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Abstract

We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 

57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, 

including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each 

distinct signal mapped predominantly to non-coding sequence, implying that T2D association is 

mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 

chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, 
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where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this 

T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We 

observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with 

evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates 

how integration of genetic and genomic information can define molecular mechanisms through 

which variants underlying association signals exert their effects on disease.

INTRODUCTION

Genome-wide association studies (GWAS) of common variants, defined by minor allele 

frequency (MAF) ≥5%, have been successful in identifying loci contributing to type 2 

diabetes (T2D) susceptibility
1–5

. GWAS loci are typically represented by a “lead” SNP with 

the strongest signal of association in the region. However, lead SNPs may not directly 

impact disease susceptibility, but instead be proxies for causal variants because of linkage 

disequilibrium (LD). Interpretation may be further complicated by the presence of more than 

one causal variant at a locus, possibly acting through the joint effects of alleles on the same 

haplotype. This complex genetic architecture would result in multiple “distinct” association 

signals at the same locus, which can only be delineated, statistically, through conditional 

analyses.

With the exception loci where the lead SNPs are protein altering variants, including 

PPARG
6
, KCNJ11-ABCC8

7
, SLC30A8

8
, and GCKR

9
, the mechanisms by which associated 

alleles influence T2D susceptibility are largely unknown. At other loci, direct biological 

interpretation of the effect of genetic variation on T2D is more challenging because the 

association signals mostly map to non-coding sequence. While recent reports have 

demonstrated a relationship between T2D-associated variants and transcriptional enhancer 

activity, particularly in human pancreatic islets, liver cells, adipose tissue, and muscle
10–14

, 

the DNA-binding proteins through which these effects are mediated remain obscure. 

Localisation of non-coding causal variants may highlight the specific regulatory elements 

they perturb, and potentially the genes through which they operate, providing valuable 

insights into the pathophysiological basis of T2D susceptibility at GWAS loci.

To improve the localisation of potential causal variants for T2D, and characterise the 

mechanisms through which they alter disease risk, we performed comprehensive fine-

mapping of 39 established loci through high-density imputation into 27,206 cases and 

57,574 controls from 23 studies of European ancestry, genotyped with the Metabochip
15 

(Supplementary Tables 1 and 2). Within each locus, we aimed to: (i) evaluate the evidence 

for multiple distinct association signals through conditional analyses; (ii) undertake fine-

mapping by defining credible sets of variants that account for ≥99% of the probability of 

driving each distinct association signal; and (iii) interrogate credible sets for functional and 

regulatory annotation to provide insight into the mechanisms through which variants driving 

association signals influence disease risk.
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RESULTS

Imputation into Metabochip fine-mapping regions

The Metabochip includes high-density coverage of 257 “fine-mapping regions” that have 

been previously associated with 23 metabolic, cardiovascular, and anthropometric traits
15

. 

SNPs in these regions were selected using reference data from the HapMap
16

 and the 1000 

Genomes (1000G) Project
17

. At design, 27 T2D susceptibility loci were selected for fine-

mapping. However, subsequent T2D GWAS efforts have identified additional loci that 

overlap 12 further fine-mapping regions that were initially selected for other traits 

(Supplementary Table 3). To enhance coverage of variation in the fine-mapping regions, we 

undertook imputation into the Metabochip scaffold up to the 1000G phase 1 integrated 

reference panel (March 2012 release)
18

, including multi-ethnic haplotypes to reduce error 

rates
19

 (Online Methods).

The quality of imputation was variable across studies, particularly for MAF<5% variants, 

and dependent on the scaffold sample size (Supplementary Table 4). We defined variants to 

be “well-imputed” at widely-used thresholds
20

 of IMPUTEv221 info≥0.4 or minimac
22 

r2≥0.3 in at least 80% of the total effective sample size (Neff≥59,122) across studies. With 

this definition, 99.4% and 89.0%, respectively, of common and low-frequency 

(0.5%≤MAF<5%) variants in 1000G European ancestry haplotypes were well imputed, and 

therefore retained for downstream association analyses. Within studies, imputation quality 

was consistent across loci, despite the differential priority of fine-mapping regions and their 

coverage of variation at design (Supplementary Table 5). 1000G imputation into the 

Metabochip scaffold thus provides near complete coverage of common and low-frequency 

variation across the 39 T2D susceptibility loci, and supports direct interrogation of the 

majority of variants with MAF≥0.5% in European ancestry populations.

Distinct association signals at T2D susceptibility loci

The first step in fine-mapping GWAS loci is to delineate distinct association signals arising 

from multiple causal variants in the same region, which can efficiently be achieved through 

approximate conditioning with GCTA
23

. Within each T2D fine-mapping region, we 

identified distinct signals attaining “locus-wide” significance (represented by an index 

variant with pJ<10−5 in the joint association model) by applying GCTA in two stages 

(Online Methods). First, we selected index variants on the basis of fixed-effects meta-

analysis across Metabochip studies. Second, we performed in silico replication of the index 

variants in a validation meta-analysis of an additional 19,662 T2D cases and 115,140 

controls from 10 GWAS of European ancestry (Supplementary Tables 1, 2, and 6). Finally, 

because GCTA is only an approximation, we confirmed the association of each index variant 

through exact conditional analysis across Metabochip studies (Online Methods, 

Supplementary Table 7).

