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Abstract

HOXA9 is a homeodomain-containing transcription factor that plays an important role in 

hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of 

upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, 

which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be 

necessary for maintaining leukemic transformation, however the molecular mechanisms through 

which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 

regulates downstream gene expression through binding at promoter distal enhancers along with a 

subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to 

identify both the critical cofactors and target genes required for maintaining transformation in 

HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated 

transformation, there is a wealth of opportunity for developing novel therapeutics that would be 

applicable for the greater than 50% of AML with overexpression of HOXA9.
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INTRODUCTION

HOX proteins are a family of homeodomain containing transcription factors that were first 

described in Drosophila for their ability to produce homeotic transformations – that is, 

changing one section of the body into another – when misexpressed during development (1, 

2). Since this early discovery, an entire field has been devoted to studying these master 

regulators of developmental processes and their role in disease. The 39 mammalian HOX 

genes are arranged into four parologous clusters on separate chromosomes, allowing for the 

tight transcriptional control required to establish the anterior-posterior body plan and assign 

tissue fate (3, 4). As such, dysregulation of HOX genes results in a variety of developmental 

disorders and malignancies.
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HOXA9 is of particular interest as it has been shown to be over expressed in more than 50% 

of acute myeloid leukemias and is highly associated with poor prognosis (5–9). A variety of 

upstream genetic alterations can lead to dysregulation of HOXA9, including MLL-

translocations, NUP98-fusions, NPM1c mutations, CDX dysregulation and MOZ-fusions. 

One challenge to defining the mechanisms through which HOXA9 over expression 

contributes to AML is the relative lack of understanding of how HOX proteins regulate gene 

expression. Recent work suggests that HOXA9 binding specificity is achieved through a 

combination of motif affinity, interactions with cofactor and collaborating proteins, and 

context-specific chromatin accessibility (10–12). In addition, multiple studies have 

established that HOXA9 can both activate and repress downstream gene expression, though 

the mechanisms for these actions are relatively unknown. Finally, increasing efforts are 

being made towards identifying the critical downstream targets of HOXA9 required for 

transformation in AML. In this review, we will highlight recent advances in understanding 

the role of HOXA9 in leukemia and discuss important questions that remain in the field.

REGULATION OF HOX GENE EXPRESSION

During development, HOX genes follow both a temporal and spatial pattern of expression, 

such that 3’ HOX genes are expressed earliest in the embryo and in the anterior regions, 

while 5’ HOX genes are expressed at later stages and more posteriorly (3, 4). The tight 

regulation of HOX expression is the coordinated effort of a variety of factors including 

epigenetic regulators, early developmental transcription factors, and long non-coding RNAs 

(13–15). Additionally, it is becoming clear that the 3D localization of the HOX loci within 

the nucleus also plays an important role in coordinating expression (16, 17).

The two master epigenetic regulators of HOX gene expression, including HOXA9, belong to 

the Trithorax and the Polycomb group histone methyltransferases, which activate and 

repress transcription respectively (18). The mixed lineage leukemia (MLL) 

methyltransferase positively regulates HOXA9 expression by trimethylating histone 3 lysine 

4 (H3K4me3) at its promoter (19). This activity is directly antagonized by the sequential 

activity of polycomb repressive complexes PRC1 and PRC2, responsible for trimethylating 

histone 3 lysine 27 (H3K27me3) (18). Studies in both Drosophila and mice have found that, 

similar to mutations in individual HOX proteins, mutations in trithorax proteins/MLL can 

lead to homeotic transformations (20). In addition, loss of MLL in mouse models leads to 

profound impairment of hematopoiesis (21, 22). As such, alterations in the activity or 

expression of MLL or PRCs can lead to a variety of both developmental disorders and 

hematopoietic malignancies (23, 24).

