanings. (One can measure sensitiv-

ity to changing a single vital rate, or to changing all of them, for example.) A closely46

related quantity, elasticity, measures the proportional response of growth rate to propor-

tional, rather than absolute, perturbations. Tuljapurkar (1990) found an exact method48

for calculating sensitivities of the stochastic growth rate. Tuljapurkar and Horvitz (Tul-

japurkar et al., 2003) demonstrated how to decompose the proportional sensitivity of the50

growth rate into changes in the means and to changes in the variances of life history

parameters. It is also possible to assess sensitivity and elasticity to perturbations within52
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a single environment or subset of environments within an overall range of specified envi-

ronmental states (Aberg et al., 2009; Ezard et al., 2008; Caswell, 2005). Habitat-specific54

sensitivities can be important for populations experiencing frequent disturbance, or when

environmental variation is defined by specific variables like rainfall or temperature. In56

the stochastic case, one can estimate stochastic sensitivities using Tuljapurkar’s approx-

imation (Tuljapurkar, 1982) if environmental variation is small (see Caswell, 2001 for an58

exposition).

However, in stochastic environments both a mean growth rate and a variance are60

required to fully describe population dynamics (Tuljapurkar and Orzack, 1980). Consider

a population composed of N individuals at time t. Define the total population growth over62

time t as Λ(t) = N(t)/N(0). In the limit of large t, log Λ(t) is asymptotically normally

distributed (Tuljapurkar and Orzack, 1980). Suppose we have many sample paths of the64

stochastic environmental process, then for large t we can estimate the mean stochastic

growth rate as â = log Λ(t)/t and its variance across sample paths as v̂ = Var[log Λ(t)]/t.66

This variance (v) is used in studying population extinction (Beissinger and McCullough,

2002), analyzing time series of population data (Lande et al., 2006; Saether et al., 2007;68

Engen et al., 2005), estimation of effective population size (Engen et al., 2010), and making

stochastic population forecasts (Lee and Tuljapurkar, 1994). For a complete picture of70

stochastic population dynamics we need to understand the properties of v, not just of a.

Particularly in situations where v is large, a distribution-focused approach may be more72

appropriate than existing mean-focused sensitivity analyses.

As illustrated in Figure 1, there are several ways the distribution of population growth74

could respond to perturbation (Tuljapurkar and Orzack, 1980). We aim to examine two

questions : 1) how does one formulate a joint-interpretation of sensitivities of the distrib-76

ution of population growth that accounts for changes to both the mean and the variance?

2) Under what circumstances is it appropriate to use only a mean-focused sensitivity78

analysis, and when should biologists use our more distribution-focused framework?

Here we present a new exact method for calculating the sensitivity of the variance80

of stochastic population growth (v). Our formulas apply to general kinds of stochastic
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variation (large or small, serially correlated or not) in models with a general age-stage82

structure. The general sensitivity calculation allows us to estimate sensitivities and elas-

ticities of the variance to specific changes in life history parameters both across habitats84

and in specific habitat states. The variance sensitivity also allows the calculation of the

sensitivity of cumulative extinction risk, which is useful in studying conservation.86

We apply the new sensitivity calculations to empirical data from an at-risk population

of polar bears (Ursus Maritimus)(Hunter et al., 2007, 2010) and discuss the results in the88

context of conservation management. Increases in stochastic variation necessarily increase

the uncertainty of population projections and decrease predicted persistence times. It is90

clear that management efforts will benefit in several ways from an understanding of which

vital rates most strongly affect v. We are especially interested in cases where a and v92

respond differently to the same change in a particular vital rate. Our results raise impor-

tant questions about how we should interpret a change that increases both the mean and94

the variance of growth. Can we manage for both a and v?

96

Materials and Methods

Structure and Assumptions of the Population Model98

We work with discrete time matrix population models. (The work of Ellner and Rees

(2006) shows that our results will also apply to integral population models (IPMs).) We

suppose that individuals are in discrete stages that may be age classes, stage classes (e.g.,

Caswell (2001)), age-stage classes (e.g., (Lebreton, 1996), or spatial habitats. Newborns

constitute stage 1 (but our results extend to cases with additional modes of reproduction

such as clonal or vegetative reproduction). The population is counted at discrete intervals

and there are per-capita rates x(c, d, t) at which an individual in stage d at t contributes

individuals to stage c at time t+1. These vital rates include sexual reproduction, survival,

growth, reversion, migration and so on. At time t the population projection matrix is X(t)

with elements x(c, d, t). Population numbers are contained in a vector with components
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n(c, t) and total population is P (t). There is a known initial population vector N(0) and

population changes over time according to

N(t) = X(t)N(t − 1)

