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Dominant Genetic Variation and Missing Heritability
for Human Complex Traits: Insights from Twin
versus Genome-wide Common SNP Models

Xu Chen,1 Ralf Kuja-Halkola,1 Iffat Rahman,2 Johannes Arpegård,3,4 Alexander Viktorin,1

Robert Karlsson,1 Sara Hägg,1 Per Svensson,3,4 Nancy L. Pedersen,1 and Patrik K.E. Magnusson1,*

In order to further illuminate the potential role of dominant genetic variation in the ‘‘missing heritability’’ debate, we investigated the

additive (narrow-sense heritability, h2) and dominant (d2) genetic variance for 18 human complex traits. Within the same study base

(10,682 Swedish twins), we calculated and compared the estimates from classic twin-based structural equation model with SNP-based

genomic-relatedness-matrix restricted maximum likelihood [GREML(d)] method. Contributions of d2 were evident for 14 traits in

twin models (average d2twin ¼ 0.25, range 0.14–0.49), two of which also displayed significant d2 in the GREMLd analyses (triglycerides

d2SNP ¼ 0.28 and waist circumference d2SNP ¼ 0.19). On average, the proportion of h2
SNP/h

2
twin was 70% for ADE-fitted traits (for which

the best-fitting model included additive and dominant genetic and unique environmental components) and 31% for AE-fitted traits (for

which the best-fittingmodel included additive genetic and unique environmental components). Independent evidence for contribution

from shared environment, also in ADE-fitted traits, was obtained from self-reported within-pair contact frequency and age at separation.

We conclude that despite the fact that additive genetics appear to constitute the bulk of genetic influences for most complex traits,

dominant genetic variation might often be masked by shared environment in twin and family studies and might therefore have a

more prominent role than what family-based estimates often suggest. The risk of erroneously attributing all inherited genetic influences

(additive and dominant) to the h2 in too-small twin studies might also lead to exaggerated ‘‘missing heritability’’ (the proportion of h2

that remains unexplained by SNPs).
Introduction

Heritability is a concept used to denote the relative impor-

tance of genetic influences to variability of diseases or com-

plex traits and is loosely defined as the proportion of the

phenotypic variance attributed to inherited genetic ef-

fects.1 Several methods can be used to estimate heritability.

They are based either onmodeling of family correlations in

related subjects2 (distributions of trait similarities among

various types of relatives) or on molecular measurements

in related or unrelated subjects.3,4 The classic twin study,

often implemented using structural equation modeling

(SEM), is the most commonly used family-based approach.

Observed intra-pair correlations among genetically iden-

tical, monozygotic (MZ) twins and fraternal, dizygotic

(DZ) twins are contrasted in order to partition the pheno-

typic variance into additive (A) genetic variance—so called

narrow-sense heritability (h2), dominant genetic variance

(D), and shared (C) and non-shared (E) environmental

variance.2,5 The sum of additive and dominant genetic

proportions of variance is often referred to as the broad-

sense heritability. As in any family-based modeling, classic

twin studies rely on certain important assumptions, the

most debated being that MZ and DZ twins share their

raising environment to the same extent.

A further complication in the classic twin model is that

C and D cannot be estimated simultaneously. This is
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because the model is under-informed to allow quantifica-

tion of more than one source to deviance from pure addi-

tivity, even if it exists. With this follows that whenever D

is indicated in the twin model, it does lend support to

contribution from D, but the magnitude will represent the

total net deviance from a pure additive genetic model.

Positive contributions to this deviance will stem from

dominance (interactions between alleles within the

same locus), epistasis (interactions between different

loci), as well as other types of higher-order interactions,

whereas negative contributions will arise from shared

environmental factors. Thus, contributions from both C

and D components might very well coexist but ‘‘mask’’

each other, so that the net effect appears as contribution

from neither.

