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Abstract

Purpose of review—Recent methodological advances in computational simulations are 

enabling increasingly realistic simulations of hemodynamics and physiology, driving increased 

clinical utility. We review recent developments in the use of computational simulations in 

pediatric and congenital heart disease, describe the clinical impact in modeling in single ventricle 

patients, and provide an overview of emerging areas.

Recent Findings—Multiscale modeling combining patient specific hemodynamics with 

reduced order (i.e. mathematically and computationally simplified) circulatory models has become 

the defacto standard for modeling local hemodynamics and “global” circulatory physiology. We 

review recent advances that have enabled faster solutions, discuss new methods, (e.g. fluid 

structure interaction and uncertainty quantification), which lend realism both computationally and 

clinically to results, highlight novel computationally-derived surgical methods for single ventricle 

patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki 

disease, fetal circulation, tetralogy of Fallot, (and pulmonary tree), and circulatory support.

Summary—Computational modeling is emerging as a crucial tool for clinical decision-making 

and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. 

Continued development of modeling methods, with an eye towards clinical needs, will enable 

clinical adoption in a wide range of pediatric and congenital heart diseases.
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INTRODUCTION

Engineering-based investigations offer powerful tools for predictive and personalized 

medicine, with potential to augment medical imaging data, uncover links between 

mechanics and biological response, and provide clinical decision support. In this review, we 

summarize the recent advances in computational simulation, and engineering-based tools 

applied to pediatric and congenital heart disease.

The field of congenital heart disease was first introduced to computational modeling by 

Marc de Leval and colleagues in the mid-1990s.[1,2] In this early pioneering work, 

hemodynamics in the classic Fontan circulation were simulated using computational fluid 

dynamics, and a novel offset modification between the inferior and superior vena cava was 

introduced. Findings of reduced energy loss in this so-called “offset design,” due to 

minimizing flow collision in the Fontan junction led to a change in practice in the surgical 

community, arguably the first example of a simulation-based design leading to a change in 

clinical practice. While groundbreaking at the time, the methods were simplistic and 

significant advances in modeling methods for cardiovascular simulation have subsequently 

been developed. In particular, patient-specific modeling tools allowing for image-based 

model construction and simulation[3], increasingly advanced methods incorporating fluid 

structure interaction[4–6], and multiscale models of circulatory physiology and the 

heart[7,8] now yield increasingly realistic simulations.

With recent advances in numerical methods and computing power, computational 

simulations are now poised to gain greater clinical acceptance than ever before. In the adult 

cardiovascular field, this is best shown by the successful clinical trials and subsequent 2014 

FDA approval of a simulation service by HeartFlow, Inc. using computed tomography and 

simulation based fractional flow reserve (FFRCT) as a non-invasive evaluation of coronary 

artery disease.[9–11] A similar path forward for simulation adoption in pediatrics is 

certainly possible, however the far more complex physiology and smaller patient 

populations make this more challenging.

In the pages that follow, we highlight advancements and challenges in computational and 

engineering methodology, patient specific modeling, and their clinical application over the 

recent past. We first aim to highlight the most significant methodological advances that have 

relevance to solving clinical problems, and provide a review of modeling methods accessible 

to the clinician. We then highlight application areas in single ventricle physiology, tetralogy 

of Fallot, pulmonary arteries, aortic and coronary disease, valves and devices, and fetal 

circulation. We note that while single ventricle physiology has received the bulk of the 

attention and effort in the modeling community over the past two decades, the field is poised 

for an explosion of activity in additional, previously unexplored, areas of pediatric and 

congenital heart disease. We therefore have made a concerted effort to provide an overview, 

when possible, of activities in multiple areas of pediatric and congenital heart disease. We 

conclude by providing our outlook on the current state of the field and future areas of need, 

and by highlighting emerging areas and new directions in both modeling methodology and 

clinical application.
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ADVANCES IN MODELING METHODS

