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Abstract

Purpose of review: There is a need for improved diagnosis and for more rapidly assessing the 

presence, prevalence and spread of newly emerging or re-emerging infectious diseases. An 

approach to the pathogen-detection strategy is based on analyzing host immune response to the 

infection. This review focuses on a protein microarray approach for this purpose.

Recent findings: Here we take a protein microarray approach to profile the humoral immune 

response to numerous infectious agents, and to identify the complete antibody repertoire 

associated with each disease. The results of these studies lead to the identification of diagnostic 

markers and potential subunit vaccine candidates. These results from over 30 different organisms 

can also provide information about common trends in the humoral immune response.

Summary: Systems biology approach to identify the antibody repertoire associated with infectious 

diseases challenge using protein microarray has become a powerful method in identifying 

diagnostic markers and potential subunit vaccine candidates, and moreover, in providing 

information on proteomic feature (functional and physically properties) of seroreactive and 

serodiagnostic antigens. Combining the detection of the pathogen with a comprehensive 

assessment of the host immune response will provide a new understanding of the correlations 

between specific causative agents, the host response, and the clinical manifestations of the disease.
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Introduction

A major component of the adaptive immune response to infection is the generation of 

protective and long-lasting humoral immunity. Analyses of antibody responses against 

different infectious agents are critical for diagnosing infectious diseases, understanding 

pathogenic mechanisms, and the development and evaluation of vaccines. Protein 

microarrays are well suited to identify, quantify and compare individual antigenic responses 
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following exposure to infectious agents. It can now evaluate antibody responses to hundreds, 

or even thousands, of recombinant antigens at one time. These large-scale studies have 

uncovered new antigenic targets, provided new insights into vaccine research and yielded an 

overview of immunoreactivity against almost the entire proteome of certain pathogens. This 

technology can be applied to the development of improved serodiagnostic tests, discovery of 

subunit vaccine antigen candidates, epidemiologic research and vaccine development, as 

well as providing novel insights into infectious disease and the immune system. In this 

review, we will discuss the use of protein microarrays as a powerful tool to define the 

humoral immune response to bacteria and viruses.

Factors governing selection of the particular antigens recognized are unclear [1,2]. It is not 

uncommon for viruses encoding a small number of proteins to generate antibodies against 

each encoded protein. But for infectious agents containing hundreds or thousands of proteins 

only a subset of the proteome is recognized and little is known about the extent or the 

characterisitics of this subset of antigens. Methods for making a complete empirical 

accounting of the immunoproteome have limitations, particularly when the genome of the 

organism is large. The Protein Microarray Laboratory at UC Irvine has developed a highly 

efficient method to determine the humoral immune response to microbial antigens. We have 

applied this approach to more than 30 medically important infectious microorganisms [3–

33] including M. tuberculosis[33], Plasmodium falciparum[5,8,24], Plasmodium vivax, 

Brucella melitensis[14], Chlamydia trachomatis[3,25], Francisella tularensis[11,23], 

Burkholderia pseudomallei[6,19], Coxiella burnetii[7,26], Borrelia burgdorferi[10], 

Salmonella enterica typhi, Rickettsia prowazekii, Rickettsia rickettsii, Orientia 

tsutsugamushi, Bartonella henselae[17], Leptospira interrogans, Toxoplasma gondii[27], 

Candida albicans[28], Schistosoma mansoni [4] and viruses including vaccinia[9,29–31], 

monkeypox, Herpes 1 & 2, Varicella zoster, HPV[32], HIV, Dengue, influenza, West Nile 

and Chikungunya. Since launching this project 10 years ago we have made more than 

40,000 plasmids, printed the encoded proteins on 25,000 microarrays and probed the arrays 

with 15,000 serum specimens in order to determine disease associated antibody profiles in 

people infected with each agent. These chips can be probed with sera from infected subjects 

to determine the immunodominant antigens for each agent and the methodology is amenable 

to the screening of sera from very large cohorts numbering in the thousands. When 

seroreactive and serodiagnostic antigen subsets from different infectious agents are printed 

onto the same array, the chip can discriminate between subjects infected with different 

agents and also identify individuals with co-infections or multiple infections. We have 

shown that the individual proteins printed on these arrays capture antibodies present in 

serum from infected individuals and the amount of captured antibody can be quantified 

using fluorescent secondary antibody. In this way a comprehensive profile of antibodies that 

result after infection or exposure can be determined that is characteristic of the type of 

infection and the stage of disease [9,10,31].

