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Abstract

The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation 

products is one of the concerns associated with the bioremediation of PAH-contaminated soils. 

Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant 

(MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using 

pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed 

for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH 

concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum 

allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, 

BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil 

extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and 

developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically 

significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in 

four polar soil extract fractions, post-bioremediation (p < 0.05). In addition, a statistically 

significant increase in developmental toxicity was measured in one polar soil extract fraction, 

post-bioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal 

fin malformations and hyperpigmentation in the tail, were measured in several soil extract 

fractions in embryonic zebrafish, both pre- and post-bioremediation. The increased toxicity 

measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including 

quinones), because most were not present in the toxic polar fractions and/or because their 

concentrations did not increase post-bioremediation. However, the increased toxicity measured 
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post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 

3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental contaminants 

formed through the incomplete combustion of organic matter. PAHs are of concern because 

some are toxic, suspected or known mutagens and/or carcinogens, and some tend to be 

persistent in the environment.1–3 These pollutants are primary constituents in soils at 

manufactured gas plant (MGP) sites, where sources of PAHs often include coal tar.4 Due to 

the relative stability and hydrophobic character of PAHs, soil ultimately acts as a major sink 

for these compounds.5,6

Bioremediation uses microorganisms to decrease PAH concentrations in soil, thus reducing 

their associated risks.7 However, under certain conditions, reductions in PAH concentrations 

do not necessarily correspond with decreased soil toxicity.8,9 Incomplete degradation, or 

oxidation, of PAHs may lead to the formation of more polar and mobile PAH transformation 

products, which may include PAH derivatives containing oxygen groups (OPAHs), and nitro 

groups (NPAHs). These more polar PAH compounds are not as well-studied in 

bioremediation systems, and could be present alongside PAHs, serving both as co-

contaminants and/or remedial transformation products. Additionally, they may be more 

reactive and potentially more toxic due to the presence of electronegative atoms.10–14 For 

instance, some OPAHs and NPAHs are known to exhibit greater toxicity than their 

corresponding unsubstituted PAH precursors and do not require enzymatic activation to 

express toxicity.12–16 Heterocyclic PAHs, HPAHs (PAH derivatives containing heteroatoms 

oxygen, nitrogen, or sulphur), have been shown to contribute significantly to toxicity at 

contaminated sites, and their metabolites have been linked to endocrine disruption.17,18

Beyond monitoring PAHs, chiefly those labeled as the 16 United States Environmental 

Protection Agency (U.S. EPA) PAH priority pollutants, the formation of PAH 

transformation products is not commonly measured at remediation sites. In complex and 

dynamic biological systems, it can be difficult to reliably predict the transformation products 

that will be formed. Additionally, environmental analysis of PAH transformation products, 

and more polar PAHs, is more challenging than that of the PAHs because they may be 

present in lower concentrations, are more reactive, and are strongly influenced by matrix 

interferences from soil organic matter and unresolved complex mixtures.19 Compared with 

PAHs, there is also a lack of labeled standards and certified reference materials for these 

compounds.

Previous studies have used an effects-directed analysis (EDA) approach to assess toxicity 

changes during or after remediation. These previous studies have predominantly used 

bacterial and in vitro mammalian-cell assays,20–23 which can be marred by high false 

positives and negatives, as well as limited sensitivities.24,25 The DT40 bioassay uses DNA 

damage repair-deficient mutants of the parental DT40 cell line to measure genotoxicity, and 

the response to mutagenic chemicals in these repair-deficient mutants is marked by an 

increase in chromosomal aberrations relative to the parental DT40 cell line.26–28 The 
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advantages of this assay include quick proliferation rates, a resemblance to higher eukaryotic 

cells, and high gene targeting efficiencies necessary in the production of deficient-repair 

mutants.28 Another unique feature of DT40 cells is their apparent lack of a functional p53 

protein, which can induce apoptosis in the presence of cell stress. The lack of a functioning 

p53 protein ensures that the cell death observed is due to failures in specific DNA-damage 

repair pathways rather than from apoptosis activated by the cell in response to DNA 

damage.29 While many assays can determine whether a toxin is mutagenic or not, the DT40 

bioassay provides information on the mode of action, which can shed more light in 

understanding how certain chemicals are likely to behave in human exposure scenarios.26