Recent methodological developments offer alternatives

to estimate heritability via SNPs. When restricting the

modeling to include only significantly associated loci iden-

tified from genome-wide association studies, it typically ac-

counts for a minute proportion of the h2 estimated from

twin or pedigree studies, a phenomenon originally de-

noted ‘‘missing heritability.’’6 By extending the models to

utilize contributions from all common SNPs, SNP-based

methods like genomic-relatedness-matrix restricted

maximum likelihood (GREML) algorithm implemented

in genome-wide complex trait analysis (GCTA) can detect

considerable shares of the h2 (typically ~30%–50%).4,7
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The remainder is what now usually is considered to make

up the ‘‘missing heritability.’’

Recently, Zhu et al. estimated dominant genetic variance

(d2) for human complex traits, by applying an extension

of GREML algorithm, called GREMLd.8 The authors

observed significant contributions of d2 in subsets of traits

and samples and estimated the global average contribution

to be 1/5th of the contribution from A and therefore

concluded that dominant genetic variation contributes lit-

tle to the ‘‘missing heritability.’’ Here we investigate the

heritability of 18 robustly measured human complex traits

including blood biomarkers of cardiovascular disease, kid-

ney function, and diabetes mellitus, as well as three

anthropometric reference traits. Our aim was to further

illuminate the potential role of dominant genetic variation

in the ‘‘missing heritability’’ discussion, by comparing the

estimates from both twin-based SEM and SNP-based

GREML(d) within the same study base (10,682 Swedish

twins).
Material and Methods

Study Population
The subjects of this study (n ¼ 10,682) have all participated in the

TwinGene project,9 a Swedish population-based cohort of twins

born between 1911 and 1958. Their average age at phenotypic

measurements was 65 (58) years, and the participants had previ-

ously taken part in a computer-assisted telephone interview,

Screening Across the Lifespan Twin study (SALT), undertaken be-

tween 1998 and 2002. Both of these projects were approved by

the local ethics committee at Karolinska Institutet, and all partic-

ipants have given their informed consent. Zygosity was deter-

mined by DNAmarkers (57% of the study sample) or self-reported

childhood resemblance. There were 2,499 monozygotic, 4,154

same-sex dizygotic (SSDZ), and 4,029 opposite-sex dizygotic

(OSDZ) twins, totalling 5,074 (48%) men and 5,608 women.

Descriptive statistics are shown in Table S1.
Trait Measurements
All physically measured quantitative phenotypes available to all

participants in the TwinGene project were investigated. Blood

was collected after overnight fasting at a local health-care facility

in themorning fromMonday to Thursday, to ensure that the tubes

with serum would be sent to Karolinska Institutet Biobank before

the weekend by overnight post. Samples were stored at �80�C
awaiting clinical chemistry and immunological assays. Total

cholesterol, triglyceride, low- and high-density lipoproteins, apoli-

poprotein A1 and B, hemoglobin, C-reactive protein, and glucose

were measured by routine methods on semi-automated biochem-

istry analyzer (Beckman Coulter). Glycosylated hemoglobin A1c

wasmeasured by ion exchange chromatography; immunoglobulin

A was measured by a reverse-phase protein microarray; cystatin C

was measured by particle reinforced immune-turbidimetric anal-

ysis using Architect ci8200 immunoassay analyzer; creatinine was

measured by an enzymatic method through Arcitect c8000 and

Arcitect c16000 (Abbott); and glomerular filtration rate was

calculated as 79.901 3 (cystatin C mg/l)�1.4389. Height, weight,

and waist circumference were measured without shoes and in

light clothing. Body mass index (BMI) was calculated as
The American
BMI ¼ weight(kg)/height(m)2. The unit and distribution of each

trait in different gender and zygosity subgroups are reported in Ta-

bles S2 and S3.