Along with MLL and PRC methyltransferases, the CDX family of transcription factors also 

play an important role in regulating HOXA9 expression during embryonic hematopoiesis 

(25). CDX1, 2 and 4 are members of the unclustered ParaHox class of homeobox genes that, 

like HOX proteins, contain a DNA-binding homeodomain (26). Studies in various model 

systems show that CDX proteins activate expression of HOX genes primarily in the A and B 

clusters, though the mechanisms for this regulation are unknown (27–29). In addition, 

studies in zebrafish have established a requirement for CDX4 in maintaining HOX gene 

expression during embryonic hematopoiesis (27, 30).
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Along with epigenetic modifiers and early transcription factors, HOX gene expression is also 

regulated by long non-coding RNAs (lncRNAs), though direct regulation of HOXA9 by 

lncRNAs has yet to be established. LncRNAs can activate or repress HOX genes through the 

interaction and recruitment of trithorax and polycomb histone modifying complexes. Both 

HOTTIP (HOXA transcript at the distal tip) and Hoxb5b6as, lncRNAs expressed from the 

5’ region of HOXA13 and the Hoxb5/6 locus respectively, can interact with trithorax group 

proteins to maintain active transcription of their corresponding gene clusters (15, 31). 

Conversely, HOTAIR (HOX antisense intergenic RNA) is a lncRNA that is transcribed from 

the HOXC locus that functions to maintain repression of the HOXD locus through 

interaction with PRC2 and histone demethylase LSD1 (32). While there are currently no 

studies of HOX-specific lncRNAs in leukemia, misexpression of these lncRNAs has been 

observed in a variety of solid tumors, suggesting a possible role in hematopoietic 

malignancies as well (33–42).

As technologies for identifying long range chromatin interactions and mapping genome-

wide chromosome conformation continue to improve, it is becoming clear that the 

chromosomal conformation and physical location of genes in the nucleus contributes greatly 

to the regulation of global gene expression (43). Recent work has established that the 3D 

localization of the HOX genes within the nucleus plays an important role in their regulation. 

Studies in Drosophila have shown that subsets of HOX genes frequently colocalize in 

distinct nuclear foci, called Polycomb repressive bodies, leading to coordinated repression of 

these targets (16, 17). DNA regulatory elements that contribute the physical interaction and 

colocalization of these loci are required for effective expression silencing, however these 

interactions are also topographically constrained by chromatin architecture (17).

ROLE OF HOXA9 IN HEMATOPOIESIS

Upon completion of development, most HOX genes are transcriptionally silenced, however 

certain members of the A, B and C clusters are important regulators of adult hematopoiesis 

(44, 45). Expression of HOX genes in hematopoiesis follows a pattern similar to that during 

development such that anterior HOX genes (HOX1–6) are expressed in early uncommitted 

progenitors while posterior HOX genes (Hox7–13) are expressed in myeloid and erythroid-

committed CD34+ cells (45). As cells become fully mature and lose CD34 positivity, HOX 

gene expression is silenced. The functional redundancy of many of the HOX proteins is such 

that knockout models of many HOX genes result in only mild hematopoietic phenotypes. 

Loss of individual HoxB genes and even the entire HoxB locus leads to only slight reduction 

in bone marrow cellularity, without significantly affecting the ability of HSCs to repopulate 

bone marrow (46–50). Similarly, loss of HOX genes in the A and C cluster leads to mild 

lineage skewing affecting primarily the erythroid compartment (51–55). HOXA9 is the most 

highly expressed HOX gene in the hematopoietic compartment, and as such Hoxa9−/− mice 

display the most dramatic hematopoietic phenotype in knockout mouse models (56, 57). 

While loss of Hoxa9 in murine models leads to only mild pancytopenia, competitive 

repopulation assays uncover a significant reduction in Hoxa9−/− fetal liver HSC 

repopulation capacity compared to normal HSCs (58). In addition, over expression of 

HOXA9 leads to expansion of HSCs and early progenitors, leading to myeloproliferative 

phenotypes in mice (59). It should be noted that this myeloproliferation will not progress to 
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AML in the absence of additional genetic factors, such as the co-expression of its cofactor 

MEIS1 or fusion to nucleoporin protein Nup98. In the case of MEIS1, which is almost 

always expressed at high levels along with HOXA9 in human disease, co-expression leads to 

a rapidly fatal leukemia in mice with an average latency of 40–60 days (50, 60, 61).