The embryonic zebrafish assay (Danio rerio) is an effective in vivo model to assess the 

developmental toxicity of environmental toxicants.30,31 Zebrafish share significant genetic 

and physiological homology with humans, and there is growing evidence that zebrafish can 

rival or exceed rodent models in predicting human disease outcomes.32,33 To the best of our 

knowledge, no studies have used the embryonic zebrafish assay to study the effect of 

bioremediation on PAH contaminated soils. However, a recent study by Wincent et al. 

investigated the developmental toxicity in zebrafish in soil from multiple industrial sites, and 

found that in gas contaminated soil, there was greater developmental toxicity associated with 

the relatively more polar oxygenated fraction than with the PAH fraction.34

While some studies on the bioremediation of PAH contaminated soils measured a general 

decrease in soil toxicity following bioremediation,35–37 other studies measured an increase, 

suggesting the formation of toxic transformation products and/or metabolites.8,20–22,36 

However, an in depth investigation into potentially toxic PAH transformation products has 

not been carried out. The objectives of this study were to (1) use an EDA approach to begin 

to identify potentially toxic PAH transformation products, as well as eliminate non-toxic 

PAH transformation products, in bioremediated soil; and (2) use changes in PAH, OPAH, 

NPAH, and HPAH concentrations, pre- and post-bioremediation, as a possible explanation 

for changes in soil toxicity. Soil contaminated with coal tar was extracted pre- and post-

bioremediation, the extract was fractionated based on polarity, and the fractions were 

evaluated for changes in PAH, OPAH, NPAH, and HPAH concentrations, as well as for 

genotoxicity and developmental toxicity using the DT40 and zebrafish bioassays, 

respectively.

MATERIALS AND METHODS

Chemicals

Standard solutions of PAHs and methyl PAHs were purchased from AccuStandard (New 

Haven, CT) and Chem Service (West Chester, PA), OPAHs from Sigma Aldrich (St. Louis, 

MO), HPAHs from AccuStandard (New Haven, CT) and Sigma Aldrich (St. Louis, MO), 

and NPAHs from AccuStandard (New Haven, CT). All 88 PAHs studied and their 

abbreviations are listed in Table 1. Isotopically labeled standards used as surrogates and 

internal standards for PAHs and methyl PAHs, OPAHs, HPAHs, and NPAHs were 

purchased from CDN Isotopes (Point-Claire, Quebec) and are listed in the supporting 

information.
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Study Area and Soil Samples

Soil contaminated with coal tar was collected from a former MGP site in Salisbury, North 

Carolina.8 The soil was treated in an aerobic laboratory-scale bioreactor under conditions 

previously described.8,38 The contaminated soil before treatment was labeled as “pre-

bioremediation” and after treatment as “post-bioremediation.”

Pressurized Liquid Extraction (PLE)

Approximately 0.5 g wet weight soil was extracted in 100 mL cells using an Accelerated 

Solvent Extractor (ASE) (Dionex ASE 350) in hexane:acetone (75:25, v/v) (1500 psi, 100 

°C, 3 cycles, 240 s purge). ASE is an exhaustive extraction technique that is useful for 

extracting the majority of PAHs, OPAHs, NPAHs, and HPAHs from the soil samples.39 

However, it is a worst case scenario in terms of estimating bioavailable concentrations.4,40 

The extract was then split 75% for toxicity testing and 25% for chemical analysis and the 

portion undergoing chemical analysis was spiked with isotopically labeled surrogate 

standards. This was done so that the DT40 cells and zebrafish embryos were not exposed to 

potentially toxic isotopically labeled PAHs and to ensure that the extracts being chemically 

analyzed were the same as the extracts undergoing toxicity testing. Dry weights of soil were 

obtained after drying at 120 °C for 24 h. All concentrations are reported on a dry weight 

basis.