Background

The application of computational fluid dynamics to cardiovascular blood flow simulation 

spans a wide range of adult diseases including coronary artery disease[12–15], abdominal 

and cerebral aneurysms[16–18], and peripheral vascular disease[19]. Image-based modeling 

allows for construction of patient specific anatomy directly from image data, and subsequent 

simulation of blood flow in these complex models using computational fluid dynamics 

(CFD)[20]. Once the geometric anatomic model has been constructed, so-called “boundary 

conditions” must be prescribed at all inlets and outlets of the model. Boundary conditions 

are prescriptions of flow, pressure, or relations between them, and provide mathematical 

representations of the physiology outside of the computational domain (e.g. pulmonary 

vascular resistance). Boundary conditions must also be prescribed on the vessel walls, 

assigning material properties to simulate wall deformation though obtaining patient specific 

material properties remains a challenge.

Limitations of cardiovascular CFD models can include the lack of patient specific material 

properties, uncertainties and variability in boundary and physiologic conditions, and 

Newtonian fluid models. High computational expense and the time required for model 

construction often pose a challenge for application to clinical studies with large patient 

cohorts. In addition, there is often limited knowledge on the biological and physiological 

response to changing hemodynamic conditions, and hence these effects are often neglected. 

For example, most current CFD models do not properly account for vessel wall growth and 

remodeling, venovenous or aortopulmonary collaterals, thrombus formation in response to 

injury or flow stasis, or auto-regulatory and adaptive mechanisms.

There is also a pressing need for increased validation of CFD and multiscale models, 

particularly against clinical and in vivo data. Validation of CFD has generally relied on in 

vitro experiments, with more complex models, such as single ventricle physiology, 

implemented in mock circulatory loops[21–23]. Flow visualization and measurement are 

typically performed using phase-contrast MRI or particle image velocimetry (PIV). 

Validation against both in vitro and in vivo data have shown excellent agreement, though 

these efforts should be expanded in future work.

Multiscale modeling

While early studies of the Fontan circulation by de Leval, Dubini, and colleagues focused 

primarily on energy loss, recent work has applied multiscale modeling to capture both the 

local hemodynamics and the global physiologic response. This approach enables prediction 

of clinically relevant quantities such as pressure volume loops, oxygen saturation, 

pulmonary to systemic flow ratios, and changing pressure levels. Multiscale modeling for 

single ventricle clinical decision support was the focus of a recent 5-year Leducq-

Foundation-funded network. The cumulative efforts of this network demonstrated the 

application of multiscale modeling in larger cohorts of patients, and for comparatively 

evaluating the performance of surgical and interventional methods for single ventricle 

patients. Recent advances have enabled incorporation of lumped parameter network (LPN) 
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models as boundary conditions for CFD, allowing for computation of local hemodynamics, 

as well as global physiologic variables.[24] [25] [26] For further details, we refer the reader 

to a recent review of advances in multiscale modeling.[27]

Accounting for Uncertainties

The cardiovascular modeling process requires assimilation of patient specific clinical and 

imaging data. Image data is segmented to construct 3D models, clinical data, including 

blood pressures, heart rates, and flow and pressure waveforms, are required for boundary 

condition selection, and material properties must be assigned to vessel walls for deformable 

wall simulations. The modeling process has traditionally neglected the myriad uncertainties 

arising in this process, and foregone the variability of human physiology. However, recent 

studies have begun to account for uncertainties with greater rigor, both for model tuning (i.e. 

parameter estimation) and in assessing errors in simulation predictions.[28–30] [31,32] 

Parameter estimation has also been successfully applied in the setting of fluid structure 

interaction for selection of patient specific material properties to match time-resolved 

clinical imaging data.[33] These approaches have the potential to provide clinicians with 

accuracy on the level of trust that can be placed in simulation predictions, thereby fostering 

increased clinical acceptance and establishing standards for model fidelity.