DYSREGULATION OF HOXA9 IN ACUTE LEUKEMIA

The most broadly studied diseases with dysregulation of HOX genes are acute leukemias 

(59, 62, 63). In most cases, HOX genes are expressed at high levels in acute leukemias, with 

HOXA9 in particular having a 2–8 fold higher expression in AML compared to healthy 

controls in about 50% of cases (6, 64). High expression levels of HOXA and B genes has 

been associated with an intermediate to unfavorable prognosis in acute leukemias (5, 7, 9, 

65). In one study, HOXA9 was found to be the single strongest predictor of poor prognosis 

in acute myeloid leukemia (8). It should be noted that high expression of HOXA9 often 

coincides with upstream genetic alterations that themselves have negative prognostic values 

in AML. As such it is difficult to determine if HOXA9 is a predictor of poor prognosis 

independently of concurrent genetic alterations. On the other hand, HOXA9 has been shown 

to directly regulate critical downstream genes such as Bcl-2 and Ink4a/ARF/Ink4b, which 

themselves are linked to poor outcomes, providing plausible evidence for a direct role for 

HOXA9 in determining prognosis in AML (66, 67). Additionally, the wide variety of 

upstream genetic alterations that lead to over expression of HOXA9 suggests that it serves as 

a common pathway for leukemic transformation.

MLL-Fusion Proteins

About 10% of acute leukemias harbor chromosomal translocations at the 11q23 locus 

involving MLL, that are associated with an aggressive clinical course (68). There have been 

over 60 different fusion partners of MLL identified, though 90% of these translocations 

involve one of nine partners: AF1P (EPS15), AF4 (AFF1), AF6 (MLLT4), AF9 (MLLT3), 

AF10 (MLLT10), AF17 (MLLT6), ENL (MLLT1), ELL, and SEPT6 (69). In addition, a 

partial tandem duplication event can occur within the N-terminus of MLL, which is 

observed in about 10% of cytogenically normal AML (70). MLL fusion proteins 

constitutively up regulate HOXA9 expression, which is both required and sufficient for 

maintaining leukemic transformation (71, 72). The up regulation of HOXA9 is directly 

linked to histone 3 lysine 4 trimethylation at promoters by MLL-fusion proteins, however 

there has also been documentation of DNA hypomethylation at various HOX promoters in 

MLL-fusion leukemias (73).

NUP98-Fusion Proteins

NUP98 is a member of the nucleoporin family of proteins that coassociate to form 

multisubunit channels in nuclear membranes. These nuclear pore complexes (NPCs) were 

first described for their role in facilitating transfer of metabolites and molecules between the 

cytoplasm and nucleus (74). Recent work has found that NPCs also play a critical role in 

defining the chromatin landscape in the nucleus and facilitating gene transcription from 

euchromatic regions of the genome (75). Nucleoporins are involved in chromosomal 

translocations that can lead to acute leukemias, most commonly involving NUP98 (reviewed 

Collins and Hess Page 4

Oncogene. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in (76)). The most potent NUP98 oncogenes are those fused to one of eight homeobox 

partners, including HOXA9 (77). These fusions in turn lead to general up regulation of 

additional HOX genes including HOXA5, HOXA7, HOXA9 and HOXA10, which contribute 

to leukemogenesis (78). In addition, fusions with NSD1 and JARID1A upregulate HOXA and 

HOXB in AML and AMKL (79, 80). It is noteworthy that, aside from increases in HOX 

genes, these leukemias have an expression signature distinct of that from MLL-rearranged 

leukemias (80).

NPM1c

One of the most common genetic abnormalities in adult AML is mutation in the chaperone 

protein Nucleophosmin1 (81). While under normal conditions NPM1 resides primarily in 

the nucleus, mutations seen in AML result in cytoplasmic localization of NPM1 (82). 