Fractionation

The toxicological and chemical portions of the extract were fractionated into fourteen 25 mL 

fractions using 20 g silica solid phase extraction (SPE) cartridges from Agilent (Santa Clara, 

CA) (Table 2). However, due to the intensive fractionation and to ensure there was enough 

soil residue to elicit a response in the DT40 assay, these fractions were combined into six 

composite fractions A, B, C, D, E, and F, as shown in Table 2. Soil was also extracted, and 

not fractionated (“unfractionated”), and analyzed with the fractionated soil extracts. Lab 

blanks consisting of sodium sulfate were extracted and analyzed for target PAHs and 

toxicity alongside soil extracts. The extracts undergoing chemical analysis were evaporated 

down to a final volume of 300 µL. The extracts undergoing toxicological analysis were 

evaporated just to dryness under a flow of nitrogen in pre-weighed vials. The mass of the 

dry residue was measured using an analytical balance, and the residue was re-dissolved in 

dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO) to a concentration of approximately 

10,000 µg soil residue per mL DMSO.

Chemical Analysis

Gas chromatographic/mass spectrometry (GC/MS) analysis was carried out using an Agilent 

6890 GC system, equipped with a mass selective detector on a DB-5MS (30 m × 0.25 mm 

I.D. × 0.25 µm film thickness) capillary column. The soil extracts were spiked with 

isotopically labeled internal standards prior to GC/MS analysis. PAHs and methyl PAHs, 

and HPAHs were analyzed in electron impact ionization (EI) mode, while OPAHs and 

NPAHs were analyzed in electron capture negative ionization (ECNI) mode.41–43 CHR and 

DahA were not resolved from TRI and DacA, respectively, and were reported as a sum (i.e. 

CHR+TRI and Dah+acA).
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DT40 Bioassay

The toxicological soil extracts were stored at −80 °C prior to exposure. They were serially 

diluted with phosphate-buffered saline (PBS) (Life Technologies, Grand Island, NY) and 

administered to the DT40 cell line and the mutant Rad54−/− and Rev1−/− cells. A DMSO 

blank, diluted with PBS, was used as a negative control. The cells were incubated at 39.5 °C 

for at least 48 h, at 5% CO2 and 95% relative humidity.28 After incubation, the cells were 

treated with 2, 3-bis [2-methoxy-4-nitro-5-sulfo-phenyl]-2H-tetrazolium-5-carbox-anilide 

salt (XTT dye) (Sigma, St. Louis, MO) and returned to the incubator to allow for dye 

metabolism. Once the dye was metabolized and the cells had developed sufficient color 

(approximately after 4 to 6 h), the absorbance was determined using a Vmax kinetic 

microplate reader (Molecular Devices, Sunnyvale, CA) and related to percentage cell 

survival.8 Details on the DT40 bioassay cell culturing, exposure method, and maintenance 

are reported elsewhere.28

Embryonic Zebrafish Bioassay

The toxicological soil extracts were stored at −20 °C until 1 h prior to exposure. They were 

diluted in DMSO in a 96-well plate to 1171 µg residue per mL DMSO, then diluted further 8 

times in a 5-fold serial dilution. Ten microliters were taken from the initial dilution to create 

a 10% DMSO in embryo media (EM) dilution row. Ten microliters were taken from the 

second dilution and added to the embryo-loaded 90 uL of EM. Ten microliters were added 

to each row of 4 exposure plates. The final DMSO concentration was 1% (v/v). A 1% 

DMSO vehicle control was used on every exposure plate. If mortality and morbidity, 

combined, were greater than 15% in the vehicle control, the exposures were re-run. Further 

details of the zebrafish method are reported elsewhere.31,44

Statistical Analysis

Median lethal concentrations (LC50) were determined using Graphpad PRISM software, 

while statistical analyses were conducted using Microsoft® Excel 2013 and JMP (Statistical 

Discovery™ from SAS) software. Student t-tests were used to identify statistically 

significant changes in PAH concentrations and toxicity, post-bioremediation (p < 0.05).