The most dramatic delineation of distinct association signals was observed for the region 

flanking KCNQ1, where five non-coding index variants attained locus-wide significance 

(Table 1, Supplementary Figure 1). Distinct association signals represented by three of the 

index variants have been reported in previous GWAS of European
4
 and East Asian

24 
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ancestry: rs74046911 (pJ=3.6×10−26, r2=0.98 with East Asian lead SNP, rs2237897) and 

rs2237895 (pJ=2.1×10−9, r2=0.75 with one European lead SNP, rs163184), both of which 

map to a <50kb intronic recombination interval of KCNQ1; and chr11:2692322:D 

(pJ=7.2×10−16, r2=0.59 with second European lead SNP, rs231361), which resides in the 

KCNQ1OT1 transcript that controls regional imprinting
25

. The remaining two distinct 

association signals at this locus are novel. The first, indexed by rs458069 (pJ=3.2×10−6), 

maps to the same <50kb recombination interval as rs74046911 and rs2237895, but is in only 

weak LD with both (r2=0.02 and r2=0.25, respectively). The second, indexed by rs2283220 

(pJ=2.2×10−7), resides in a neighbouring intron of KCNQ1, outside of the <50kb 

recombination interval (Supplementary Figure 1).

At the HNF1A locus, we observed three distinct association signals (Table 1, Supplementary 

Figure 2), represented by index variants that are in only weak LD with the previously 

reported lead GWAS SNP, rs12427353. They include two non-synonymous variants, 

rs1169288 (pJ=4.4×10−14, r2=0.09, HNF1A p.I27L) and rs1800574 (pJ=4.2×10−10, r2=0.01, 

HNF1A p.A98V), and one inter-genic SNP, chr12:121440833:D (pJ=2.9×10−10, r2=0.19).

We also observed four loci with two distinct association signals (CDKN2A-B, DGKB, 

MC4R and GIPR), each represented by non-coding index variants (Table 1, Supplementary 

Figure 3). The index variants at the CDKN2A-B locus represent the known T2D haplotype 

association signal mapping to a 12kb inter-genic recombination interval
26–28

. Previous 

European ancestry GWAS meta-analyses
4
 have highlighted a potential distinct association 

signal, located upstream of the recombination interval in the non-coding CDKN2B-AS1 
(ANRIL) transcript. However, our conditional analyses indicate that the association in this 

region can be fully explained by the two index SNPs in the recombination interval, which 

when considered together, fully extinguish the CDKN2B-AS1 signal (Supplementary Figure 

4). The index variants at DGKB and MC4R also confirm previously reported distinct 

association signals at these loci in European ancestry GWAS meta-analyses
4
. At the GIPR 

locus, the two index variants (rs2238689, pJ=8.3×10−16; rs4399645, pJ=1.4×10−8) are not in 

strong LD with the previously reported
4
 lead SNP (rs8108269; r2=0.43 with rs2238689, 

r2=0.00 with rs4399645), but together can better explain the T2D association signal in this 

region.

Finally, we observed a novel distinct association signal at the HNF4A locus, represented by 

the coding index variant rs1800961 (pJ=1.4×10−9, HNF4A p.T139I, referred to as p.T130I in 

some previous studies
29

). Unfortunately, this fine-mapping region was included on 

Metabochip for high-density lipoprotein cholesterol
15,30

 (Supplementary Table 3), and does 

not include the previously reported
4
 lead T2D SNP at this locus, rs4812829, precluding 

conditional analyses in these data. However, rs4812829 is not in LD with our index variant 

(r2=0.02), suggesting that there are at least two distinct T2D association signals at the 

HNF4A locus.

Of the 49 distinct association signals achieving locus-wide significance across T2D loci 

represented on Metabochip (five at KCNQ1, three at HNF1A, two each at CDKN2A-B, 

DGKB, MC4R and GIPR, and one each at the remainder), only three index variants are not 

common (Supplementary Table 6, Supplementary Figure 5): rs1800574 (MAF=2.2%, 
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OR=1.21) for one signal at the HNF1A locus; rs1800961 (MAF=3.9%, OR=1.16) at the 

HNF4A locus; and rs17066842 (MAF=4.8%, OR=1.12) for one signal at the MC4R locus.

Localising variants driving T2D association signals

We used statistical evidence of association from the meta-analysis of Metabochip studies to 

construct 99% “credible sets” of variants
28

 that are most likely to drive the 49 distinct 

signals (Online Methods, Supplementary Table 8, Supplementary Figure 6). For ten distinct 

association signals, mapping to nine loci, the 99% credible set included no more than ten 

variants (Table 2, Supplementary Table 9). The greatest refinement was observed at the 

MTNR1B locus, where the credible set included only the index variant, rs10830963, 

accounting for more than 99.8% of the posterior probability of driving the association signal 

(πC). Small credible sets were also observed for the association at TCF7L2 (three variants, 

indexed by rs7903146, mapping to 4.3kb), and one signal at KCNQ1 (three variants, indexed 

by rs74046911, mapping to just 200bp). The 99% credible sets for both distinct association 

signals at CDKN2A-B together included just 11 variants in total, and map to less than 2kb.

We performed functional annotation of credible variants to search for evidence that 

association signals are driven by coding alleles. Across the 49 signals, only nine coding 

variants attained πC>1% (Supplementary Table 10), including six previously reported non-

synonymous T2D-risk alleles at PPARG
6
, KCNJ11-ABCC8

7,31,32
, SLC30A8

8,33
, and 

GCKR
9,34

. The remaining three coding alleles were the index variants for association 

signals mapping to HNF4A (p.T139I, rs1800961, πC=97.4%) and HNF1A (p.I27L, 

rs1169288, πC=75.5%; p.A98V, rs1800574, πC=34.0%). Our findings are supported by 

earlier studies, which reported nominal evidence for association of these three coding 

variants with T2D and defects in insulin secretion in vivo, and demonstrated reduced 

transcriptional activity of HNF1A target genes using in vitro assays
29,35

. These data provide 

strong evidence that HNF4A and HNF1A are T2D effector transcripts at these loci, a view 

further supported by the known impact of rare, loss of function mutations in these genes on 

maturity onset diabetes of the young
36,37

. Given the near complete coverage of common and 

low-frequency variants in fine-mapping regions after 1000G imputation, it is unlikely that 

additional distinct signals in established T2D susceptibility loci represented on the 

Metabochip are driven by coding variation with MAF≥0.5%, confirming reports that these 

associations are most likely to be mediated by effects on gene regulation
10,13,14,38

.