Cytoplasmic NPM1 (NPM1c) up regulates the expression of HOXA9, HOXA10 and MEIS1, 

though the precise mechanism is currently unknown (83). One possible mechanism is that 

HOXA9 is up regulated as a result of the cytoplasmic sequestration of HEXIM1 by NPM1c, 

leading to the activation of the MLL transcriptional partner P-TEFb (84–86). Studies in mice 

have also established that NPM1c can collaborate with Flt3, Csf2 and Rasgrp1 in vivo to 

produce leukemias with long latency (87).

Other mechanisms of HOXA9 dysregulation

Many additional upstream genetic alterations lead to HOXA9 dysregulation in acute 

leukemia. Deletions or decreased expression of polycomb protein EZH2 leads to leukemia 

with up regulation of HOXA9 (88). Conversely over expression of Cdx proteins, in 

collaboration with Meis1, leads to leukemias with high levels of Hox expression (89, 90). 

Monocytic leukemia zinc finger (MOZ) fusion proteins can directly up regulate HOXA9/10 

and MEIS1 in AML by colocalizing at promoters with the histone acetyltransferase, BRPF1 

(91). Chromosomal translocations generating the CALM-AF10 fusion protein, as well as 

those involving the T-cell receptor promoter and the HOXA locus, lead to HOX up 

regulation in T-ALL (78, 92). Hoxa9 also collaborates with E2A–PBX1 in murine B cell 

leukemia to repress B-cell genes and activate Flt3 (93). Finally, mutations in ASXL1 are 

common in myelodysplastic syndromes and are associated with high expression of HOXA9, 

mediated by inhibition of the PRC2 (94).

MECHANISMS OF HOXA9-REGULATED GENE TRANSCRIPTION

It is becoming clear HOX genes carry out their highly specialized function through 

association at promoter distal, lineage specific cis-regulatory elements, however 

understanding how HOXA9 and other HOX proteins are targeted these sites has been 

challenging (12, 95). As discussed below all HOX proteins share a highly homologous DNA 

binding homeodomain, which because of its short recognition sequence alone cannot 

account for the distinct subpopulations of target genes seen in development and 

hematopoiesis. Additional sequence specificity is likely achieved through association with 

other DNA-binding cofactors and collaborator proteins. These proteins may also function to 

establish areas of chromatin accessibility in a given cell type and recruit and stabilize HOX 

proteins at various loci. Furthermore, the downstream activity of HOXA9 to activate or 
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repress target gene expression may be modulated these cofactors and collaborators. Below 

we will discuss what is known about DNA binding properties of HOX proteins and known 

binding partners that confer specificity to HOX proteins, with a focus on recent advances in 

the field.

HOXA9 regulates gene expression through enhancer binding

The homeobox family of transcription factors is defined by the presence of a DNA binding 

homeodomain, which is highly homologous within the 39 mammalian HOX proteins and 

conserved across species. Early studies have found that this 60-amino acid region makes 

direct contact with DNA via 4 critical amino acids - aa47, 50, 51, and 54 - within the third 

alpha helix of the homeodomain (96). Interestingly, nearly all homeodomains contain the 

same residues in these critical positions (97). In addition, comprehensive work has 

established that all HOX homeodomains bind highly similar AT-rich DNA motifs (98–100). 

In Drosophila, this TAATNA motif occurs over 100,000 times throughout the genome, and 

thus cannot explain the distinct subsets of target genes for each HOX protein (99). 

Conversely, the presence of this recognition sequence seems critically important for DNA 

binding as a ChIP-seq study of genome-wide HOXA9 binding sites in transformed 

myeloblasts found that >98% of sites contain a HOX motif (101).

Studies have found that the small differences in homeodomains themselves can confer 

unique properties to HOX proteins (102, 103). For example, swapping the homeodomains of 

Hoxa1 and Hoxa9 conferred leukemogenic properties to Hoxa1 while abolishing those of 

Hoxa9 (104). This phenomenon required the presence of the N-terminal region and PBX 

cofactor interaction motif, though these regions were interchangeable between Hoxa1 and 

Hoxa9. There are additional examples of this phenomenon in HoxD proteins with respect to 

motor neuron fate and rib development (105, 106). Interestingly, the contributions of the 

homeodomain to specific phenotypes may also be the result of interaction with different 

cofactors, as this region has been found to mediate protein-protein interactions in addition to 

DNA-binding. For example, Cdx1 and Foxo1a have been shown to interact with the 

homeodomain regions of HOX proteins (107).