RESULTS AND DISCUSSION

Chemical Analysis

Unfractionated Soil Extracts—Pre-bioremediation, the total PAH (PAHs and methyl 

PAHs, OPAHs, and HPAHs) concentrations in the unfractionated soil extract ranged from 

0.01 to 123 µg g−1, while concentrations post-bioremediation ranged from 0.03 to 60 µg g−1 

(Figure 1, Table S1). No NPAHs were detected above the limit of detection (LOD) of 0.3 ng 

g−1. The sum of PAH and methyl PAH concentrations accounted for about 97% of the total 

PAH, OPAH and HPAH concentration, with 3- and 4-ring PAHs (including PHE, 1MPHE, 

2MPHE, PYR, BaA, and FLA), having the highest concentrations and showing the greatest 

reduction in concentration, post-bioremediation (Figure 1A). The higher molecular weight 

5- and 6-ring PAHs (ANTH, BghiP, IcdP, BaP, and BeP) were not biodegraded (Figure 
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1A).45,46 Because higher molecular PAHs are more hydrophobic, they tend to sorb strongly 

to organic matter and may not be available to microorganisms for biodegradation.6,45–47

The sum 16 U.S. EPA PAH priority pollutants (excluding CHR and DahA) concentration 

was reduced 45% post-bioremediation, and is comparable to previous studies, where 

removal percentages for these compounds were between 40 and 77%.8,20,22,45,47 Maximum 

allowable concentrations (MACs) for priority PAHs in industrial soils have been proposed 

by regulatory agencies and governments, including the U.S. EPA, the Canadian Council of 

Ministers of the Environment (CCME), and the German Federal Government (Table 

S2).48–50 The PAH concentrations in the soil, post-bioremediation, were lower than their 

corresponding MACs, with the exception of the higher molecular weight PAHs (BaA, BkF, 

BbF, BaP, and IcdP) (Table S2). The higher molecular weight PAHs have the lowest 

regulated MACs (0.29 – 12 µg g−1), likely because of their classification as B2 probable 

human carcinogens by the U.S. EPA.51

The sum of OPAHs accounted for about 2% of the total PAH, OPAH, and HPAH 

concentration, both pre- and post-bioremediation (Figure 1B). The sum of OPAH 

concentration was reduced 58%, post-bioremediation, with 9,10AQ, 2M9,10AQ, E9,10AQ, 

and BaF concentrations significantly reduced (p < 0.05). Though other studies have noted 

increases post-bioremediation in certain OPAHs, including 9FLO,23,52 we did not measure 

any significant increases in OPAH concentrations, post-bioremediation.

The HPAHs were measured at the lowest concentrations, accounting for about 0.3% of the 

total PAH, OPAH, and HPAH concentration. Of the HPAHs, IND, 5,6BQUI, and ACR 

concentrations were significantly reduced post-bioremediation (p < 0.05) (Figure 1C). 

Previous studies have shown that the presence of HPAHs can inhibit the degradation of 

PAHs.53,54

The formation of polar PAH transformation products during bioremediation may vary 

depending on a number of factors, including: degree of contamination, bioremediation 

conditions, microbial community composition, and soil properties.55 In addition, compared 

to unsubstituted PAHs, less is known about the degradation pathways and microorganisms 

that can degrade these polar PAHs. For instance, Rodgers-Vieira et. al recently identified the 

first bacterial strain capable of degrading 9,10AQ, but noted that this strain differed from the 

ANT degrading strain, implying that, while bacteria may be equipped to degrade the 

unsubstituted PAHs, they might not necessarily be equipped to degrade corresponding 