Temporal variation in vital rates is driven by changing environmental conditions. En-

vironments are assumed to change according to a stochastic process that is ergodic and100

mixing. Such processes include (a) choosing environments from the same probability dis-

tribution independently in each time period, (b) using a linear stable time series model102

for the environmental driver, (c) choosing environments from an ergodic (irreducible and

aperiodic) Markov chain with k states. At each t the state of the environment determines104

the matrix of vital rates. We assume that the set of population projection matrices obey

the conditions for demographic weak ergodicity (Cohen, 1979; Lange and Holmes, 1981).106

Let X(t) be a (time-varying) random matrix that obeys these assumptions. After a

period of T years the population’s dynamics depend on a product of population projection

matrices X(T )X(T − 1) . . . X(1). Over this interval the cumulative growth of population

number is, say, Λ(T ). Suppose we have many independent sample paths of this process,

each of length T time steps.The stochastic growth rate of the population is the same for

each sample path, j:

a = lim
T→∞

log Λj(T )

T
= lim

T→∞
E log Λ(T )

T
(1)

where E indicates the expectation over all environments. The variance of stochastic

growth is computed across sample paths, and grows at a rate:

v = lim
T→∞

Var[log Λ(T )]

T
(2)

Tuljapurkar and Horvitz (2003) showed how we can estimate a. Here we are interested

in v, the variance of population growth across sample paths. We generate several, say M ,

independent sample paths, each for T time steps. In sample path j (j = 1, 2, 3 . . . , M)
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the cumulative growth of the population is Λj(T ). Then we can estimate:

â � 1

MT

M∑
j=1

log Λj(T ) (3)

v̂ � 1

MT

M∑
j=1

(log Λj(T ) − T â)2 (4)

In the limit as t → ∞, the estimates become exact: â → a and v̂ → v.

Sensitivity of the Variance108

We are interested in how a systematic change in vital rates will affect the mean and

variance of stochastic population growth. Our new results on the sensitivity of the variance110

(see Appendices for details) extend previous work by Tuljapurkar (1990) and Tuljapurkar

et al. (2003), see also Caswell (2001) for useful exposition.112

We start with a population whose dynamics follow a known series of projection ma-

trices, X∗(t), where t ≥ 1, and that has stochastic growth rate a(0) and variance of

growth v(0) (as defined above). Consider this the baseline, or reference, population. Sen-

sitivities are the rates of change of these two quantities in response to a change in the

projection matrices. To find general formulas for sensitivity, we examine the effect of a

small (but otherwise arbitrary) change in the population projection matrices, such that

X∗(t) → Xj(t) = X∗(t)+sH(t), for small s. We assume of course that the latter matrices

satisfy demographic weak ergodicity just as do the baseline matrices. The matrices H(t)

are time-varying perturbations of the baseline matrices. By choosing the perturbations

appropriately we can explore, for example, the effect of perturbing the mean, the variance

or habitat-specific values of each vital rate. Call the stochastic growth rate of this new,

perturbed, population a(s) and its variance v(s). The stochastic sensitivities of a and v

are the derivatives:

Sa = lim
s→0

a(s) − a(0)

s

Sv = lim
s→0

v(s) − v(0)

s
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These sensitivities are derivatives of a and v, (see Steinsaltz et al. (2011)).

114

For general stochastic variation in vital rates we must estimate these derivatives using

simulation. On each sample path, the stochastic growth rate of this new, perturbed,116

population will be aj(s).

We create M multiple independent simulations (sample paths) of the baseline popu-

lation, each of length T . On sample path j, we denote the (baseline) matrix sequence by

X∗
j (t) and also define vector sequences Uj(t), Vj(t) generated by

Uj(t) =
X∗

j (t)Uj(t − 1)

λj(t)
(5)

λj(t) = |X∗
j (t)Uj(t − 1)| (6)

V T
j (t − 1) =

V T
j (t)X∗

j (t)

ηj(t)
(7)

ηj(t − 1) = |V T
j (t)X∗

j (t)| (8)

where the Uj gives the stage structure of the population, Vj is the reproductive value118

vector. For each sample path j we record the sequence of matrices, the single step growth

rates λj(t) and the vectors in (5) and (7). These quantities are used to estimate the120

baseline stochastic growth rate a and variance v as discussed above.