While current models predict quantities of potential clinical interest, including wall shear 

stresses, oxygen levels, pressure levels, and PV loops, these quantities have traditionally 

been reported with no accompanying statistics to indicate confidence level. The failure to 

provide statistics leaves clinicians with little basis on which to evaluate them, and is a 

barrier to clinical adoption. If simulations are to inform decisions on interventions such as 

stent placement, it is important to provide measures of confidence that can be used to weigh 

model predictions against other clinical factors. Recent studies have proposed computational 

frameworks for performing “uncertainty quantification” (UQ). Using these methods, one 

performs a carefully selected set of simulations with varied parameter values to compile 

converged statistics on model predictions. For example, this approach could provide a 

clinician with a 95% confidence interval on a prediction of post-operative pressure levels in 

a virtual surgery application. Recent work has extended these approaches to propagate 

uncertainty directly from the clinical data to the simulation outputs.[34]

Emerging areas

While patient specific modeling and computational fluid dynamics simulations are now 

relatively mature technology, important biological and physiological processes that interplay 

with hemodynamic forces are often neglected. These include growth and remodeling 

(G&R), thrombosis, and endothelial cell response. A few recent studies have begun to 

address these areas. Vascular growth and remodeling describes changes in thickness, radius 

and wall composition of a vessel wall in response to changing hemodynamic forces. Recent 

work has expanded models of arterial growth and remodeling to veins[35], coupled CFD 

and G&R models in the context of adult cardiology,[36] and applied rigorous approaches for 

parameter selection.[37] Applications of G&R to pediatrics will require modifications to 

existing models to account for differing biologic and material responses in children. 

However, there is immense potential for these models, in conjunction with CFD, to enable 
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predictions of pulmonary artery and venous remodeling, as well as formation of venovenous 

collaterals. In addition, recent work demonstrated the first use of tissue-engineered grafts in 

Fontan patients, and simulations with G&R will play an important role in optimizing graft 

properties.[38,39]

Modeling thrombus formation is a complex problem, with the need to account for numerous 

chemical reactions involved in the coagulation cascade. These processes are highly 

multiscale, with chemical reactions often occurring on much faster time scales than clot 

formation, imposing special simulation challenges. However, several groups have shown 

success in this arena, including recent studies of Alber, Fogelson, and colleagues.[40,41] 

While most have focused on the extrinsic, or injury-mediated, pathway for clot formation, 

there is also a need for model development to handle the intrinsic, or flow-mediated, 

pathway. This would be particularly relevant in pediatrics for the study of thrombus 

development in grafts, ventricular assist devices (VADs) and areas of flow stasis such as 

coronary artery aneurysms. Future work should expand current models to handle complex 

patient specific geometries and a greater range of clinical scenarios.

The above modeling developments have enabled increased application to a range of diseases 

with greater model fidelity. The next sections outline application of these new methods to 

specific disease applications in pediatric and congenital heart disease.

SINGLE VENTRICLES

Single ventricle physiology has been by far the most active application for simulations in 

congenital heart disease, with several key recent developments. Below, we highlight recent 

contributions in all three stages of single ventricle repair. Several recent reviews provide an 

overview of modeling techniques in single ventricle physiology[42–44] as well as recent 

clinical guidelines.[45,46]

Neonatal stage-one physiology continues to pose clinical challenges, with the highest 

mortality of the three stages and the need to balance delicate shunt physiology. The recent 

study of Hsia and colleagues used multiscale modeling to compare the Sano, Blalock 

Taussig (BT) shunt, and Hybrid Norwood procedures, demonstrating reduced oxygen 

deliver and higher cardiac workload with the Hybrid procedure compared to the other 

approaches.[47] Computational modeling has also been used to propose and evaluate novel 

surgical concepts, demonstrating the utility of simulations to test high-risk concepts that 

would otherwise be technically or ethically infeasible. The recent introduction of the 

Assisted Bidirectional Glenn (ABG) procedure of Moghadam et al[48] proposed a 

combination of bidirectional Glenn with a systemic-to-pulmonary shunt to create an ejector 

pump to increase pulmonary blood flow. Simulations and in vitro experiments demonstrated 

decreased cardiac workload, increased pulmonary blood flow, and increased oxygen 

delivery.[49] If used as a stage one surgery, this could offer the possibility of condensing the 

first two stages of single ventricle repair into one, although substantially more evidence and 

animal studies are needed prior to considerations of clinical translation.