OPAHs.56

Fractionated Soil Extracts—The soil extracts were fractionated into six fractions based 

on polarity, A to F (Table 2), and analyzed to identify which fractions contained the PAHs 

and methyl PAHs, OPAHs, HPAHs, and NPAHs (Table 1). The purpose of fractionating the 

soil extract was not to isolate the different PAH classes, but to simplify the complex mixture 

of PAHs in the soil extract and to better link the measured toxicity of a fraction to the 

chemistry of a fraction. The PAHs and methyl PAHs, the least polar of the PAH classes, 

were primarily contained in fraction A. The majority of the individual OPAHs, which are 

more polar than the PAHs and methyl PAHs, were primarily contained in fractions B and C. 
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This includes the potential quinone products of the 3- and 4-ring PAHs that biodegraded, 

such as 9FLO. The polarities of the HPAHs vary depending on the heteroatom and the 

number of rings. The least polar HPAHs were contained in fractions A and B, while the 

more polar HPAHs were contained in fractions E and F. Though NPAHs were not measured 

above the LOD in the soil, a spike and recovery experiment showed that they would be 

contained primarily in fraction B.

DT40 Bioassay

DNA damage repair-deficient mutants Rad54−/− and Rev1−/− were used to evaluate DNA 

damage in the soil extracts, pre- and post-bioremediation. Rad54−/− and Rev1−/− are both 

sensitive to a wide range of DNA damaging agents and indicate w hether the formation of 

DNA double-strand breaks (Rad54−/−) or translesion synthesis (Rev1−/−) DNA damage has 

occurred.57,58

In the unfractionated soil extracts, a significant decrease in median lethal concentration 

(LC50), associated with increased toxicity, was measured post-bioremediation for the 

parental DT40 (p < 0.001) and mutants Rad54−/− (p < 0.001) and Rev1−/− (p < 0.01) (Figure 

2, Table S3). The effect on both mutants suggests that compounds affecting the double-

strand breaks and translesion DNA damage repair pathways likely contribute to the 

measured toxicity in the parental DT40 cells, post-bioremediation. These results are 

consistent with earlier work on this system by Hu et al.,8 who noted an increase in 

genotoxicity in DT40 cells and mutant Rad54−/− cell lines, post-bioremediation.

In the fractionated soil extracts, a significant decrease in LC50 was measured post240 

bioremediation in fraction E for DT40 (p < 0.05), Rad54−/− (p < 0.01), and Rev1−/− (p < 

0.001), and in fraction F for Rev1−/− (p < 0.01), suggesting that compounds in fractions E 

and F contribute to the increased toxicity measured post-bioremediation in the 

unfractionated soil extracts (Figure 2, Table S3). In fractions A, C, and D, we measured a 

significant increase in LC50 post244 bioremediation (p < 0.05), indicating a decrease in 

toxicity from compounds in these fractions after bioremediation.

While the LC50 provides information on general toxicity, the relative LC50 is a quantitative 

measure of how sensitive a DNA repair-deficient mutant is in relation to the parental DT40 

cell line (which has all functioning repair pathways). The relative LC50 was calculated by 

dividing the LC50 of the mutant (Rad54−/− or Rev1−/−) by the LC50 of the parental DT40. A 

ratio less than 1 (and p < 0.05) signified the mutant was more sensitive to the soil extract 

than the parental DT40, and the soil extract could be considered genotoxic.27,59 The smaller 

the LC50 of the mutant, the more toxic the soil extract is to the mutant, and the smaller the 

relative LC50.

Rad54−/− was more sensitive than the parental DT40 (relative LC50 < 1 and p < 0.05) to all 

soil extract fractions pre- and post-bioremediation, except for fraction E pre-bioremediation. 

This suggests that these fractions contained genotoxic compounds that affected the DNA 

double-strand repair pathway (Figure 3A). The unfractionated extract was also genotoxic to 

Rad54−/−, pre-bioremediation, with no significant change post-bioremediation. However, 
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we measured a significant decrease in relative LC50 for Rad54−/− in fraction D post-

bioremediation (p < 0.05), suggesting increased genotoxicity after bioremediation.