Regulatory mechanisms underlying T2D association signals

We sought to understand the regulatory mechanisms through which variants at the 39 

established T2D susceptibility loci influence disease by intersecting the 99% credible sets 

for each distinct association signal with chromatin immunoprecipitation sequence (ChIP-

seq) data for 165 transcription factors, chromatin state maps from 12 cell types, and long 

non-coding RNA transcripts from 25 cell types (Online Methods, Supplementary Table 11). 

We applied an enrichment procedure that compared the mean posterior probability of driving 

the association signal for credible set variants directly overlapping sites for each regulatory 

annotation with a null distribution obtained from randomly shifted site locations within 

100kb in either direction.
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We first applied this procedure to chromatin state and non-coding RNA elements using the 

19,266 credible set variants for all 49 distinct association signals (Supplementary Figure 7). 

Using a Bonferroni correction for the 37 tested cell type annotations (p<0.0014), variants in 

pancreatic islet enhancer elements
14

 had significantly higher posterior probability of driving 

association signals than that expected from the null distribution (1.97-fold, p=0.00022). We 

also observed nominal evidence for enrichment of the posterior probability of driving 

association signals among variants in human islet and hepatocellular carcinoma (HepG2) 

promoters
10,14

 (p=0.0052 and p=0.0064, respectively). However, there was no 

corresponding enrichment of variants in regulatory elements for other cell types or in non-

coding transcripts. These results are consistent with previous studies supporting a 

contribution of regulatory enhancer and promoter variants to T2D susceptibility in specific 

cell types
11–14

.

We next sought to gain insight into the transcription factors these regulatory variants perturb, 

and applied the same procedure to ChIP-seq binding data for 165 proteins (Figure 1, 

Supplementary Figure 8). Using a Bonferroni correction for the 165 tested proteins 

(p<0.00030), the 89 credible set variants overlapping 57 FOXA2 ChIP-seq binding sites, 

assayed in human HepG210 and islet
14

 cells, had significantly higher posterior probability of 

driving association signals than expected from the null distribution (8.24-fold, p=0.00028). 

The enrichment of FOXA2 ChIP-seq sites was exclusive to those shared with at least one 

other factor (9.18-fold, p=0.00028) compared to those that were not (1.12-fold, p=0.11). 

FOXA2 enrichment was also more pronounced among sites identified in pancreatic islets 

(15.43-fold, p=0.00045) than in HepG2 cells (4.55-fold, p=0.011). To exclude the possibility 

that this enrichment in HepG2 cells was driven by artefacts caused by a cultured cell line, we 

compared FOXA2 HepG2 sites to those previously assayed in primary liver
39

. We observed 

significant intersection of the HepG2 and liver FOXA2 sites that overlapped credible set 

variants (p=1.5×10−9). Consequently, we detected similar FOXA2 enrichment among sites 

detected in liver (3.63-fold, p=0.061) to that observed in HepG2 cells. We also compared 

FOXA2 ChIP-seq sites, genome-wide, from liver, HepG2 and islet cells (Supplementary 

Figure 9). The number of sites varied across cell types (8,023 for liver, 40,866 for HepG2, 

and 27,291 for islets), which is likely due, in part, to technical differences including 

sequencing platform, depth and read length. However, the intersection of FOXA2 sites 

between each pair of cell types was highly significant (p<2.2×10−16).

Given the preponderance of T2D-associated variants for islet enhancers, we next tested to 

what extent FOXA2 enrichment is driven by co-localisation with these genomic features
14

. 

Variants in FOXA2-bound sites were not enriched for posterior probability of driving 

association signals after removing enhancer sites (0.36-fold, p=0.69). Conversely, variants in 

islet enhancers remained nominally enriched when removing FOXA2 sites (1.65-fold, 

p=0.014). These results suggest that FOXA2 binding assayed by ChIP-seq, at a subset of 

enhancer element locations that are often shared by other proteins, is a genomic marker of 

variants with an increased posterior probability of driving T2D association signals.

Having demonstrated global over-representation for FOXA2 ChIP-seq binding by 

considering all loci simultaneously, we applied the same procedure to the 99% credible sets 

of each distinct association signal, separately, to identify those with the strongest evidence 

Gaulton et al. Page 6

Nat Genet. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for local enrichment (Figure 1). We observed over-representation of credible set variants in 

islet or HepG2 FOXA2 sites for 19 association signals, 15 of which attained nominal 

significance (p<0.05). A total of 41 credible set variants at these 19 distinct association 

signals overlap a FOXA2 ChIP-seq site in at least one of the two cell types (Supplementary 

Table 12). Of these, 12 variants were predicted to disrupt de novo recognition motifs (for 

FOXA2 and other factors) that were enriched in FOXA2-bound sequence (Table 3, 

Supplementary Table 13). The mean posterior probability of driving the association (πC) for 

these 12 variants was 22.0% on the basis of genetic fine-mapping (Figure 1), more than four 

times greater than for those in FOXA2 ChIP-seq sites that were not motif-disrupting at the 

same signals (mean πC of 5.2%, p=0.024). Furthermore, 11 of these 12 variants also 

overlapped an enhancer element in islets (9 variants) or HepG2 cells (6 variants), indicating 

that they are in transcriptionally active regions (Table 3). They include two variants with 

experimentally validated differences in regulatory activity: rs7903146 (πC=77.6%) at 

TCF7L2
40

 and rs11257655 (πC=21.1%) at CDC123
41

. They also include rs10830963, the 

index variant at the MTNR1B locus, which accounts for 99.8% of the posterior probability 

of driving the association signal on the basis of genetic fine-mapping. These results suggest 

that FOXA2 binding patterns can be used to highlight specific variants that are potentially 

causal for T2D susceptibility through altered regulatory binding.