Now consider what happens when we make a small (but otherwise general) change in122

the matrices. For each sample path j, call the perturbation matrices Hj(t). The deviation

from baseline growth over a single time step in path j is:124

ξj,t =
Vj(t)

T Hj(t)Uj(t − 1)

λj(t)Vj(t)T Uj(t)

The mean of these for that sample path is:

ξ̄j = lim
T→∞

1

T

T∑
t=1

Vj(t)
T Hj(t)Uj(t − 1)

λj(t)Vj(t)T Uj(t)
.

The average of these deviations across all sample paths is the known Tuljapurkar et al.

(2003) stochastic sensitivity of the growth rate:
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Sa = ξ̄ =
1

M

M∑
i=j

ξ̄j

Our main new result is that the sensitivity of the variance is estimated as (for derivation

see Appendix B):126

Sv =
2s

M

M∑
j=1

(aj − ā)(ξ̄j − ξ̄) (9)

The above estimates converge to their desired exact values as the length T and number M

of sample paths grows large. Sampling errors for the estimators can be computed using128

the standard statistical methods for any mean.

Sensitivities and Elasticities and Habitat-specific Sensitivities,130

Oh my!

A habitat specific perturbation means that the Xj(t) differ from the X∗(t) only in one,132

or a subset, of all the possible environmental states. In this case, the quantities ξj,t will

reduce to zero unless the population is in the perturbed habitat at time t. Thus the ξ̄j for134

any path will be the habitat-specific sensitivities of aj. We will refer to habitat-specific

sensitivities for a and v as Sh
a and Sh

v respectively, where subscripts indicate the variable136

whose sensitivity is being calculated and superscripts indicate the type of perturbation

applied.138

The majority of recent stochastic population models have focused on elasticities, or

proportional sensitivities(Tuljapurkar et al., 2003). Tuljapurkar et al (2003) showed that140

the general stochastic elasticity (Es) can be decomposed into contributions from changing

the mean Esμ and the standard deviation Esσ of parameters. Following their convention142

we will use the notation Eμ
a ,Eσ

a , Eμ
v ,Eσ

v to refer to these kinds of proportional perturba-

tions.144
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Extinction Probabilities and Time to Extinction

We define a population to be quasi-extinct if it falls to a fraction θ = 0.01 of its current

size. Call this θ the quasi-extinction threshold. Then the probability of eventual quasi-

extinction will be (after Tuljapurkar and Orzack (1980) :

Pq =

⎧⎨
⎩ 1 if ā < 0

e
2a log θ

v if ā > 0

and the expected time to extinction:

〈T 〉 =
− log θ

|a|
The sensitivity of Pq can be calculated as (see Appendix C)

SPq = Pq(
Sa

v
− a

v2
Sv) (10)

When dealing with elasticities of a and v instead of sensitivities, (recalling that Sa = aEa),

this becomes:

EPq = Pq(
aEa

v
− aEv

v
)

=
a

v
Pq(Ea − Ev)

For populations with a < 0 extinction is certain, Pq = 1, and its sensitivity is uninfor-

mative. In this regime of certain extinction, and indeed in most conservation scenarios,

it is more useful to know the probability that our population will hit the extinction

threshold before some time horizon, t. We define this time-horizon-specific probability of

quasi-extinction Pq(t) as the cumulative probability of quasiextinction by time t:

Pq(t) = P (Tq ≤ t) =G(t; θ, a, v)

=Φ
( log θ − at√

vt

)
+ e( 2 log θa

v
)Φ
( log θ + at√

vt

)
where Φ is the standard normal probability integral (Lande and Orzack, 1988; Dennis

et al., 1991). From the preceding equation we obtain another new result, the sensitivity
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of Pq(t) which, notably, requires the sensitivites of both a and v (see Appendix D):

SPq(t) =
−1√
vt

φ
( log θ − at√

vt

)(
tSa +

(log θ − at)

2v
Sv

)
+ e

2 log θa
v

(2 log θ

v2
(vSa − aSv)Φ

( log θ + at√
vt

))
+

1√
vt

(
tSa − (log θ + at)

2v
Sv

)
φ
( log θ + at√

vt

)
(11)

Polar Bears and the Conservation Consequences of Variation in146

Pack Ice

Hunter et al. (2007, 2010) analyzed data on polar bears (Ursus maritimus), using popula-148

tion projection matrices for 5 years, constructed from mark-recapture studies conducted

by the USGS and Canadian Wildlife Services from 2001 to 2006. The extent and dura-150

tion of winter pack ice is of critical importance for polar bear survival, both in terms of

successful hunting and breeding (Stirling et al., 2004; Durner et al., 2004). As a result152

of global climate change, the number of days of pack ice in any given year has become

highly variable. Here we analyze the sensitivity of the variance to address the potential154

impacts on these polar bears of increasing environmental variability.