In addition to motif affinity of a particular homeodomain, gene regulation specific to a 

single HOX protein likely results from the combination of chromatin accessibility and the 

subset of cofactors and collaborators expressed in the specific cellular context. Chromatin 

immunoprecipitation (ChIP) of the Drosophila HOX protein ultrabithorax (Ubx) across 

various stages of development indicates that binding is strongly influenced by chromatin 

accessibility (108, 109). In the hematopoietic system, early factors such as PU.1 and C/

EBPα are known to establish areas of relaxed chromatin that allow for signaling dependent 

recruitment of various transcription factors, likely mediated by SWI/SNF chromatin 

remodelers (110, 111). Interestingly, both C/EBPα and SWI/SNF factor Brg1 colocalize 

with HOXA9 at hundreds of promoter distal regulatory regions throughout the genome of 

HOXA9/MEIS1 transformed myeloblasts, suggesting that chromatin accessibility likely 

plays a key role in the targeting of HOXA9 to specific genomic loci (6, 101). This targeting 

is then further honed through specific protein-protein interactions with cofactors and 

collaborator proteins that are expressed along with HOXA9 in a particular cellular milieu.
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HOXA9 interacting partners

It is well established that HOXA9 and other HOX proteins bind DNA and regulate 

downstream gene expression along with a small subset of cofactor proteins (112). The most 

well characterized cofactors are members of the Three-amino-acid-loop-extension (TALE) 

family of proteins (113) including Pbx1–4, Meis1–3 and Prep1–2. In addition, HOX proteins 

can homo and heterodimerize to aid in diversity and specificity of binding (114). Whether 

HOX proteins co-bind with Meis or with Prep proteins subdivides clusters of binding sites 

(115). There is also evidence that binding may be sequential such that TALE factors initially 

bind at regulatory elements to promote the deposition of poised chromatin marks, whereby 

subsequent recruitment of HOX proteins results in transcriptional activation (116). Indeed, 

the majority of sites co-bound by HOX and PBX proteins show histone H3 K27 acetylation 

and not trimethylation, suggesting that complexes containing HOX/PBX may be primarily 

transcriptional activators (99). Additional studies have established that interactions with 

TALE cofactors are not required at some loci and HOX proteins themselves may homo or 

heterodimerize at these sites (117). Furthermore, there is new evidence of antagonism 

between TALE proteins and HOX proteins at specific genomic regions (118).

In the setting of leukemia, the most critical cofactor of HOXA9 is the TALE protein, 

MEIS1. MEIS1 expression parallels that of HOXA9 during hematopoiesis, where it is highly 

expressed in early progenitors and subsequently downregulated during terminal 

differentiation (44). Like HOXA9, MEIS1 is directly upregulated by MLL-fusion proteins in 

both acute myeloid and acute lymphoblastic leukemias and is required for maintaining 

transformation (19, 119, 120). Futhermore, MEIS1 is almost always expressed at high levels 

along with HOXA9 in non-MLL-translocated leukemias, where high expression correlates 

with poor prognosis (60, 121, 122). Multiple studies have implicated that HOXA9 and 

MEIS1 play both a synergistic and causative role in acute leukemias. More than 90% of 

leukemias that arise in the BZH2 murine retroviral mutagenesis model have independent 

viral integrations that result in upregulation of both Hoxa9 and Meis1 (123). In addition, 

murine models of HOXA9-mediated leukemia require co-expression of MEIS1 to produce an 

aggressive disease (50, 61). This requirement is likely secondary to cooperation between 

HOXA9 and MEIS1 at enhancers on the genome-wide level. Indeed, nearly half of HOXA9 

binding sites in HOXA9/MEIS1-transformed myeloblasts are co-bound by MEIS1, including 

sites associated with pro-leukemic target genes (101). At these co-bound sites, MEIS1 helps 

to recruit transcription regulatory machinery. Indeed MEIS1 has been shown to associate 

with CREB and CBP in a GSK-3-dependent manner, which is required for maintaining the 