Genotyping
For each individual, 7 ml whole blood was collected in an EDTA

tube and genomic DNA was extracted by Puregene extraction kit

(Gentra Systems) and subsequently stored at �20�C. Subjects

with DNA concentration less than 20 ng/ml, as well as a set of 302

female monozygotic pairs participating in a previous genome-

wide genotyping effort, were excluded. DNA from all remaining

dizygotic individuals and from one twin within each available

monozygotic twin pair (in total, n ¼ 9,896) were sent for genotyp-

ing with Illumina OmniExpress bead chip (700K). Quality control

was performed and exclusions of samples and SNPs were done

according to the following criteria: genotype missingness > 0.03,

individual missingness > 0.03, minor allele frequency < 0.01,

Hardy-Weinberg equilibriumpvalue<10�7, sexmismatch,hetero-

zygosity (individualswith anF-statistic larger thanfive standardde-

viations from the samplemean), cryptic (unknown) relatedness, or

phenotypic information missing on more than five traits. Finally,

9,606 individuals and 644,556 SNPs remained.

Data Handling
Data handling, descriptive statistics, covariate adjustment, and

normalization were performed in SAS v.9.4 (SAS Institute). The dif-

ference in means between males and females was tested for each

trait by t test. Raw values of each trait were adjusted for age, sex,

and the first ten principal components based on genotypes

(9,617 individuals and 644,556 SNPs that passed genotyping

QC) in linear regressionmodels, then residuals from the regression

were rank order normalized, resulting in standard normal

distributions.

Twin-Based SEM
Twin order was randomly assigned, singletons and pairs with

missing values for more than five traits were removed, and finally

3,870 complete twin pairs (1,088 MZ, 1,443 SSDZ, and 1,339

OSDZ) were used in twin-based analyses. Structural equation

modeling of the observed covariance in MZ and DZ twin pairs

was performed to find maximum likelihood estimates for additive

genetic effects (A; the sum of the effects of individual loci), domi-

nant genetic effects (D; interactions between alleles within the

same locus), common/shared environmental effects (C; contrib-

utes to the similarities between relatives living together), and

unique/non-shared environmental effects (E; specific to individ-

ual, contributes to the dissimilarities between family members),

contributing to the variance within, and covariance between, indi-

viduals for each phenotype. Akaike information criterion10 was

used to compare the goodness of fit of ACE (a model including

A, C, and E), ADE (including A, D, and E), and AE (including A

and E) models to find the most parsimonious model. The narrow-

and broad-sense heritability (h2 and H2) was estimated, corre-

sponding to the proportion of phenotypic variance attributable

to additive genetic variance, or additive plus dominance genetic

variances, respectively. All twin-based analyses were performed

with the OpenMx package11 in R.

SNP-Based GREML(d)
GREML(d) was implemented in GCTA to estimate h2 and d2 via

comparison of empirical genetic resemblance of unrelated
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individuals, based on identity-by-state when all genome-wide

common SNPs are fitted as random effects in amixed linearmodel.

One twin in each complete dizygotic pair (both same-sex and

opposite-sex) was randomly removed from the 9,606 individuals

with both genotypes and phenotypes available. The remaining

6,812 individuals were used in the first step of generating pair-

wise additive genomic relationship matrix. Subsequently, one in-

dividual within each more distantly related pair (cut-off value >

0.025, corresponding to a relatedness between second and third

cousins) was removed and dominant genomic relationship matrix

was generated based on these 5,779 unrelated individuals (1,185

MZ, 2,316 SSDZ, and 2,278 OSDZ twins). For each phenotype,

restricted maximum likelihood was used to estimate the variance

explained by all SNPs. Both the SNP-based additive genetic vari-

ance, the so-called ‘‘chip heritability’’ (h2
SNP), and dominant ge-

netic variance (d2SNP) was estimated.
Contact Frequency and Age at Separation within Twin

Pairs
Self-reported intra-pair contact frequency (the frequency bywhich

the twins in a pair said they met in person) and age at separation

from the co-twin constitutes independent measures of degree of

shared environment within twin pairs. Such measures were avail-

able from the SALT interview for more than 90% of the complete

twin pairs. The replies to questions about how often the partici-

pants usually met with their co-twin were divided into four levels:

(1) less thanonce a year, (2) on ayearlybasis, (3) onamonthlybasis,

or (4) on a weekly basis; the measure is here used as a continuous

variable. When answers were available from both twins, the

within-pair average value was calculated and used for each pair.