Rev1−/− was more sensitive than the parental DT40 (relative LC50 < 1 and p < 0.05) to all 

soil extract fractions pre- and post-bioremediation, except for fractions C and D pre-

bioremediation, suggesting that these fractions contained genotoxic compounds that affected 

the DNA translesion repair pathway (Figure 3B). It is important to note that fractions C and 

D were not genotoxic pre-bioremediation, but were post-bioremediation. This suggests that 

bioremediation resulted in the formation and/or increased concentration of genotoxic 

compounds in these fractions. We measured a significant decrease in relative LC50 for 

Rev1−/− in fractions C, D, E, and F post-bioremediation (p < 0.05), suggesting increased 

genotoxicity after bioremediation. Since Rev1−/− is involved in error prone translesion DNA 

synthesis, the increased sensitivity to Rev1−/− compared to the parental DT40 suggests that 

those soil extract fractions may include mutagenic chemicals.60 However, Rev1−/− was not 

more sensitive than the parental DT40 to the unfractionated soil extracts, pre- and post-

bioremediation. This may be due to antagonistic effects from the complex mixture of 

compounds in the unfractionated extracts that were not present in the fractions.

The vast majority of PAHs, OPAHs, HPAHs measured in t his study, including those with 

known genotoxicity,61–64 were contained in fractions A, B, and C (Table 1). Though these 

compounds may have accounted for the observed genotoxicity in fractions A, B, and C 

(Figure 3), the increased genotoxicity in fractions D, E, and F cannot be attributed to these 

compounds because they were not contained in these fractions and/or did not increase in 

concentration post-bioremediation (Figure 1, Table S1). The degradation pathways of these 

PAHs have been studied and transformation products often include hydroxylated, 

carboxylated, and quinone PAH transformation products, such as 9-fluorenone (9FLO), 9-

hydroxyfluorenone, 1-indanone, 1-hydroxynaphthoic acid, cis-4,5-dihydroxy-4,5-

dihydropyrene, pyrene-4,5-dione, 2-carboxybenzaldehyde, 9-fluorenone-1-carboxylic acid, 

9-carboxymethylene-9H-fluorene-1-carboxylic acid, and fluoranthene-2,3-dione etc.11,65–68 

Some potential transformation products of 3- and 4-ring PAHs (9FLO, 1,4PD, 9,10PQ, and 

7,12BaAD) were measured in this study but they were either not detected above the LOD 

(0.3 ng g−1), or their concentrations decreased or did not change post-bioremediation (Figure 

1, Table S1). This suggests that these transformation products did not contribute to the 

observed toxicity. However, the increased toxicity measured post-bioremediation is likely 

due to transformation products, including those of the 3- and 4-ring PAHs (PHE, 1MPHE, 

2MPHE, PRY, BaA, and FLA) that were most degraded. Future work will focus on 

identifying, characterizing, and quantifying the potential hydroxylated and carboxylated 3- 

and 4-ring PAH transformation products responsible for the increased genotoxicity and 

developmental toxicity post-bioremediation.

Embryonic Zebrafish Bioassay

The embryonic zebrafish bioassay was used to assess the soil extract fractions for 

developmental toxicity, both pre- and post-bioremediation. Soil extract fractions A, B, and C 

had lower median effective concentrations (EC50) (were more developmentally toxic) than 

fractions D, E, and F (Figure 4, Table S4). The EC50 for fractions E and F, post-
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bioremediation, were unable to be calculated because the concentrations tested were too low 

to capture the full concentration-response curve.