MLL leukemia stem cell transcriptional program (124). This interaction can be targeted 

using GSK-3 inhibitors, leading to inhibition of cells transformed by MLL-fusion proteins or 

HOXA9/MEIS1, thus presenting a novel therapeutic target for leukemias with high 

expression of HOXA9 (124–126). More recent work has also established PBX3 as a critical 

cofactor required for cytogenetically abnormal AML, presenting an additional target for 

future therapies (127). Results are promising as the small molecule inhibitor HXR9, which 

targets the HOX/PBX interaction, was shown to inhibit cell growth and promote apoptosis 

in AML cell lines that expressed high levels of HOXA9 and PBX3 (127, 128).

Collins and Hess Page 7

Oncogene. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It has been proposed by Mann and colleagues that context specific collaborator proteins 

provide a final level of binding specificity to HOX complexes to allow for their specific 

actions on gene expression (99). These tissue specific interactors bind along with HOX 

proteins and TALE cofactors to establish areas of chromatin accessibility, provide stability 

in DNA binding and help modulate the downstream activity of HOX complexes (129). 

Recent studies have focused on identifying potential collaborator proteins in a variety of 

systems. Yeast two hybrid approaches have been used to identify binding partners for Hoxa1 

and Hoxa9 ((130) and unpublished). In addition, our group has identified interactors of 

Hoxa9 in transformed myeloblastic cell lines using co-immunoprecipitation with mass-

spectrometry followed by western blot confirmation (101). The transcription factors C/ebpα 

and Stat5b were both identified in this binding partner screen, along with the chromatin-

remodeling enzyme Brg1 and multiple other members of the SWI/SNF complex. 

Interestingly, each of these putative collaborators are known to be mutated or otherwise 

dysregulated in leukemia, providing further basis for studying their functional interplay with 

HOXA9 (131–133). In addition, recent work has shown that C/EBPα is required for 

HOXA9-mediated leukemogenesis in vitro and in vivo (6). Multiple other proteins that 

physically interact with HOXA9 have been identified using various techniques, as 

summarized in Table 1. With these approaches some themes in collaborator proteins are 

surfacing. Many are lineage specific factors known for general priming of enhancer regions 

of the genome, while others are involved in signal transduction.

Following targeting to specific sites, HOX complexes most likely control downstream gene 

expression through the interaction with histone modifying machinery. Both Hoxa9 and 

Meis1 have been shown to recruit the histone acetyltransferase p300/CBP to mediate 

activation of downstream targets (124, 134, 135). Recent work also established that Hoxa9 

interacts with the histone methyltransferase G9a, and that this interaction is required for 

aggressive disease in mouse models of leukemia (136). Similarly, both activation and 

repression domains have been defined in Hoxa10 (and other Hox10 proteins) that facilitate 

interaction with CBP and HDAC2 respectively (137, 138). HOX proteins can also interact 

with other enzymes and machinery leading to their own modification (139). HOXA9 is 

phosphorylated by protein kinase C in the N-terminal region of it’s homeodomain, leading 

to decreased DNA binding and promoting myeloid differentiation (140). In addition, 

HOXA9 can be methylated by PRMT5 in a TNFa-dependant manner, which promotes 

downstream expression of E-selectin and VCAM-1 (141).

TRANSCRIPTIONAL TARGETS OF HOXA9

In addition to characterizing the mechanisms through which HOXA9 regulates downstream 

gene expression, identifying the downstream targets that mediate leukemic transformation is 

critically important. Many efforts have been made using both genome-wide approaches and 

site-specific experiments for identifying these important targets in both development and 

disease (Table 2).