Here we summarize the approximate seroreactive and serodiagnostic antigens that were 

identified and published in 30 different organisms, and discuss the antibody response 

predictions from classification of reactive antigens based on functional and physical 

properties.
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Protein Microarray Production, probing and analysis

Genes were amplified and cloned using a high-throughput PCR and recombination 

method[29]. ORFs from genomic DNA or cDNA were identified and amplified using gene 

specific primers containing about 20 bp nucleotide extension complementary to ends of 

linearized pXT7 vector, which allows homologous recombination between the PCR product 

and pXT7 vector in competent E.coli cells. The resulting fusion proteins also harbored a 

hemagglutinin epitope at 3′ end and polyhistidine at the 5′ end. Plasmids were expressed at 

24°C in a 16 hour- in vitro transcription/translation E. coli system (expressway kits from 

Invitrogen). For no DNA controls, no plasmid DNA was added to the same amount of 

reagent from in vitro transcription/translation E.coli system to test E.coli background 

reactivity. For microarrays, 10 μl of reaction was mixed with 3.3 μl 0.2% Tween 20 to give a 

final concentration of 0.05% Tween 20, and printed onto nitrocellulose coated glass FAST 

slides (Whatman) using an Omni Grid 100 microarray printer (Genomic Solutions). Sera 

samples were diluted in E. coli lysate (Mclab). Slides were incubated in biotin-conjugated 

secondary antibody (Jackson ImmunoResearch) and detected by incubation with 

streptavidin-conjugated SureLight® P-3 (Columbia Biosciences). Microarray slides were 

scanned and analyzed using a Perkin Elmer ScanArray Express HT or Genepix microarray 

scanner. Intensities were quantified. All signal intensities were corrected for spot-specific 

background. All foreground values were transformed and normalized using robust linear 

model (RLM) or nonlinear variance stabilizing normalization (VSN) to remove systematic 

effects [24,34,35](Figure 1).

Percent of seroreactive antigens

Discovery of novel antigens associated with infectious diseases is fundamental to the 

development of serodiagnostic tests and protein subunit vaccines against existing and 

emerging pathogens. Through over ten years of effort, we have identified over 1000 antigens 

associated with infections or vaccinations in 30 different organisms (Table 1)[3–6,9–

17,23,25,31–33,36–47], accounting for around 2–5% of bacterial genome; 20–57% of viral 

genome; and 10–45% of parasite genomes. Antigens differentially reactive among infected 

and healthy controls comprise even smaller percentage of the genome size: from 0.3% to 3% 

for bacteria; 16–40% for viruses and 2–18% for parasites. Borrelia burgdorferi, however, 

generate higher antibody responses against ~15% of polypeptides during natural infection, 

of which half are differentially reactive between naturally infected and uninfected 

individuals [10].

Antigens were classified as ‘seroreactive’ with mean reactivity greater than 2–3 standard 

deviations above the mean of the negative controls in most organisms; and differentially 

reactive antigens are classified by BH adjusted p value smaller than 0.05 by comparing the 

negative group with infected or vaccinated individuals.

Full proteome microarrays were constructed for only a limited number of bacterial species 

(ref), however, other data were published using partial arrays containing only partial 

proteome, and may overrepresent the percentages of seroreactive and serodiagnostic 
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antigens in the full proteome because the subset of proteins on the array were selected based 

on antigenic features seen previously.

Enrichment analysis reveals physical properties and cellular functions 

associated with immunogenicity

Another application for this empirical data is to train an algorithm to predict reactive 

antigens in silico, and several papers from our group apply enrichment analyses to identify 

proteomic features that tend to be seen more frequently in the seroreactive and 

serodiagnostic antigen sets [12,17,23].