Violation of the equal environment assumption was tested by

comparingmeans (t test) betweenMZ and DZ twins in contact fre-

quency/age at separation.To testwhether thedegreeof sharedenvi-

ronment was related to within-pair trait similarity, the correlation

between contact frequency/age at separation and absolute intra-

pair difference in adjusted trait levels was examined among MZ

twins. MZ intra-pair correlation stratified by level of shared envi-

ronment was also estimated for each trait. For contact frequency,

we divided all pairs into low (defined as%3, on themonthly basis)

andhigh (defined as>3,more thanmonthly) groups, and for age at

separation we divided the pairs by the median value.
Results

The classic twin model indicated contributions of domi-

nant genetic effects (ADE was the best-fitting model) for

14 out of the 18 traits, with an average d2twin of 0.25 (Ta-

ble 1). In two of these traits (triglycerides and waist circum-

ference), we also observed significant dominance in

the SNP-based GREMLd model. Notably, the significant

d2SNP of waist circumference observed in the ARIC cohort

from the paper of Zhu et al.8 was successfully replicated

in our data (d2SNP ¼ 0.19, 95% CI 0.01–0.37, p ¼ 0.01).

The large estimate of d2SNP observed for triglycerides was

not seen in the corresponding d2twin, possibly due to

chance in the sampling and the fact that the GREML(d)

and the twin-basedmodels are independentmethods since

they rely on different contrasts. GREMLd also indicated

contributions from dominance for six additional traits,
710 The American Journal of Human Genetics 97, 708–714, Novemb
but all were non-significant (Table S4), possibly because

the sample size of unrelated individuals was too small for

sufficient power.

In the classic twin analyses, the AE model was the best-

fitting model for high-density lipoprotein and apolipopro-

tein A1, whereas the ACE model was the best-fitting model

for immunoglobulin A and height (Table S5). For the h2
SNP

estimated from GREML, the means were very similar be-

tween the ADE- and AE-fitted traits, equal to 0.22 and

0.21, respectively. This was not supported by results from

the twin model, in which the average h2
twin of ADE-fitted

traits was half as big as the average h2
twin of AE-fitted traits.

The proportion of h2
SNP/h

2
twin indicates how much of

the A component estimated from the twin-based model is

explained by the common SNP-based model. A large pro-

portion, on average 70% of h2
twin, was captured by h2

SNP

for ADE-fitted traits, whereas for the two AE-fitted traits,

h2
SNP explained only 31% of the h2

twin, similar to the pro-

portions generally reported in previous studies. If previous

studies were underpowered to identify significant domi-

nance components, they might instead have attributed it

to the additive component in a more parsimonious AE

model. This is similar to the finding for high-density lipo-

protein in the current study; the pattern of the intra-pair

correlations (rMZ > 2rDZ) indicated presence of dominance

(Table S6), but we appear underpowered to declare it signif-

icant. If wemimic this situation and adopt AEmodels for all

theD-influenced traits (i.e., let Abe the sumofA andDcom-

ponents), the average value of h2
SNP/H

2
twin would decrease

to 39%. For the sake of completeness, we also performed a

sex-limitation SEM that estimated the heritability by

gender, but by doing so the power to identify dominant ef-

fects decreased and AEmodel became the best-fitted model

for several traits (Tables S7 and S8). For creatinine and GFR,

there are pronounced differences in variance components

estimates between males and females, which is in agree-

ment with a previous report from the same study base.12

Using self-reported measures of degree of shared envi-

ronment with MZ co-twin, we found independent evi-

dence for influences from shared environment for a subset

of traits. Self-reported contact frequency and the number

of years spent together before separation were both signif-

icantly higher for MZ than for SSDZ andOSDZ twins (Table

S9). Together these results indicate violations of the equal

environment assumption as a potential problem. In order

to get a sense of the magnitude of bias such a violation

might be associated with, we calculated the MZ intra-pair

correlations stratified by level of shared environment in a

high versus a low group (Table S10). Even though the levels

of shared environments were considerably larger in the

high group, 1.8 standard deviation (SD) for contact fre-

quency and 1.4 SD for age at separation, the trait level sim-

ilarity was influenced only modestly with rMZ estimates on

average ~0.05 larger in the high group.