Targets in Leukemia

Considerable progress has been made towards understanding HOXA9-mediated 

leukemogenesis through the identification of the genome-wide binding sites of HOXA9 and 
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MEIS1 in transformed myeloblastic cells. ChIP-seq experiments using murine bone marrow 

transduced with HOXA9 and MEIS1 identified thousands genomic regions that bind 

HOXA9, MEIS1 or both, and these regions showed a high degree of evolutionary 

conservation (6, 101). Over 90% of the binding sites are located in distal intergenic regions 

(>10kb from transcriptional start sites) or gene introns, while less than 3% are located within 

3kb of promoter regions. These studies also identified multiple proleukemic targets with cis-

regulatory regions bound by HOXA9, including Erg, Flt3, Lmo2 and Myb. In addition, both 

microarray and RNA-seq studies in models with inducible expression of HOXA9 have 

identified hundreds of genes with significant changes in expression following the loss of 

HOXA9 (6, 101). Interestingly, near equal numbers of genes are activated and repressed by 

HOXA9, suggesting that HOXA9 may play an important role in both activating and 

inhibitory transcriptional regulation complexes. Consistent with its role as a proto-oncogene, 

HOXA9 generally up-regulates proliferative genes, while suppressing expression of myeloid 

differentiation and inflammatory genes.

Many HOXA9 targets have been studied individually and found to play important roles in 

HOXA9-mediated leukemogenesis. Knockdown of Lmo2 impairs growth of leukemic cells 

and high levels of Lmo2 predict poor prognosis in patients (142). Hoxa9 activates Bcl-2 

expression, which is required for transformation by Hoxa9, Nup98-Hoxa9 and MLL. 

Furthermore, loss of Bcl-2 leads to improved survival in mouse model of Hoxa9/Meis1-

transformed leukemia (143). MLL-ELL up regulates Fgf2 expression in a Hoxa9/a10 

dependent fashion, leading to increased proliferation and cytokine hypersensitivity (88, 91). 

Hoxa1 and Hoxa9 regulate Rac1 activity by directly upregulating Vav2 expression (144). In 

very recent work, Igf1 has also been identified as a direct target of HOXA9 required for 

leukemic transformation (145). Finally, multiple studies have implicated a role for Hoxa9 in 

the regulation of Ink4a/b expression, critical mediators of HSC self-renewal, apoptosis and 

oncogene-induced senescence whose expression leads to a block in cell cycle at the G1 

phase (146). The Inka/b locus is commonly deleted or silenced in acute lymphoid leukemias 

(147–149). Interestingly Hoxa9 has been shown to repress Ink4a expression to overcome 

oncogene-induced senescence during transformation by AML1-ETO in Bmi1−/− cells, as 

well as in Hoxa9/Meis1 transformed cells (6, 150).

Currently genome-wide studies of HOXA9 binding have been constrained to over 

expression models due to lack of ChIP-grade antibodies for endogenous HOXA9 in either 

human or murine cells. While studies in transformed cells have led to significant advances in 

our understanding of the role of HOXA9 in leukemia, questions remain with regards to the 

function of HOXA9 in normal hematopoiesis. One of the more interesting unanswered 

questions is whether HOXA9 binding sites are shared in normal and transformed cells or if 

HOXA9-mediated transformation represents a true gain of function with activation/

repression of novel leukemogenic target genes. In addition, fully characterizing HOXA9 

binding sites in the setting of various upstream transforming oncogenes can help determine 

if there is a common HOXA9 target gene set in leukemia. The continued improvement of 

ChIP reagents and technology will help to answer these questions and others to allow for 

further advances in the understanding of HOXA9 biology.
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Non-transcriptional roles of Hoxa9

In addition to acting as a classical transcription factor regulating downstream gene 

expression, HOXA9 may also have non-transcriptional functions that are critical for its role 

in malignancy (151). For example, Hoxa9 can act as an E3 ligase for DNA replication 

inhibitor Geminin, leading to its degradation, which contributes to Hoxa9-mediated 

transformation (152, 153). Conflicting reports however also find that Hoxa9-Geminin 

binding can sequester Hoxa9 thereby inhibiting its transcriptional activity (154). Alternate 

mechanisms have been described for other HOX proteins as well. For example, Hoxa2 can 

indirectly stabilize p53 by binding to p53’s E3 ubiquitin ligase, RCHY1, leading to the 

degradation of RCHY1 (155). Hoxa7 and Hoxa14 can bind to the initiation factor eIF4E in 

liver cancer, potentially affecting the nuclear transport of eIF4E-dependent transcripts like c-

myc, fgf2, vegf, ornithine decarboxylase and cyclin-D1 (156). Finally, the yeast-two-hybrid 

screen of Hoxa1 interactors identified many putative binding partners involved in signal 

transduction, cell adhesion and vesicular trafficking, pointing to additional non-

transcriptional roles for this and other HOX proteins (130).