We follow the assumptions of Hunter et al. (2007, 2010) regarding the stage structure156

of polar bear life history (Figure 2), and the categorization of projection matrices as rep-

resenting “good” or “bad” habitats depending on the sign of their λ (ie. positive/negative158

growth is good/bad). For every time t in our model, a projection matrix was chosen at

random from one of the three “good” (2001 to 2003) or two “bad” (2004 , 2005) habitat160

states, respectively. To explore a range of possible future climate scenarios, in our projec-

tions we vary the probability of a “bad” year (P (bad year) = q) from 0 to 1 in increments162

of 0.05. For all values of q, the probability of each of the “good” years is thus (1 − q)/3

and of bad years q/2. We ran 500 such simulations of 500 years (M = 500 and T = 500)164

for each value of q.

At stationarity, the majority of individuals in the simulated population, for any se-166

quence of environments, were in stage 4 (cubless adult females) (see Supplementary Figure
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E). Individuals in this stage also have the highest reproductive value, hence the dynamics168

of the population are dominated by parameters involving stage 4. In light of this dom-

inance, and the extensive analysis of other vital rates already undertaken by Hunter et170

al (2007, 2010) we present mainly results regarding σ4, the survival rate of cubless adult

females.172

We focus primarily on the sensitivities for the variance in long term growth, then go on

to discuss sensitivities for cumulative probability of quasi-extinction. We begin with the174

sensitivity of a and v in the form of habitat-specific sensitivities, with a view to answering

a question about management: is it wiser to concentrate on making the bad years better,176

or the good years excellent?

Results178

Habitat Specific Sensitivities

We calculated the distinct effects on the mean and variance in stochastic growth of per-180

turbing individual vital rates in each one of the five environmental states, separately.

Think of the perturbation as a small increase, analogous to a successful conservation in-182

tervention. Thus, perturbations in habitats 4 and 5 amount to making a bad year less

bad, while perturbations in habitats 1-3 essentially make good years even better (with184

respect to the perturbed rate).

Given that our perturbations are of the bigger-is-better variety (increases to survival,186

fertility, breeding probability) we are unsurprised to find habitat-specific sensitivities of

a are positive with respect to all vital rates (Figure 3).188

The pattern of sensitivities of v is much less straightforward to interpret (Figure 3).

The standard expectation would be that regardless of environment, increasing survival190

should increase the stochastic growth rate and decrease its variance. Taking into account

the division into “good” and “bad” years, one can partition the effect on v into changes192

affecting variation within groups (good/bad) of habitats and between groups. Based on

this divide, we then expect sensitivities of v to be positive with respect to perturbation194
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in good environments (making good years better increases the difference between “good”

and “bad”) and negative in bad environments (since making bad years better decreases196

the difference between “good” and “bad” habitats). For the most part, this expectation

is correct (Figure 3).198

Deviations from this rule occur because the effect on v of habitat specific perturbation

also depends on the distribution of environments. If the sequence of environments is200

mostly good(bad) v will be driven by variation in growth rates within good(bad) habitat

groups. For example, we see that when good years are common (q = 0.15), Sh
v (σ4) is202

positive for perturbations in habitat 1 and 3, but negative in habitat 2. The observed

values of σ4 in environments 1-3 were 0.9918, 0.9911 and 0.9662. Increasing survival in204

habitats 1 increases the variance between good years and overall variance as well, resulting

in a positive sensitivity. Increasing survival in habitat 2 decreases the within-good-year206

variance, causing the negative sensitivity value. Increasing survival in habitat 3 decreases

within-good-habitats variance, but increases the between-all-habitats variance, leading to208

an overall positive sensitivity value. From a conservation perspective then, this begs the

question: is a management intervention that increases both the mean and the variance of210

population growth rate a desirable one?