Altered regulatory activity of the MTNR1B credible variant

To demonstrate how local enrichment of FOXA2 binding can be used to highlight regulatory 

mechanisms through which credible variants might impact T2D susceptibility, we focussed 

on the MTNR1B locus. Variants mapping to this region have amongst the strongest known 

effects on both T2D risk
6
 and fasting plasma glucose concentration

42
, and physiological data 

indicate an impact of MTNR1B on both insulin secretion and insulin action
43

. The lone 

credible variant at MTNR1B, rs10830963, overlaps a FOXA2 ChIP-seq binding site, and the 

risk allele, G, is predicted to create a recognition motif that matches the consensus sequence 

of NEUROD1 and several other factors (Figure 2, Supplementary Table 13). We tested in 
silico predictions of protein binding at rs10830963 via electrophoretic mobility shift assay 

(EMSA) with 25bp probe fragments surrounding each allele in human pancreatic islet beta-

cell (EndoC-βH1)
44

 or human liver HepG2 cell extracts. We observed allele-specific binding 

with extracts from both cell lines (Figure 2, Supplementary Figure 10).

To determine the specific protein(s) bound at each allele, we then performed supershift 

experiments using antibodies directed against NEUROD1, FOXA2, and three other factors 

(TAL1, PTF1A, and YY1), whose consensus binding sequences resemble the recognition 

motif (Online Methods). We observed a shift in the presence of the NEUROD1 antibody on 

the risk allele in EndoC-βH1 extracts, which could be competed away by an excess of 

unlabelled NEUROD1 consensus sequence probe (Figure 2). None of the tested antibodies 

(including NEUROD1) shifted the risk allele band in HepG2 cell extracts (Supplementary 

Figure 10). These results demonstrate that, in vitro, the risk allele of rs10830963 

preferentially binds NEUROD1 in islet-derived cells, and binds a protein not identified from 

known recognition motifs in liver-derived cells.
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To relate allelic differences in protein binding to genomic activity at this site, we cloned a 

224bp region surrounding rs10830963 into a luciferase reporter vector containing a minimal 

promoter, and tested its enhancer activity in EndoC-βH1 and HepG2 cell lines. Consistent 

with in silico predictions, we observed a significant (p<0.05) increase in luciferase 

expression on the risk allele compared to the protective allele in both cell lines (Figure 2). 

Furthermore, RNA-seq data reported from human islets have linked the T2D risk allele of 

rs10830963 to increased expression of MTNR1B
45,46

. Taken together, these results suggest 

that the G allele of rs10830963 increases T2D risk through increased FOXA2-bound 

enhancer activity, potentially mediated through NEUROD1 binding in islets, and 

consequently higher expression of MTNR1B.

Candidate effector genes at FOXA2 enriched T2D signals

We hypothesised that the locus-specific effects of murine transcription factor knockout 

models would mimic patterns of binding enrichment at human disease loci. We thus 

attempted to relate FOXA2 binding at the 19 FOXA2-enriched association signals (Figure 1) 

to target effector genes using previously reported pancreatic islet expression profiles from 

wild-type and Foxa1/2-null mice
47

 (Online Methods). Syntenic genes mapping within 500kb 

of the credible set at the 19 FOXA2-enriched signals were significantly down-regulated 

(45.2% decrease) in Foxa1/2 knockout mice (Supplementary Figure 11) compared to those 

genome-wide (0.021% increase, p=0.012), whilst those mapping within 500kb of the other 

30 T2D association signals were not (2.25% decrease, p=0.20). We observed a consistent 

down-regulation (39.6% decrease) when considering only those genes mapping closest to 

each FOXA2-enriched signal, compared to those genome-wide (0.021% increase, 

p=0.0021). Thus, data related to altered gene expression in Foxa1/2 knockout mice support 

patterns of FOXA2 binding site enrichment in humans.

We next identified specific genes at the 19 FOXA2-enriched association signals that were 

down-regulated in Foxa1/2 knockout mice, which might represent effector transcripts for 

these loci (Supplementary Table 14). Several of these genes have been previously implicated 

as likely effector transcripts in humans, including TCF7L2
48,49

 (57% decrease), KCNJ11
7,50 

(38% decrease), and SLC30A8
51

 (135% decrease). These data also implicate novel 

candidate effector genes at FOXA2-enriched association signals (Supplementary Table 14). 

For example, in Foxa1/2 knockout mice, there is a marked down-regulation of Reg4 
(1,415% decrease), which maps to a syntenic region at the FOXA2-enriched NOTCH2 
GWAS locus, highlighting REG4 as a likely effector transcript in humans. Additional 

examples of candidate effector genes include IGF2 at the KCNQ1 locus (135% decrease), 

and CAMK1D at the CDC123 locus (81% decrease). Together, these results provide 

additional support for the importance of FOXA2 binding at a subset of T2D susceptibility 

loci, and further highlight specific genes through which regulatory variants in these regions 

may operate.

DISCUSSION

We have undertaken comprehensive fine-mapping of 39 established T2D susceptibility loci 

in 27,206 cases and 57,574 controls of European ancestry, and have demonstrated that 
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multiple distinct association signals in these regions is a common phenomenon. Index 

variants for just three of the 49 distinct association signals are not common, despite near 

complete coverage of variation with MAF≥0.5% in fine-mapping regions after 1000G 

imputation. Although we cannot evaluate the impact of rare variation (MAF<0.5%) in 

established T2D susceptibility loci without large-scale re-sequencing, our data strongly 

argue against a role for low-frequency variants of large effect via synthetic association
52

. We 

have demonstrated that seven distinct association signals, mapping to six T2D susceptibility 

loci represented on the Metabochip, are likely to be driven by coding alleles, including novel 

index variants mapping to HNF1A and HNF4A. Outside of these regions, our fine-mapping 

confirms previous reports that T2D association signals are primarily driven by non-coding 

alleles, with effects that are mediated through gene regulation
10,13,14,38

.