CONCLUSIONS

As more and more malignancies involving dysregulation of HOX genes are identified, it is 

clear that the mechanisms through which HOX proteins exert their function need to be better 

defined. HOXA9 is of particular interest as it is overexpressed in over 50% of acute myeloid 

leukemias, as well as B and T cell leukemias, and its high level of expression is associate 

with poor prognosis. Research to date suggests that HOXA9 acts to modulate the activity of 

distal regulatory elements through recruitment of histone modifying and transcriptional 

machinery that likely act at promoters via long-range chromatin interactions, thereby up 

regulating a set of proleukemogenic target genes while repressing others involved in 

processes such as cellular senescence. Identifying new posttranslational modifications and 

protein-protein interactions required for HOX function is likely to be a promising avenue for 

identifying new therapeutic targets along with the identification of drug-amenable HOX 

targets that are essential for leukemia.
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Figure 1. 
HOXA9 regulation in normal hematopoiesis and leukemia. (A) During development and 

hematopoiesis, expression of HOXA9 is primarily regulated by the antagonistic actions of 

the MLL complex and polycomb repressive complex. These histone methytransferases 

deposit the activating H3K4me3 and repressive H3K27me3 marks respectively. CDX 

proteins also play a role in HOXA9 regulation, through mechanisms that are not well 

defined. (B) A variety of upstream genetic alterations lead to the up regulation of HOXA9, 

which is essential for the acute leukemias that result from these alterations. Decreased 

expression of EZH2 and chromosomal translocations leading to MLL-fusion proteins result 

in activation of HOXA9 expression through dysregulated chromatin modification. 

Cytoplasmic mutations of NPM1, fusion proteins with NUP98 and overexpression of CDX2 

and CDX4 also leads to up regulation of HOXA9 through mechanisms that remain to be 

completely defined. HOXA9 likely goes on to promote transformation through the 
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activation of proproliferative genes and the repression of genes required for cellular 

differentiation.
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Table 1

HOXA9 Interacting Partners

Protein Method Reference

CEBPA Affinity capture-MS
Affinity capture-
western

(101)

CEBPB Affinity capture-MS (101)

CEBPE Affinity capture-MS (101)

CREB1 Affinity capture-MS
Affinity capture-
western

(101)

CREBBP Affinity capture-
western Far western
Reconstituted
complex

(134, 135)

CUL4A Affinity capture-
western Reconstituted
complex

(157)

G9A Affinity capture-
western

(136)

JUN Yeast two-hybrid (158)

MEIS1 Affinity capture-MS
Affinity capture-
western Reconstituted
complex

(101, 134, 159, 160)

MEIS2 Affinity capture-
western

(134)

NFKBIA Affinity capture-
western Far western

(134)

PBX1 Reconstituted
complex

(134, 160)

PBX2 Affinity capture-
western Reconstituted
complex

(160)

PBX3 Reconstituted
complex Affinity
capture-MS

(101, 160)

PRMT5 Affinity capture-MS
Affinity capture-
western

(141)

SMAD4 Affinity capture-
western

(161)

STAT1 Affinity capture-MS (101)

STAT5 Affinity capture-MS
Affinity capture-
western

(101)
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Table 2

HOXA9 Target Genes

Gene Reference

Bcl-2 (143)

c-Myb (162, 163)

Erg (101)

Fgf-2 (88, 91)

Flt3 (101, 164, 165)

Fos (124)

Igf1 (145)

Igf1R (166)

Ink4a/ARF/Ink4b (6, 150)

Lmo2 (142)

Pim1 (167)

Sox4 (101)

Vav2 (144)
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