Efforts to predict antigenicity have relied on a few computational algorithms predicting 

signal peptide sequences (signalP), transmembrane domains, or subcellular localization 

(Psort). The current database from this protein microarray approach contains quantitative 

antibody reactivity data against 40,000 proteins derived from 30 infectious microorganisms 

and more than 30 million data points derived from 15,000 patient sera. Interrogation of these 

data sets has revealed more than 10 proteomic features that are associated with antigenicity 

allowing an in silico protein sequence and functional annotation based approach to triage the 

least likely antigenic proteins from those that are more likely to be antigenic.

These proteomic enrichment features (Table 2) are: i) functionally annotated COGs (U, M, 

N and O) or Gene ontology (GO) function and process; ii) computationally predicted 

features (TMHMM, Signal peptide, pSort Outermembrane, pSort Periplasmic, and pI<5 for 

bacteria and pI 7–9 for parasites), and iii) abundance of expression. This approach applied to 

Brucella melitensis predicts 37% of the bacterial proteome containing 91% of the antigens 

empirically identified by probing proteome microarrays [12]. In Salmonella enterica and 

Leptospira.

Parasite toxoplasma gondii proteins were assigned by GO functions. Proteins involved in 

protein binding, catalytic activity, transporter activity, transferase activity were significantly 

enriched [13]. Proteins with enzymatic activity other than kinase activity were enriched at 

2.0 fold, and enzyme regulator activity, structural molecule activity and ion channel activity 

were also highly enriched. Proteins with GO null functions, or involved in nucleotide and 

nucleic acid binding were underrepresented [13].

Proteins were also assigned by GO process classification. Proteins involved in ATP 

biosynthetic process were enriched. Several proteins involved in transport were also 

significantly enriched: ion transport, protein transport, vesicle mediated transport, and other 

transport functions. Proteins involved in metabolic process, proteolysis, and signal peptide 

processing were also enriched. Conversely, proteins not assigned with GO process 

categories were significantly underrepresented (0.5 fold; p value 3.301E-21) [13].

An examination with the Pf proteins on the microarray based on Gene ontological analysis 

revealed that ~40% of the immunogenic proteins are expressed in the membrane of the 

parasite or host erythrocyte and that they are overrepresented in the biological process 
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categories of “pathogenesis,” “cytoadherence to microvasculature,” “antigenic variation,” 

and “rosetting” [5].

The data set of Vaccinia viral proteins also allowed us to identify properties of viral proteins 

that were associated with immunogenicity (). We found that membrane and core proteins, 

proteins with late or early/late temporal expression, and proteins with transmembrane 

domains were overrepresented in the immunoreactive antigen set relative to the whole 

proteome. These predictors are strongest in MVA profiles, since the antibody profile to 

MVA is more heavily skewed toward structural proteins. In contrast, early proteins were 

underrepresented relative to the whole proteome, and there was negligible influence of 

molecular weight, isoelectric point, or the presence of a signal sequence on immunogenicity. 

vaccinia antigens are either abundant components of MV particles, such as A10 and L4 [48], 

or are expressed at high levels in infected cells, such as I1 and WR148 [49,50]. Their 

abundance may contribute to immunogenicity once released from infected cells, particularly 

if, like D13 [51], such pro-teins have a propensity for self-assembly into macro-molecular 

structures.

Analysis was also done for the HSV-1 antibody profile based on GO component classifiers 

according to the database at www.uniprot.org. The percentage of the total number of genes 

assigned to each GO component present in the proteome and in the seroreactive antigens 

was determined, and the ratio was used to determine the fold enrichment. The analysis 

revealed 12 proteins on the array that were assigned the GO component virion membrane, of 

which 9 were seroreactive. Tegument proteins were not enriched in the seroreactive antigen 

set [37].

Overall, our data show that the antibody profile is not a random assortment of specificities, 

but strongly biased to-wards the recognition of certain proteomic features. Why we don’t 

observe antibodies to all intracellular proteins expressed from infected cells remains unclear. 

It is also interesting to note that the rules that determine immunogenicity might be different 

from those that define protection.