Multiscale modeling has also been applied to study the stage-two Glenn and Hemi-Fontan 

procedures. Recent work of Schiavazzi et al. examined the impact of varying levels of 
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pulmonary stenosis in the bidirectional Glenn procedure.[50] Results indicated that degree 

of stenosis higher than 65% area reduction was not sufficient to change most parameters of 

clinical interest, including oxygen levels and cardiac workload. This may suggest a less 

aggressive approach to pulmonary arterio-plasty, however we also note these models do not 

yet account for development of venovenous collaterals or pulmonary artery adaptations that 

may impact hemodynamics.[51] Another recent study used multiscale modeling to compare 

the Glenn and Hemi-Fontan procedures (Figure 1), with similar findings: energy loss 

differences between these two surgical approaches did not result in significant differences in 

global hemodynamics or cardiac workload, suggesting that energy loss may not be a primary 

determinant of surgical method in stage-two patients.[52]

The Fontan, or total cavopulmonary connection (TCPC), surgery is the subject of the bulk of 

the literature on single ventricle computational simulations. Recent contributions highlight 

the first examples of direct clinical translation of a simulation-derived surgical concept, the 

Fontan Y-graft procedure (Figure 2). Following introduction of the Y-graft Fontan in 

simulation,[53,54] the first Y-graft surgeries were performed at Stanford University[55] and 

then at Emory[56], with short-to-medium term outcomes reported. This experience also 

allowed for validation of hepatic flow distribution against lung perfusion scans[57] and 

simulations using in vivo data.[58] A comparison of the Y-graft Fontan to traditional offset 

and t-junction surgical approaches also demonstrated that while differences in hepatic flow 

were observed, modest energy losses did not correspond with significant changes in cardiac 

performance when comparing competing designs.[59] However, others have identified 

correlations between energy loss, cardiac workload, and exercise performance,[60,61] 

though these findings remain under discussion.[62]

Additional studies have assessed the performance of mechanical circulatory support and 

valve devices in the Fontan circulation. A viscous impeller pump was introduced by 

Rodefeld et al for mechanical circulatory support in Fontan patients. Subsequent studies 

successfully compared CFD, PIV, and mock circuit results to assess blood damage, pressure 

rise, and cardiac function[63–65], and have compared left vs. right heart support in 

simulations and mock circulatory loops[66]. Mock circulatory experiments also examined 

the effect of adding a valve in the Fontan conduit in the presence of respiration, showing 

little change in cycle-averaged pressure, though the valve did function with higher 

pulmonary vascular resistance.[67]

TETRALOGY OF FALLOT

Despite the larger patient population compared to single-ventricle physiology, there have 

been few studies in the computational literature focused on tetralogy of Fallot (ToF). Recent 

studies applying engineering to ToF have correlated energy loss with cardiac performance, 

suggesting new clinical indices that may be used to better predict the timing of surgical 

intervention.[68–70] Further investigation is needed in larger patient cohorts. Shape analysis 

has also been applied in the context of ToF to determine factors related to timing of 

pulmonary valve replacement, showing significant correlations between regurgitation 

severity and RV dilation.[71] Virtual surgery to model pericardial patch repair was also 

investigated, together with CFD simulations, with promising results.[72] The use of an 
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elastic band for the right ventricle was computationally investigated varying band elasticity, 

length, active contraction, and a model of tissue regeneration.[73] Results showed the 

potential for increased ejection fraction using this approach, and called for further 

experimental and clinical investigation.