We have demonstrated, by genomic annotation and functional assays, that FOXA2 binding 

assayed by ChIP-seq can be used to pinpoint candidate causal regulatory elements, 

providing routes to understanding the biology of specific T2D susceptibility loci. These 

elements highlight variants and effector transcripts through which association signals are 

mediated, via altered binding of either FOXA2, directly, or another transcription factor. For 

example, at the MTNR1B locus, the risk allele of the lone credible variant, rs10830963, 

which drives the T2D association signal, preferentially binds NEUROD1 in islet-derived 

cells in vitro, and increases FOXA2-bound enhancer activity in human islet and liver-derived 

cells. These data are consistent with previous reports correlating the risk allele with higher 

MTNR1B expression
45,46

, and not loss of function
53

, and suggest altered NEUROD1 

binding in islets contributes to T2D susceptibility at this locus. Further experiments will be 

required to establish that our in vitro findings regarding NEUROD1 binding can be 

confirmed in vivo. However, our attempts to perform ChIP-Seq in primary islet samples of 

the defined MTNR1B genotype were repeatedly unsuccessful, owing to a lack of a suitable 

NEUROD1 antibody. These studies are further complicated by the limited availability of 

primary human islets, and the slow division rate of human islet derived cell-lines is an 

impediment to the implementation of genome-editing technologies.

FOXA2 is a pioneer factor that binds native chromatin and bookmarks genomic regions for 

transcriptional activity
54

, and is involved in pancreatic and hepatic development
55,56

. 

FOXA2 is also expressed in other T2D-relevant cell types, such as adipocytes. Future studies 

will be required to elucidate the extent to which FOXA2 binding events across cell types 

influence disease risk. Foxa2 null mice have impaired insulin secretion
47

, and common 

variants at the FOXA2 locus are associated with fasting plasma glucose concentrations
42,57

. 

Our findings are thus consistent with the involvement of FOXA2 in maintaining normal 

glucose homeostasis. Common T2D-associated variants at FOXA2 have also been reported 

in South Asians
58

, although they do not attain genome-wide significance in the largest 

GWAS for the disease from multiple ancestry groups
1–5

, and therefore require further 

replication. Enrichment of FOXA2 binding has also been reported within genomic intervals 

containing GWAS signals for endocrine, neuropsychiatric, cardiovascular and cancer 

traits
59

. Our study has the advantage that we consider only those FOXA2 sites that directly 

overlap variants that drive association signals by first fine-mapping GWAS loci, thereby 

providing more targeted credible sets for functional enrichment. Nevertheless, the results of 
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these studies, taken together, suggest a possible role for FOXA2 across a broad spectrum of 

complex human phenotypes.

In conclusion, we have highlighted that FOXA2 binding patterns can be used to inform 

future hypothesis-driven investigation of the variants, genes, and molecular mechanisms 

underlying T2D association signals mapping to non-coding sequence. Continued 

identification of the effector transcripts at these non-coding association signals will require 

the use of expression QTL and knockout models, in combination with high-throughput 

experimental data derived from chromatin conformation capture techniques, such as 

Capture-C. Our findings support the use of transcription factor binding events as a means to 

partition susceptibility loci, potentially residing in distinct pathways, within disease-relevant 

cell types. Finally, our study demonstrates the utility of fine-mapping through integration of 

genetic and genomic information from relevant tissues and cellular models to elucidate the 

pathophysiology of complex human diseases, thus offering a promising avenue for 

translation of GWAS findings for clinical utility.

ONLINE METHODS

Ethics statement

All human research was approved by the relevant institutional review boards, and conducted 

according to the Declaration of Helsinki. All participants provided written informed consent.

Metabochip imputation and association analysis

We considered a total of 27,206 T2D cases and 57,574 controls from 23 studies from 

populations of European ancestry (Supplementary Table 1), all genotyped with the 

Metabochip. Sample and variant quality control was performed within each study 

(Supplementary Table 2). To improve the quality of the genotype scaffold in each study, 

variants were subsequently removed if: (i) allele frequencies differed from those for 

European ancestry haplotypes from the 1000 Genomes Project Consortium phase 1 

integrated reference panel (March 2012 release)
18

 by more than 20%; AT/GC variants had 

MAF>40% because of potential undetected errors in strand alignment; or (iii) MAF<1% 

because of difficulties in calling rare variants. Each scaffold was then imputed up to up to 

the phase 1 integrated reference panel (all ancestries, March 2012 release) from the 1000 

Genomes Project Consortium
18

, using IMPUTEv221 or minimac
22

. Within each study, well-

imputed variants (IMPUTEv221 info>0.4 or minimac
22

 r2>0.3) were tested for T2D 

association under an additive model after adjustment for study-specific covariates 

(Supplementary Table 2), including principal components to adjust for population structure. 

Association summary statistics for each variant for each study were corrected for residual 

population structure using the genomic control inflation factor
60

 obtained from 3,598 

independent (r2<0.05) QT-interval variants, which were not expected to be associated with 

T2D
4
 (Supplementary Table 2). We then combined association summary statistics for each 

variant across studies via fixed-effects inverse-variance weighted meta-analysis. The results 

of the meta-analysis were subsequently corrected by a second round of QT-interval genomic 

control (λQT=1.18) to account for structure between studies. Variants were excluded from 

downstream analyses if they were reported in less than 80% of the total effective sample 
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size, defined as Neff = 4×Ncases×Ncontrols/(Ncases+Ncontrols), thus removing those that were 

not well imputed in the majority of studies.