Elasticities of the Mean and Variance of Stochastic Growth212

The näıve expectation here is that by perturbing the vital rates by the same amount in all

habitats, the variance in growth rate would be unchanged since the variance between habi-214

tats is unchanged. However, changing a single vital rate alters the correlation structure

of the matrices and the stable stage structure, resulting in some counterintuitive effects216

on v. We found that with one notable exception, all perturbations increased v, with the

largest elasticities in the case of frequent (but not exclusively) bad years (Figure 4).218

Perturbations that affect v, must necessarily affect population growth rate to different

degrees in the different habitats. Increasing σ4 in all habitats has a positive effect on220

the variance, but a larger effect in bad habitats than in good habitats, due to the larger

occupancy of stage 4 in bad years. This disproportionate increase in growth in bad222
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habitats leads to decreased variance between habitat states and thus a decrease in v

overall.224

Unsurprisingly, increasing the variance of vital rates also increases v (see Figure 5).

The elasticity is again highest for σ4, and high frequency of bad environments. The226

elasticity to other parameters decreases as the frequency of bad environments goes up,

again probably due to the skewing of stage structure towards all stage 4 individuals.228

Elasticities of Extinction

As noted by Hunter et al (2010), for all q > 0.15, the probability of quasi-extinction for230

this population is 1. In our simulations, a transition occurs (see Supplementary Figure

F) as q increases, from very rare extinction (Pq � 0) to certain extinction (Pq = 1). The232

transition to extinction is very abrupt and occurs very near to q = 0.165, (ie, where a 
 0:

see Supplementary Figure G). Since the sensitivity of Pq depends on its value (Appendix234

C), SPq is always zero for this population. When q < 0.165, Pq = 0 and thus Spq = 0.

When q > 0.165, extinction is certain and insensitive. We suspect this example system236

is unusual in its insensitivity of Pq to perturbation. The analysis of sensitivities for Pq

has potential to be very informative for other systems with a broader parameter region238

of transition between growth and extinction risk.

In populations (such as these polar bears) where quasiextinction is certain, the best240

hope of conservation management is to find interventions that will extend the time to

extinction. An intuitive way to find such interventions is to look at the sensitivities and242

elasticities of the cumulative probability of quasiextinction (SPq(t) and EPq(t)) to changes

in vital rates. For example, if changing a vital rate results in strongly negative SPq(t), that244

means the change slows down the extinction process, causing extinction at time t to be

less likely.246

We find that, for all values of q, Pq(t) is most sensitive to changes in adult survival

(σ4) and is only non-zero for t close to 〈Tq〉 (see Figure 6). When a > 0, increasing means248

of vital rates (top left panel) causes extinction to happen faster, and increased variance

in vital rates (bottom left panel) causes extinction to slow down, both counterintuitive250
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results at first glance. This results makes sense, however, if we consider that when a > 0

quasiextinction is unlikely but very rapid when it does occur. The only road to extinction252

is to experience a string of bad years at the very beginning of the process before growth

takes over. For most of our simulations, a < 0, and EPq(t) is negative for increase to254

means and positive for increase to variance of vital rates. This implies that increasing

mean adult survival slows down extinction, and increasing the variance of survival would256

speed it up. While the magnitude of EPq(t) is only weakly affected by q, the range of values

of t over which EPq(t) is non-zero contracts sharply around 〈Tq〉 (which also decreases), as258

environmental quality degrades (higher q).

We also calculated habitat-specific sensitivities of Pq(t) for all vital rates, and here260

present results for a range of q. (Figure 7). When a > 0 (leftmost panel), sensitivities

are larger for interventions in good years than in bad, and this pattern slowly reverses as262

a becomes negative. When a is negative (center and right panels) sensitivities are most

strongly negative for perturbations in bad years. This result implies that in management264

terms it is most advantageous to protect bears in bad years, which agrees what we observed

in the habitat specific sensitivities of a and v (Figure 3). Unlike Sh
a and Sh

v , the magnitude266

of Sh
Pq(t)

decreases rapidly as q increases.

Taken together our results suggest that for this population of bears, Pq(t) could be268

ameliorated by management intervention even in the worst-case range of future environ-

ments (q 
 1), although sensitivites are of course highest when a is only weakly negative.270

It is most important to note that SPq(t)
is a function of a, v, Sa and Sv, so managing to

maximize time to extinction must factor in population growth and its variance, as well272

as the sensitivities for both.

274
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Discussion

Conclusions: Beyond the mean276

We have given an exact method for calculating the stochastic sensitivity of the variance

in long term population growth, and demonstrated its potential utility in application to278

questions in conservation biology. This variance sensitivity yields new information about

the variance, and also makes possible the calculation of sensitivities for the probability of280

quasi-extinction.