Fractions A, B, and C primarily contained the PAHs and methyl PAHs, OPAHs, and 

HPAHs in this study (Table 1). This suggests that the PAHs and methyl PAHs, OPAHs, and 

HPAHs measured in this study contributed significantly to the developmental toxicity of the 

zebrafish in these fractions. No significant change in EC50 was measured post-

bioremediation in fractions A and B, suggesting the developmental toxicity potential of 

these fractions did not change after remediation. A statistically significant decrease in EC50 

post-bioremediation was measured in fraction C (p < 0.001), indicating an increase in 

developmental toxicity after bioremediation. Fraction C contained 9FLO (Table 1), but 

9FLO is unlikely to have caused the increase in developmental toxicity in this fraction 

because its concentration did not increase post-bioremediation (Figure 1 and Table S1). It 

should be noted that though we measured increased genotoxicity in the DT40 bioassay in 

fraction D (Figure 3), we measured a significant increase in EC50 post-bioremediation (p < 

0.001) in fraction D, suggesting that the compounds causing developmental toxicity in the 

embryonic zebrafish bioassay in this fraction were bio-transformed and/or decreased in 

concentration after bioremediation.

Although genotoxicity increased post-bioremediation in fraction D (Figure 3), and 

developmental toxicity decreased (Figure 4) in fraction D, this is not inconsistent because 

the two different assays provide information on different toxicological endpoints. While the 

DT40 bioassay provides a measure of DNA damage, the embryonic zebrafish bioassay 

provides a comprehensive overview of any effect that can interfere with the normal 

development of the zebrafish.

In addition to EC50, we evaluated 22 endpoints in the embryonic zebrafish, including swim 

bladder, pericardial edema, caudal and pectoral fin malformations. The malformations 

induced by each concentration level of the individual soil extract fractions, compared with 

the 1% DMSO vehicle control, are presented as a heat map of lowest effect levels (LELs) in 

Figure 5. Axis, jaw, caudal fin, and yolk sac edema malformations were measured pre-

bioremediation in fraction A and were reduced post-bioremediation. Fraction B had a similar 

malformation profile to fraction A, except that the malformations were less pronounced. We 

measured a dominant swim bladder malformation in fraction C pre-bioremediation and this 

malformation was also reduced post-bioremediation. Compared to all other fractions, 

fraction D had the lowest number of malformations, both pre- and post-bioremediation. A 

swim bladder malformation was measured in fractions E and F and was reduced post-

bioremediation. We also measured mortality at 120 hours post fertilization (hpf) in fraction 

F post-bioremediation, which was not present pre-bioremediation, suggesting that 

bioremediation produced larval mortality in the zebrafish (Figure 5).

Although we measured an increase in the LELs (decreased developmental toxicity) in 

individual malformations post-bioremediation in fractions A and B (Figure 5), the EC50’s 

for fractions A and B did not increase (developmental toxicity unchanged) post-

bioremediation (Figure 4). This suggests that the severity of the 22 malformations induced 

by the post-bioremediation extracts for these fractions were reduced (i.e. while the number 
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of fish with at least one of the 22 evaluated malformations were the same pre- and post-

bioremediation, the number of fish with more than one of the 22 evaluated malformations 

decreased post-bioremediation). This may also be the case for fraction C, where the EC50 

decreased (increased developmental toxicity) post-bioremediation (Figure 4) even though 

there was an increase in LELs (decreased developmental toxicity) overall in measured 

malformations in this fraction post-bioremediation (Figure 5) (i.e. while the number of fish 

with at least one of the twenty-two evaluated malformations increased post-bioremediation, 

the number of fish with more than 22 of the evaluated decreased post-bioremediation).

Implications

One of the implications of this research for sites contaminated with PAHs, including many 

U.S. Superfund sites, is that the higher molecular weight PAHs (including BaA, BkF, BbF, 

BaP, and IcdP) are not significantly decreased in concentration post-bioremediation and may 

exceed regulatory MACs in the U.S., Germany, and Canada, even after bioremediation of 

the contaminated soil.8,23,47 Another implication is that the genotoxicity and developmental 

toxicity of the soils may increase after bioremediation due to the formation of hydroxylated, 

carboxylated, and quinone PAH transformation products,66–70 that have not yet been 

positively identified. While the formation of polar transformation products merits attention 

due to their potential accumulation and toxicity,11,52,56,71 their likely increased 

bioavailability needs to be accounted for as well.11,72 Future work will focus on identifying, 

characterizing, and quantifying the potential hydroxylated and carboxylated 3- and 4-ring 