Identification of distinct association signals in established GWAS loci

We used GCTA
23

 to select index variants in each of the 39 established loci represented on 

Metabochip with nominal evidence of association (pJ<0.001) with T2D in an approximate 

joint regression model. The GCTA model made use of: (i) summary statistics from the fixed-

effects meta-analysis Metabochip studies; and (ii) genotype data for 3,298 T2D cases and 

3,708 controls of UK ancestry from GoDARTS as a reference for LD across each fine-

mapping region. For comparison, we also obtained association summary statistics for the 

selected index variants from the GCTA joint regression model on the basis of genotype data 

from an alternative reference consisting of 4,435 T2D cases and 5,757 controls of Finnish 

ancestry from FUSION (Supplementary Table 15, Supplementary Figure 12). Selected index 

variants were then carried forward for in silico follow-up in validation meta-analysis.

The validation meta-analysis consisted of 19,662 T2D cases and 115,140 controls from 10 

GWAS from populations of European ancestry, genotyped with a range of genome-wide 

arrays (Supplementary Table 1). Sample and variant quality control was performed within 

each study (Supplementary Table 2). Each scaffold was then imputed up to the phase 1 

integrated reference panel (all ancestries, March 2012 release) from the 1000 Genomes 

Project Consortium
18

, using IMPUTEv221 or minimac
22

. Within each study, well-imputed 

variants (IMPUTEv221 info≥0.4 or minimac
22

 r2≥0.3) were tested for T2D association under 

an additive model after adjustment for study-specific covariates (Supplementary Table 2), 

including principal components to adjust for population structure. Association summary 

statistics for each variant for each study were corrected for residual population structure 

using the genomic control inflation factor
60

 (Supplementary Table 2). We then combined 

association summary statistics for each variant across studies via fixed-effects inverse-

variance weighted meta-analysis.

Association summary statistics for the selected index variants from the Metabochip and 

validation meta-analyses were next combined via fixed-effects inverse-variance weighted 

meta-analysis. In each of the 39 established loci represented on Metabochip, GCTA
23

 was 

used to select index variants with locus-wide evidence of association (pJ<10−5) in the 

approximate joint regression model on the basis of: (i) summary statistics from the 

combined meta-analysis; and (ii) genotype data for 3,298 T2D cases and 3,708 controls from 

GoDARTS as a reference for LD across each fine-mapping region.

For established loci with multiple index variants selected at locus-wide significance from the 

GCTA approximate joint regression model in combined meta-analysis, we performed exact 

conditioning within each Metabochip study (Supplementary Table 7). To obtain the 

association signal attributed to a specific index variant, high-quality variants (IMPUTEv221 

info>0.4 or minimac
22

 r2>0.3) were tested for T2D association under an additive model after 

adjustment for study-specific covariates (Supplementary Table 2) and genotypes at other 

selected index variants in the fine-mapping region. Association summary statistics for each 

study were corrected for residual population structure using the QT interval genomic control 

inflation factor obtained in the Metabochip meta-analysis. For each association signal, 
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summary statistics for each variant were then combined across discovery studies via fixed-

effects inverse-variance meta-analysis, and subsequently corrected by a second round of QT-

interval genomic control (λQT=1.18).

Credible set construction

In an ideal fine-mapping experiment, we would calculate the posterior probability of driving 

each distinct association signal for all variants mapping to a locus. However, the posterior 

probability is determined by the association signal effect size of the variant and the 

corresponding standard error, which is also impacted by the quality of imputation across 

studies, amongst other factors. To minimise the impact of imputation quality on fine-

mapping, we therefore retained only those variants that were directly typed and/or well 

imputed in at least 80% of the total effective sample size. Assuming that the variant driving 

an association signal meets these quality criteria, the probability that it would be contained 

within the 99% credible set would be ~0.99.

For each distinct signal, we first calculated the posterior probability, πCj, that the jth variant 

is driving the association, given by

where the summation is over all retained variants in the fine-mapping region. In this 

expression, Λj is the approximate Bayes’ factor
61

 for the jth variant, given by

where βj and Vj denote the estimated allelic effect (log-OR) and corresponding variance 

from the meta-analysis across Metabochip studies. In loci with multiple distinct signals of 

association, results are presented from exact conditional meta-analysis after adjusting for all 

other index variants in the fine-mapping region. In loci with a single association signal, 

results are presented from unconditional meta-analysis. The parameter ω denotes the prior 

variance in allelic effects, taken here to be 0.04
61

. The 99% credible set
29

 for each signal 

was then constructed by: (i) ranking all variants according to their Bayes’ factor, Λj; and (ii) 

including ranked variants until their cumulative posterior probability of driving the 

association attained or exceeded 0.99.

Genomic annotation data and enrichment analyses

We obtained genomic annotation data for transcription factor binding sites (TFBS) assayed 

through ChIP experiments from multiple sources. We used sites from the ENCODE Project 

Consortium
10

 for 161 proteins available from the UCSC human genome browser. We also 

obtained raw ChIP and input sequence data for additional factors assayed in primary 

pancreatic islets
14

. We then processed these additional factors using protocols employed by 

the ENCODE Project Consortium
10

. First, sequence reads were aligned to the human 
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genome (hg19) using BWA
62

 with sex-specific references, and were then converted to BAM 

files using SAMtools
63

 after removing duplicate and non-uniquely mapped reads. Binding 

sites were called from reads of each replicate, as well as reads pooled across all replicates, 

using SPP
64

. Raw sites from each replicate of a protein were compared using an 

irreproducible discovery rate
65

 (IDR) threshold of 0.02. The resulting number of sites 

passing this IDR threshold was then used to filter the pooled sites of a protein. The set of 

sites were further filtered for artefacts using a blacklist of genomic regions from the 

ENCODE Project Consortium. Sites from all sources for each protein, including ENCODE, 

were then combined. The complete set of 165 proteins employed in these analyses is 

presented in Supplementary Table 11. In addition, we obtained FOXA2 ChIP-seq sites that 

were previously identified in human liver
39

 and lifted their positions to hg19.