Increase in the variance of a necessarily increases the width of confidence bounds282

around estimates of population size, population growth, probability of and time to qua-

siextinction (Doak et al., 1994; Lewontin and Cohen, D, 1969) especially over short time284

intervals. Thus, sensitivity of the variance in growth is a valuable and necessary addition

to the analysis toolkit for populations at risk. Our analysis has demonstrated that mean286

and variance sensitivities and elasticities do not always behave in an intuitively obvious

manner. Perturbations that increase a can also increase v (Figures 3-5 ), so particularly288

in highly variable environments it is important to go beyond simple sensitivity analyses

of a.290

Our results for habitat-specific sensitivities of population growth imply that it is use-

ful to decompose the overall variance into contributions within and between groups of292

similar habitats. For example, we found that increasing survival in habitat 3 decreases

within-good-habitats variance, but increases the between-all-habitats variance, resulting294

in positive sensitivity value (Figure 3). From a conservation perspective then, this begs

the question: is a management intervention that increases both the mean and the variance296

of population growth rate a desirable one? That depends entirely on the magnitude of

both increases, and on the environmental variation driving the given system.298

Our new sensitivity for the variance in population growth allows another new calcu-

lation that helps tease apart the effects of a and v on population processes: sensitivity of300

the cumulative extinction probability Pq(t). This new calculation provides a quantitative

way to assess how a given management intervention will affect the extinction process.302
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Previously such sensitivity analyses would have had to be done by extensive numerical

simulation, or be omitted in favour of qualitative insights from sensitivity analysis of a304

alone. Considering that the extinction process depends in complicated ways on both the

mean and variance of population growth, our calculation for SPq(t) provides a valuable306

new quantitative tool to produce more nuanced analyses of population dynamics.

Considering the magnitude of projected climate variability in the next century, previ-308

ous work finds that quasiextinction is certain for our example population (Hunter et al.,

2007). Given this vulnerability of polar bears to climatic variability, even though the310

magnitudes of our variance sensitivities are small, management efforts might still ben-

efit from taking into consideration the effects of proposed interventions on v as well as312

on a. In particular, we note that even small changes to v can have considerable effects

on cumulative probability of quasiextinction and its sensitivities. In general, given the314

potentially counterintuitive (and counterproductive) behaviour of both growth and extinc-

tion sensitivities, and the trend towards increasing environmental uncertainty, we suspect316

many management programs could be improved by a a whole-distribution approach to

sensitivity analysis.318

These new sensitivities should also be useful in many other population dynamics appli-

cations. We are particulary interested in exploring the applications of variance sensitivi-320

ties to evolutionary questions. Intuition suggests that natural selection should favour any

change that increase a or decreases v. But, what if there are cases where a and v respond322

differently to the same change in a particular vital rate? How do we interpret a change in

vital rates that increases both the mean and the variance of growth? In an increasingly324

variable world, it is unwise to treat the mean of a stochastic process alone as giving a full

description of dynamics. The inclusion of variance sensitivites in future studies will move326

us towards a more complete understanding of population dynamics problems.
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Figures412

Figure 1: A schematic illustration of the different effects of changing the mean versus

the variance of a distribution. A: An example distribution of log Λ(t)
t

. In the limit of large

t, the mean of this distribution converges on a, and the variance to v. B: Distribution

A after changing only the mean C: Distribution A after changing only the variance D:

Distribution A after an increase to both mean and variance

Figure 2: Polar bear life cycle diagram (from Hunter et al. 2010)

Figure 3: Habitat-specific sensitivity of a and v to changes in cubless adult survival

Figure 4: Elasticity of a and v to perturbation of the means of parameters

Figure 5: Elasticity of a and v to perturbation of the variance of parameters
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Supporting Information and Appendices

Appendix A: Sensitivity of the stochastic growth rate414

The stochastic growth rate of the perturbed population, ā(s), can be calculated from the

products of the perturbed matrices Xj, where at time t: Xj(t) = X∗(t) + sHj(t). Given

M independent sample paths of T time steps each, for any sample path j:

Λj(T ) = V T
j,T Xj(T )Xj(T − 1) . . . Xj(1)Uj(0)

aj = lim
T→∞

log Λj(T )

T

Now if we expand in the above product in orders of s, O(s),we have:

Λj(s) = Λj(0) + sV T
j (T )

(∑
i=1

Xj(T ) . . . H(i)Xj(i − 1) . . . Xj(1)

)
Uj(0) + O(s2)

Therefore,

ā(s) =
1

M

M∑
j=1

lim
T→∞

1

T
log

(
Λj(0) + sV T

j (T )

(
T∑

i=1

Xj(T ) . . . Hj(i)Xj(i − 1) . . . Xj(1)

)
U(0) + O(s2)

)

Retaining only terms O(s):

ā(s) = log(Λo + δΛ) � log Λo +
δΛ

Λo

This leads to, for any sample path:

log Λ(s) = log Λo + s lim
T→∞

1

T

(
(V T (T )

∑T
i=1 X(T )X(T − 1) . . . H(i)X(i − 1) . . . X(1)U(0)

V T (T )X(T )X(T − 1) . . . X(i)X(i − 1) . . . X(1)U(0)

)

= log Λo + lim
T→∞

1

T

T∑
i=1

(
(V (i)T H(i)Ui−1

V (i)T X(i)Ui−1

)

= log Λo + lim
T→∞

1

T

T∑
i=1

(
(V (i)T H(i)Ui−1

λ(i)V (i)T U(i)

)

= log Λo + E

[
V (t)T H(t)U(t − 1)

λ(t)V (t)T U(t)

]
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For sample path j, at time t, define:

ξj,t =
Vj(t)

T Hj(t)Uj(t − 1)

λj(t)Vj(t)T Uj(t)

The mean of these for that sample path is:

ξ̄j = lim
T→∞

1

T

T∑
t=1

Vj(t)
T Hj(t)Uj(t − 1)

λj(t)Vj(t)T Uj(t)

and the mean of these quantities across all runs is:

Sa = ξ̄ =
1

M

M∑
i=j

ξ̄j

Appendix B: Sensitivity of the variance in long run

population growth416

We take the variance of the stochastic growth of our reference population to be:

v � 1

MT

M∑
j=1

(log Λj(T ) − T ā)2 (12)

After a small perturbation, s, the value of v(s) will be changed by some small value δv

where v(s) = v(0) + sδv + O(s2) . We wish to estimate the change δv. For simplicity,418

hereafter take log Λj to indicate log Λj(T ), and retain only terms of O(s).

After perturbation, the new values of log Λj will be:

log Λj(s) = log Λj(0) + sT ξ̄j

ā(s) =ā(0) + sξ̄

=ā(0) +
s

M

M∑
j=1

ξ̄j
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and

Λj =
T∑

t=1

λj(t)

ξ̄j =
1

T

T∑
t=1

ξj(t)

Then we can approximate the variance of the perturbed population as:

v(s) =
1

MT

∑
j

(log Λj(T )(s) − T ā(s))2

=
1

MT

M∑
j=1

((
T∑

t=1

(log λj(t) + s
T∑

i=t

ξj(t))

)
− T

(
ā(0) + sξ̄

))2

=
1

MT

M∑
j=1

(
log Λj(0) + Tsξ̄j) − T (ā(0) + Tsξ̄)

)2

=
T

MT

M∑
j=1

(
(aj(0) − ā(0)) + s(ξ̄j − ξ̄)

)2

=
1

M

M∑
j=1

(aj(0) − a(0))2 + 2(aj(0) − ā(0)s(ξ̄j − ξ̄) + O(s2)

=v(0) +
2s

M

M∑
j=1

(aj(0) − ā(0)(ξ̄j − ξ̄) + O(s2)

and thus, the rate of change in the variance due to the perturbation is:

Sv =
2s

M

M∑
j=1

(aj − ā)(ξ̄j − ξ̄) (13)

Appendix C. Probability of quasiextinction and its420

sensitivity

We define a population to be quasi-extinct if it falls to 1 percent of its current size. Call

this quasi-extinction threshold θ. Then the probability of quasi-extinction will be (after
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Caswell 2001):

Pq =

⎧⎨
⎩ 1 if a < 0

e( 2alogθ
v

) if a > 0

By taking the log and applying the chain rule to the above, we get the sensitivity of

the log extinction probability when a > 0 :

log Pq =2 log θ +
a

v

Slog Pq =
Sa

v
− a

v2
Sv

Since we are interested in SPq we write:

SPq

Pq

=Slog Pq =
Sa

v
− a

v2
Sv

and rearrange to get:

SPq = Pq(
Sa

v
− a

v2
Sv)

When dealing with elasticities of a and v instead of sensitivities, (recalling that Sa = aEa),

this becomes:

SPq = Pq(
aEa

v
− aEv

v
)

=
a

v
Pq(Ea − Ev)

Appendix D. Cumulative Extinction Risk422

The probablity that a population will ever reach a given extinction threshold, (say, θ =

Ne/No) is Pq = e(
(2a log θ

v
) when a > 0. In practice, when a is often less than 0 and
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extinction is certain, it is more useful to know the probability that a population will reach

the threshold before some time horizon, t. If we condition on the quasiextinction threshold

eventually being reached, time to extinction (Tq) is a positive real-valued random variable

with a continuous probability distribution that can be written in terms of a standard

normal cdf (Lande and Orzack 1988, Dennis et al 1991):

P (Tq ≤ t) =G(t; θ, a, v) = Φ
( log θ − at√

vt

)
+ e( 2 log θa

v
)Φ
( log θ + at√

vt

)
(14)

where Φ is the standard normal probability integral:

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2dz

Now we define Pq(t) to be the probability of quasiextinction, Pq, before some time

horizon, t. For any given t, this probability of quasiextinction, Pq(t), is the cumulative424

probability defined above as P (Tq ≤ t) (Lande and Orzack 1988, Dennis et al 1991, Morris

and Doak 2002).426

The sensitivities of this time-horizon-specific Pq are its derivatives with respect to

some perturbation, call it α.

For now, let’s also define x = log θ−at√
vt

,y = 2 log θa
v

and z = log θ+at√
vt

such that P (Tq ≤ t) =

Φ(x) + eyΦ(z)

Now we take the derivative to find that:

dPq(t)

dα
=

dΦ(x)

dx

dx

dα
+

dy

dα
eyΦ(z) + ey dΦ(z)

dz

dz

dα
(15)

Since the normal pdf is the derivative of the cdf, we can simplify:

dPq(t)

dα
=φ(x)

dx

dα
+

dy

dα
eyΦ(z) + φ(z)

dz

dα
(16)

Now we find expressions for dx/dα, dy/dα and dz/dα:

x =
log θ − at√

vt

dx

dα
=

−t da
dα

(
√

vt) − √
td

√
v

dα
(log θ − at)

vt

= − 1√
vt

(
t
da

dα
+

(log θ − at)

2v

dv

dα

)
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y =
2 log θa

v
dy

dα
=
(
(2 log θ

da

dα
)v − (2 log θa)(

dv

dα
)
)
(v−2)

=
2 log θ

v2
(v

da

dα
− a

dv

dα
)

z =
log θ + at√

vt

dz

dα
=

t da
dα

(
√

vt) − √
td

√
v

dα
(log θ + at)

vt

=
t
√

vt da
dα

− √
t(log θ + at) 1

2
√

v
dv
dα

vt

=

√
t

v

da

dα
− (

log θ + at

2v
√

vt
)
dv

dα

=
1√
vt

(
t
da

dα
− (log θ + at)

2v

dv

dα

)
Subbing back in our expressions for x, y, z and their derivatives, we get a general

expression for the sensitivity of Pq(t) to a perturbation α:

dPq(t)

dα
= φ

( log θ − at√
vt

) −1√
vt

(
t
da

dα
+

(log θ − at)

2v

dv

dα

)
+ e

2 log θa
v

(2 log θ

v2
(v

da

dα
− a

dv

dα
)Φ
( log θ + at√

vt

))
+

1√
vt

(
t
da

dα
− (log θ + at)

2v

dv

dα

)
φ
( log θ + at√

vt

)

Note that terms da
dα

and dv
dα

are the sensitivities of a and v (Sa and Sv) to the same

perturbation. A change of notation clarifies our final expression for the sensitivity of

cumulative extinction probability:

SPq(t) =
−1√
vt

φ
( log θ − at√

vt

)(
tSa +

(log θ − at)

2v
Sv

)
+ e

2 log θa
v

(2 log θ

v2
(vSa − aSv)Φ

( log θ + at√
vt

))
+

1√
vt

(
tSa − (log θ + at)

2v
Sv

)
φ
( log θ + at√

vt

)
(17)
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Appendix E. Supplementary Figures.

Figure E: Upper quantile of stationary stage distributions

Figure F: Probability of and expected time to quasiextinction as a function of q

Figure G: Stochastic growth rate and its variance as a function of q
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