PULMONARY ARTERIES AND HYPERTENSION

CFD simulations were recently applied to simulate flow in up to 11 branches of the 

pulmonary vasculature, revealing the need for patient specific cardiac output to make 

accurate predictions, as well as correlations between wall shear stress, pulmonary vascular 

resistance, and arterial compliance.[74] Simulations also revealed significantly lower shear 

stress in patient specific models of pulmonary hypertension, and correlated findings with 

gene regulation.[75]

AORTIC AND CORONARY DISEASE

Kawasaki Disease

Recent advances in modeling coronary physiology have enabled simulations of 

hemodynamics in coronary artery aneurysms caused by Kawasaki disease (KD). Current 

clinical guidelines suggest anticoagulation therapy for KD patients with coronary aneurysm 

diameter greater than 8mm. Specialized boundary conditions to handle coronary physiology 

were recently introduced, and applied in patient-specific models to study thrombotic risk in 

KD. Simulations showed large differences in hemodynamic conditions, including wall shear 

stress and particle residence times, in aneurysmal compared to non-aneurysmal coronary 

arteries.[76] When simulation results were correlated with clinical data in a small cohort of 

KD patients, results indicated that hemodynamic parameters may be better predictors of 

thrombotic risk compared to aneurysm diameter, and that fusiform aneurysms may pose 

higher risk due to increased residence times.[77] Fluid mechanics also played an interesting 

role in a recent study revealing striking correlations between tropospheric wind patterns and 

occurrence of KD, suggesting an airborne agent as a possible etiology of KD.[78]

Coarctation of the Aorta

Coarctation of the aorta has also been largely overlooked in the modeling community, 

despite high potential for clinical impact. Recent studies have correlated altered 

hemodynamics quantified by CFD with endothelial function and protein expression in a 

rabbit model[79] and used CFD to evaluate changes in cardiac workload resulting from 

aortic arch obstruction.[80] Others have focused on the use of simulation to avoid 

unnecessary catheterization in surgical evaluation, achieving significant correlation between 

pressure drops measured by CFD and catheterization both pre- and post-treatment.[81] 

Szopos et al. also showed statistically significant higher wall shear stress in patients with 

“Gothic” compared to “Romanesque” arch repair using CFD with fluid structure interaction.

[82]
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VALVES AND DEVICES

Valvar abnormalities are now receiving increased attention in the modeling literature. Szeto 

et al demonstrated increased strain in bicuspid as compared to tricuspid valves,[83] and 

patient specific modeling has shown potential to improve success rates when used to aid in 

the placement and sizing of melody pulmonary replacement valves.[84] For a summary of 

recent progress in engineering approaches to valve disease, we refer the reader to a recent 

three-part review.[85–87]

Long et al demonstrated fluid structure interaction simulations of a pediatric ventricular 

assist device (VADs) modeled on the Berlin Heart, including both blood and air fluid 

chambers. Results demonstrated that decreased residence time, presumed linked to 

thrombotic risk, could be achieved through automated shape optimization.[88–90] 

Additional developments in VAD design and simulations were recently summarized in 

Marsden et al.[91]

Three-dimensional (3D) printing and virtual device implantation have received recent 

attention as promising tools for surgical planning and device placement, particularly for 

repair of tetralogy of Fallot, pulmonary atresia and pulmonary collaterals (Figure 3).[92,93] 

Virtual implantation tools and 3D printing have successfully guided surgical placement of 

the SynCardia Total Artificial Heart, in at least 32 patients in six countries thus far.[94] 

Incorporation of 3D printing into surgical planning, compared to standard approaches, has 

demonstrated decreases in mean surgical case time (cut to close), operating room time 

(wheel in to wheel out), and 30-day readmission rate, in a sizable cohort of over 200 patients 

encompassing a range of CHD diagnoses. Marked reductions in surgical time, with averages 

up to 125 minutes, were observed for smaller subsets of patients, including those with 

transposition of the great arteries.[95] These tools also hold particular promise for improving 

patient, parent, and trainee education, as demonstrated in recent studies incorporating 3D 

printed models into clinical practice at Great Ormond Street and Phoenix Children’s 