We obtained annotation data for five histone modifications (H3K4me1, H3K4me3, 

H3K27ac, H3K36me3, and H3K27me3) and CTCF binding assayed from ChIP experiments. 

We used data from 9 cell types from ENCODE
10

 (Gm12878, K562, Hepg2, Hsmm, Huvec, 

Nhek, Nhlf, h1Hesc, and Hmec); we also obtained raw ChIP data assayed in primary 

pancreatic islets
14

 and pre-mature and mature human adipose stromal cells
66

. We mapped 

reads to hg19 using BWA
62

, and used the resulting mapped reads from these 12 cell types as 

input to ChromHMM
67

. We assigned states based on the following chromatin signatures: 

active promoter (H3K4me3 and H3K27ac); strong enhancer 1 (H3K4me3, H3K27ac, and 

H3K4me1); strong enhancer 2 (H3K27ac and H3K4me1); weak enhancer (H3K4me1); 

poised promoter (H3K27me3, H3K4me3, and H3K4me1); repressed (H3K27me3); insulator 

(CTCF); and transcription (H3K36me3). For each cell type, we pooled the three enhancer 

states into one enhancer category, and the two promoter states into one promoter category. 

We also identified long non-coding RNA data from the Human Body Map (UCSC genome 

browser) and from pancreatic islets
68

.

For each genomic annotation, we tested for overall enrichment of the posterior probability 

that overlapping variants in the 99% credible sets are driving distinct association signals 

(πC). We first calculated the mean posterior probability (mean πC) over the set of variants 

overlapping a given annotation. We then generated a null distribution of the mean posterior 

probability (mean πC) by: (i) shifting the genomic locations of binding sites a random 

distance within 100kb in either direction; (ii) recalculating the mean posterior probability for 

99% credible set variants overlapping shifted sites; and (iii) repeating this procedure 100,000 

times. We estimated the fold-enrichment of each overlap by calculating the expected null 

posterior probability, and dividing the observed probability by the expected probability. We 

calculated a p-value for the enrichment by the proportion of permutations for which the 

expected posterior probability of driving the association signal was greater than or equal to 

that observed. We considered cell type annotations to be significantly enriched if the p-value 

was less than 0.05/37 = 0.0014 (Bonferroni correction for 37 annotations). We considered 

TFBS annotations to be significantly enriched if the p-value was less than 0.05/165 = 

0.00030 (Bonferroni correction for 165 factors). We next partitioned binding sites into those 

that are “shared” with another factor (i.e. genomic interval intersects a site for at least one 

other factor), and those that are “unique”. We also partitioned binding sites based on overlap 

with islet enhancer elements. For each factor with significant enrichment across all credible 
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sets (FOXA2), we applied the same enrichment analysis, but restricted to credible set 

variants for each distinct association signal, separately.

We assessed the evidence for intersection in FOXA2 ChIP-seq sites from islets
14

, HepG210, 

and liver
39

, genome-wide and overlapping credible set variants, using BEDtools
69

.

Motif analysis

We conducted recognition motif enhancement analyses for the set of FOXA2 ChIP-seq 

binding sites. First, we obtained repeat-masked genomic sequence underlying each site using 

the UCSC human genome browser. We scanned sequences for enrichment in these motifs 

using MEME-ChIP
70

, which uses up to 100bp surrounding the mid-point of each site. This 

resulted in 198 enriched motifs with E-value (expected number of hits) less than 0.05 

(Supplementary Table 16). We compared each motif to those known from JASPAR
71

, 

ENCODE
10

, and Homer
72

 using Tomtom
73

.

Second, we identified variants in FOXA2 ChIP-seq sites predicted to disrupt an enriched 

recognition motif by: (i) scanning a 25bp of sequence flanking each variant allele using 

FIMO
74

 (p<0.0001); and (ii) retaining variants in highly conserved positions (entropy less 

than 0.5). For the 12 variants at FOXA2-enriched signals disrupting at least one recognition 

motif (Table 3, Supplementary Table 14), we compared their posterior probabilities of 

driving the association (πC) with those for non-disrupting variants in FOXA2 ChIP-seq sites 

at the same signals using a two-sided Wilcoxon rank-sum test.

Electrophoretic mobility shift assays

EMSA was performed using nuclear extracts from human HepG2 and EndoC-βH1 cells. 

HepG2 cells were the generous gift of the Ratcliffe laboratory
75

 and authenticated by 

genotyping in the MHC region. Endo-βH1 cells were obtained from Endocells and have 

been previously authenticated
44

. Both cell lines were tested and found negative for 

mycoplasma contamination. Nuclear extracts were incubated with
32

 P gamma-ATP end-

labeled double-stranded DNA probes (PerkinElmer, MA). The forward strand probe 

sequences used are presented in Supplementary Table 17.