PAH transformation products responsible for the increased genotoxicity and developmental 

toxicity post-bioremediation using non-targeted comprehensive two dimensional gas 

chromatography coupled to time of flight mass spectrometry (GCxGC/ToF-MS)19,73 (with 

and without derivatization) and liquid chromatography-tandem mass spectrometry (LC/MS-

MS).74

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mean concentrations in dry weight (with standard errors bars, n = 3) of investigated (A) 

PAHs and methyl PAHs, (B) OPAHs and, (C) HPAHs pre- and post-bioremediation in the 

unfractionated soil extract. Compounds with asterisks (*) showed significant changes in 

concentration post-bioremediation (p < 0.05). No NPAHs were detected above the limit of 

detection (0.3 ng g−1). (n.d. = not detected).
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Figure 2. 
Mean of the median lethal concentrations (LC50) (with standard errors bars, n = 4) of 

unfractionated soil extract (Unfrac.) and soil extract fractions (A – F) pre- and post-

bioremediation for (A) DT40, (B) Rad54−/−, and (C) Rev1−/− cells in mg soil residue per 

mL DMSO. LC50 values with asterisks (*) showed a significant decrease post-

bioremediation (increased toxicity), while (‡) showed a significant increase post-

bioremediation (decreased toxicity) (p < 0.05). The LC50 for soil extract fraction B post-
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bioremediation could not be determined because the full dose-response curve could not be 

captured from the exposure concentrations (N.D. = not determined).
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Figure 3. 
Mean of the relative LC50 values (with standard errors bars, n = 4) of unfractionated soil 

extract (Unfrac.) and soil extract fractions (A – F) pre- and post-bioremediation for (A) 

DT40, (B) Rad54−/− and (C) Rev1−/− cells. “ɡ” indicates the fraction was genotoxic (i.e. 

mean relative LC50 < 1.0 and p < 0.05). Relative LC50 values with asterisks (*) showed a 

significant decrease post-bioremediation (increased toxicity), while (‡) showed a significant 

increase post-bioremediation (decreased toxicity) (p < 0.05). The relative LC50 for soil 

extract fraction B post-bioremediation could not be determined because the full dose-
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response curve could not be captured from the exposure concentrations (N.D. = not 

determined).
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Figure 4. 
Mean of the median effective concentrations (EC50) (with standard errors bars, n = 32) of 

fractionated soil extracts (A–F) pre- and post-bioremediation in embryonic zebrafish. EC50 

values with asterisks (*) showed a significant decrease post-bioremediation (increased 

developmental toxicity), while (‡) showed a significant increase post-bioremediation 

(decreased developmental toxicity) (p < 0.05). The EC50s of fractions E and F post-

bioremediation were unable to be calculated because the concentrations tested were too low 

to capture the full concentration-response curve (N.D. = not determined).
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Figure 5. 
Heat map of Lowest Effect Levels (LELs) for each of the 22 evaluated endpoints in 24 hours 

post fertilization (hpf) and 120 hpf embryonic zebrafish. Darker color indicates lower LEL. 

(Pre = pre-bioremediation; post = post-bioremediation, concentration “0” indicates no 

measured effect).
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Table 2

Silica solid phase extraction solvent elution composition for soil extract fractions A–F.

Soil fraction Composite Solvent Elution [v/v]

A (least polar) 100% Hexane

90:10 Hexane:Dichloromethane

80:20 Hexane:Dichloromethane

70:30 Hexane:Dichloromethane

B 60:40 Hexane:Dichloromethane

50:50 Hexane:Dichloromethane

40:60 Hexane:Dichloromethane

C 30:70 Hexane:Dichloromethane

20:80 Hexane:Dichloromethane

D 10:90 Hexane:Dichloromethane

100% Dichloromethane

E 100% Ethyl acetate

F (most polar) 100% Acetone (2 cycles)
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