Hospitals.[93,95,96]

FETAL CIRCULATION

Modeling of the fetal circulation is an area of particular promise for linking hemodynamics 

with mechanobiology and mechanisms of cardiac development and the origins of congenital 

heart disease. A recent collaborative study used CFD to quantify wall shear stress during 

zebrafish cardiac development at multiple time points post-fertilization.[97] CFD 

simulations were also used, together with an experimental platform, to quantify changes in 

pressure and flow distribution in the fetal circulation using a chick model of aortic arch 

obstruction.[98]

FUTURE OUTLOOK AND CONCLUSIONS

Computational modeling holds promise for increased clinical application in multiple 

congenital and pediatric heart diseases. Simulations can be used to augment clinical 

imaging, and to support clinical decisions in surgical and treatment planning, and device 

placement. Simulations can also provide a quantitative means to elucidate the relationship 
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between hemodynamics and biological processes such as thrombosis, growth and 

remodeling, and mechanobiology. Development of new simulation tools should continue 

with an eye towards increased physiologic and biologic realism and increased clinical utility.

As highlighted in the studies reviewed here, research directions have now begun to move 

away from mere technical demonstration of tools and application in case studies, towards 

higher impact clinical applications and larger clinical studies. It is becoming more apparent 

that if modeling tools are to become commonplace in the clinic, well powered clinical trials 

demonstrating impact on patient outcomes from clinical use of CFD will be essential.

While there has been an abundance of work on single ventricle physiology, there have been 

relatively fewer studies in other areas of pediatric cardiology, despite larger patient 

populations. We see particular promise for clinical impact from modeling Tetralogy of 

Fallot and associated pulmonary artery stenoses and collaterals, Alagille syndrome, and 

coarctation of the aorta. In addition, simulations can fill the missing gaps between 

hemodynamic forces and mechanobiological response. There is particular promise for high 

impact in pulmonary hypertension, and fetal development. Finally, there is a continued need 

for development of pediatric-appropriate devices, and simulations, together with 

optimization, offer a means to accelerate designs at lower cost and lower risk.
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ABG Assisted bidirectional Glenn

CFD Computational fluid dynamics

G&R Growth and remodeling

KD Kawasaki Disease

LPN Lumped parameter network

MRI Magnetic resonance imaging

PIV Particle image velocimetry

TCPC Total cavopulmonary connection

ToF Tetralogy of Fallot

UQ Uncertainty quantification

VAD ventricular assist device
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KEY FINDINGS

1. Computational modeling has led to clinical translation of novel surgical methods 

for single ventricle palliation.

2. Future simulation studies should move beyond single ventricle physiology into 

other areas of pediatric and congenital heart disease.

3. Simulation methodologies should be expanded to incorporate greater 

physiologic and biological realism.

4. Future clinical acceptance will be driven by increased validation, quantifying 

confidence in simulation predictions, and demonstration of improved clinical 

outcomes in clinical trials incorporating simulations.
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FIGURE 1. 
Multiscale modeling and virtual surgery is used to compare Glenn and Hemi-Fontan surgical 

approaches for stage two single ventricle palliation and correction of pulmonary stenosis. 

Results allow for comparison of cardiac workload (i.e. pressure-volume loops), pulmonary 

flow, and pressure.
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FIGURE 2. 
Development of the Fontan Y-graft from initial testing in simulation to design optimization, 

surgical implementation, post-operative imaging and validation.
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FIGURE 3. 
Illustration of (A) virtual implantation to aid in the placement of the SynCardia Total 

Artificial Heart, and 3D printed models to aid in surgical and treatment planning for (B) 

double outlet right ventricle and (C) the Fontan circulation. Courtesy of Dr. David Frakes.
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