For each lane of the EMSA, 5μg of nuclear extract was incubated with 100 fmol labeled 

probes in a 10ul binding reaction containing 10mM Tris-HCl pH7.5, 4% glycerol, 1mM 

MgCl2, 0.5mM EDTA, 0.5mM DTT, 50mM NaCl and 1μg poly(dI-dC). For competition 

assays unlabeled probe at 100-fold excess was added to the binding reaction before addition 

of labeled probes. For super-shift assays the nuclear extract was pre-incubated with 1μg 

antibody for 30 minutes on ice before the probe was added. The following antibodies were 

used: anti-NEUROD1 (sc-1084X, Santa Cruz Biotechnology, Texas), anti-PTF1A 

(sc-98612X, Santa Cruz Biotechnology, Texas), anti-HNF3B (FOXA2) (sc-6554X, Santa 

Cruz Biotechnology, Texas), anti-YY1 (sc281X, Santa Cruz Biotechnology, Texas), anti-

TAL1 (sc12984X, Santa Cruz Biotechnology, Texas), normal rabbit Ig (sc-2027, Santa Cruz 

Biotechnology, Texas), normal goat Ig (sc-2028, Santa Cruz Biotechnology, Texas).
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Luciferase activity

We synthesised 224bp nucleotide sequences containing either the risk or protective allele of 

the MTNR1B enhancer sequence rs10830963 in either the forward or reverse orientation by 

GeneArt (Life Technologies). Complementary single-stranded oligos were then annealed 

and sub-cloned into the minimal promoter-driven luciferase vector pGL4.23 (Promega) 

using Nhel and Xhol. Isolated clones were verified by sequencing.

For luciferase assays, human liver HepG2 and human beta-cell EndoC-βH1
45

 cells were 

counted and seeded into 24 well trays (Corning) at 1.5×105 (HepG2) or 1.4×105 (EndoC-

βH1) cells/well. Transfections were performed in triplicate with either Lipofectamine 2000 

(HepG2) or Fugene 6 (EndoC-βH1) as per manufacturer’s instructions. Cells were 

transfected with 700ng pGL4.23 DNA containing the protective or risk MTNR1B enhancer 

sequence in either the forward or reverse orientation, or an equivalent amount of empty 

vector DNA, plus 10ng pRL-SV40 DNA (Promega) as a transfection control, per well. Cells 

were lysed 48 hours post-transfection and analysed for Firefly and Renilla luciferase 

activities using the Dual Luciferase Assay System (Promega) as per manufacturer’s 

instructions, in half-volume 96 well tray format on an Enspire Multimode Plate Reader 

(Perkin Elmer). Firefly luciferase activity was normalised to Renilla luciferase activity for 

each well, and the results expressed as a mean normalised activity relative to empty vector-

transfected cells. All experiments were performed three times in triplicate. A two-sided 

unpaired t-test was used to compare luciferase activity between alleles.

Mouse gene expression analysis

We obtained fold-changes in pancreatic islet gene expression in wild type compared to 

Foxa1/Foxa2-null mice
47

. We used ENSEMBL to map mouse genes to human orthologs. We 

filtered for human genes annotated as protein coding in GENCODE. This filtering resulted 

in 4,629 human protein coding genes for analysis.

First, we calculated the genomic interval spanned by the variants in each credible set. We 

expanded this interval for 500kb on either side, and identified the set of genes overlapping 

this region using BEDtools
69

. To account for syntenic differences in gene order between 

species, we retained only those genes that were: (a) on the same chromosome; and (b) in 

exactly the same relative order in both mouse and human genomes. At the GIPR locus, one 

of the genes was ordered differently and thus removed from the analysis. At two loci, 

KCNJ11 and HNF1A, at least one of the genes was located on a different part of the same 

chromosome, and at another locus, GCK, genes were located on different chromosomes. For 

these three loci, we retained only those genes that were at the same chromosomal location to 

the interval covered by the credible set for the association signal for that locus (by lifting 

over from hg19 to mouse build mm10). Second, for each distinct association signal, we 

identified the closest gene to the index variant using BEDtools
69

. We then partitioned 

distinct association signals into those with evidence for enriched FOXA2 binding (fold-

enrichment >1) and those without, counting each gene only once in a given group. For each 

analysis, we converted the fold-changes to percentages, and compared the percent change in 

expression using a one-sided Wilcoxon rank-sum test between genes in each partition and all 

4,629 protein coding genes.
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Figure 1. FOX2A bound sites are a genomic marker of T2D risk variants
(A) Variants in ChIP-seq binding sites for 165 proteins were tested for enrichment of 

posterior probabilities compared to variants in shifted sites. Variants in FOXA2 ChIP-seq 

sites were significantly enriched (p<0.00030). (B) FOXA2 ChIP-seq sites were partitioned 

based on overlap with other genomic features. There was stronger enrichment in: (i) FOXA2 

sites overlapping a ChIP-seq site for another protein compared to unique sites; (ii) sites 

identified in primary islets compared to HepG2 or primary liver cells; and (iii) sites 

overlapping islet enhancers compared to those that did not (**p<0.00030; *p<0.05). (C) 
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Variants at each signal were tested for FOXA2 enrichment. Nineteen signals had greater 

enrichment than expected compared to shifted sites; at 15 signals this enrichment was 

nominally-significant (p<0.05). (D) FOXA2-bound variants disrupting recognition motifs 

have an increased probability of being causal.
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Figure 2. The lone variant in the 99% credible set at the MTNR1B locus affects FOXA2-bound 
enhancer activity
(A) The intronic variant, rs10830963, has 99.8% probability of driving the association signal 

at the MTRN1B locus. This variant overlaps a FOXA2 binding site, and the risk allele G is 

predicted to create a de novo recognition motif, which closely matches the NEUROD1 

consensus. (B) Electrophoretic mobility shift assay of a 25bp fragment surrounding both 

alleles in EndoC-βH1 cell extracts. Proteins were bound to both alleles. In the presence of a 

NEUROD1 antibody, only the risk allele band was super-shifted, and in the presence of an 

unlabelled NEUROD1 consensus probe, the signal was competed away. NE: nuclear extract. 
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(C, D) The 224bp sequence surrounding each allele was cloned into a luciferase reporter 

construct containing a minimal promoter and tested for luciferase activity in (C) EndoC-βH1 

and (D) HepG2 cells (n=3 for each cell type). Results are presented as mean ± standard 

error. The risk allele had significantly increased enhancer activity over the protective allele 

in both forward and reverse orientations in both cell types.
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