Naïve bayes classification

Individual proteomic features provide some information about the likelihood of a protein 

being seroreactive; however, using all of these features together leads to a better segregation 

of the hits from the rest of the proteome. To analyze the relationship between all of these 

features and the seroreactivity of the proteins in a rigorous manner, we used a naïve Bayes 

formulation [52].

We applied a naïve Bayes classification approach to assign a relative numerical score to 

each antigen in the Brucella melitensis (Bm) proteome. This score reflects the relative 

likelihood that a protein will be reactive based on its functionally annotated or 

computationally predicted features. Our analyses indicates that 91% of serodiagnostic 

antigens are predictable from the top 20% of the genome ranked by this naïve Bayes 

classification approach, and the antigens with enriched features in the top 20% of the 

genome account for 100% of serodiagnostic antigens with these features. Without this naïve 

bayes classification approach, we would have to clone 37% of the genome with enriching 
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features to obtain 91% of serodiagnostic antigens. This analysis greatly enhances the 

predictive efficiency compared to previous studies, will provide a basis for targeted screens 

of entire proteomes based on likelihood of seroreactivity, and help determine trends in the 

humoral immune response to gram-negative bacteria. The same approach has been applied 

to Salmonella enterica and revealed that we would need to screen only 25% of the genome 

to be able to identify 72% of serodiagnostic antigens (Table 3).

Conclusions

The development of protein arrays for profiling the antibody response generated upon 

exposure to an infectious agent has allowed for new insight into the humoral immune 

response and the identification of potential subunit vaccine candidates and new diagnostics. 

No other existing approach can provide such a thorough perspective of the humoral immune 

response to infection. Moreover, it provides a systematic foundation formation on proteomic 

features (functional and physically properties) of seroreactive and serodiagnostic antigens. 

The information presented here will allow future protein microarray screening to focus 

efforts on portions of the proteome that most likely contain seroreactive proteins, and may 

also be useful for understanding the antibody responses to bacteria, viruses and parasites.
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Highlights

Protein microarray is a powerful tool in identifying diagnostic markers and potential 

subunit vaccine candidates.

Full proteome microarrays have provided valuable information on antigen 

predictions.

Certain proteomic feature (functional and physically properties) have been identified 

to be associated with seroreactive and serodiagnostic antigens

Naive Bayes classification further improves the sensitivity and specificity of this in 

silico predictive algorithm.
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Figure 1. Microarray production, printing and analysis
Thousands of genes of interest were cloned using highthrough put method, in vitro 

expressed in E.coli cell free system. Protein microarrays were then produced, probed and 

data was analyzed as described in the text.
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Table 2

Physical properties and cellular functions associated with immunogenity in bacteria, virus and parasites

Enriching features Bacteria Viruses Parasites

Predicted functions

COG U Intracellular trafficking and 
secretion Virion membrane

GO function protein binding, 
catalytic, transporter, transferase 
activities

COG M Cell envelope biogenesis, 
outer memberane

membrane proteins, core 
proteins GO function enzymatic, regulator

COG N Cell motility and secretion GO function structural molecule and 
ion channel activity

COG O Posttranslational modification, 
protein turnover, chaperones

GO ATP biosynthetic process, 
proteolysis; metabolic

COG S GO transport process

Predicted Computationally

TMHMM=1 TMHMM TMHMM=1 to 10

Signal P>=0.7 Signal peptide

pSortb Outer Membrane pSort Outer Memberane

pSortb Periplasmic

pI 0–5 pI 7–9

Expression Expression evidence by Mass 
Spectrometry abundance of expression abundance of expression
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Table 3

Naïve bayses classification of BM and SE.

top ranked antigens
Brucella melitensis Salmonella enterica

% of total Seroreactive % of total Serodiagnostic % of total Seroreactive % of total Serodiagnostic

1% 6% 15% 4% 5%

2% 11% 21% 4% 9%

5% 27% 45% 9% 25%

10% 44% 82% 19% 39%

20% 63% 91% 38% 64%

25% 72% 94% 45% 72%

50% 88% 100% 72% 86%

75% 94% 100% 100% 96%

100% 100% 100% 100% 100%
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