Contact frequency was weakly albeit significantly related

to absolute within MZ-pair difference in high-density lipo-

proteins, bodymass index,weight, andwaist circumference
er 5, 2015



Table 1. Estimates from Twin-Based Structural Equation Model and SNP-Based GREML(d)

Trait

Twin-Based SEMa SNP-Based GREML(d)b

h2
SNP/

h2
twin

h2
SNP/

H2
twin

crMZ rDZ Best M h2
twin 95% CI d2twin 95% CI h2

SNP 95% CI d2SNP 95% CI

TC 0.48 0.19 ADE 0.28 (0.13,0.43) 0.19 (0.03,0.36) 0.15 (0.03,0.27) 0.00 (0.00,0.18) 54% 32%

LDL 0.46 0.18 ADE 0.23 (0.08,0.38) 0.24 (0.07,0.41) 0.16 (0.04,0.28) 0.00 (0.00,0.18) 70% 34%

Apolipoprotein B 0.52 0.23 ADE 0.39 (0.25,0.53) 0.14 (0.00,0.30) 0.14 (0.02,0.26) 0.00 (0.00,0.18) 36% 26%

Triglyceride 0.55 0.24 ADE 0.42 (0.27,0.55) 0.14 (0.00,0.30) 0.31 (0.19,0.43) 0.28 (0.10,0.46)d 74% 55%

C-reactive protein 0.42 0.19 ADE 0.30 (0.15,0.44) 0.14 (0.00,0.31) 0.37 (0.25,0.49) 0.00 (0.00,0.18) 123% 84%

Glucose 0.51 0.20 ADE 0.24 (0.09,0.38) 0.30 (0.15,0.46) 0.17 (0.05,0.29) 0.15 (0.00,0.33) 71% 31%

HbA1c 0.69 0.28 ADE 0.37 (0.24,0.51) 0.35 (0.21,0.49) 0.20 (0.08,0.32) 0.00 (0.00,0.18) 54% 28%

Hemoglobin 0.55 0.24 ADE 0.41 (0.26,0.55) 0.15 (0.00,0.30)e 0.21 (0.09,0.33) 0.00 (0.00,0.18) 51% 38%

Cystatin C 0.57 0.26 ADE 0.42 (0.28,0.56) 0.18 (0.03,0.34) 0.27 (0.15,0.39) 0.05 (0.00,0.23) 64% 45%

Creatinine 0.58 0.24 ADE 0.35 (0.21,0.50) 0.24 (0.09,0.40) 0.18 (0.06,0.30) 0.01 (0.00,0.19) 51% 31%

eGFR 0.57 0.24 ADE 0.38 (0.23,0.52) 0.21 (0.05,0.36) 0.32 (0.20,0.44) 0.03 (0.00,0.21) 84% 54%

Body mass index 0.68 0.24 ADE 0.28 (0.13,0.42) 0.41 (0.26,0.56) 0.21 (0.09,0.33) 0.02 (0.00,0.20) 75% 30%

Weight 0.73 0.27 ADE 0.37 (0.23,0.51) 0.35 (0.21,0.50) 0.26 (0.14,0.38) 0.11 (0.00,0.29) 70% 36%

WC 0.63 0.20 ADE 0.15 (0.01,0.29) 0.49 (0.34,0.65) 0.16 (0.04,0.28) 0.19 (0.01,0.37)d 107% 25%

ADE-Average – – – 0.33 – 0.25 – 0.22 – 0.06(0.24)d – 70% 39%

HDL 0.67 0.31 AE 0.66 (0.63,0.69) – – 0.24 (0.12,0.36) 0.01 (0.00,0.19) 36% –

Apolipoprotein A1 0.65 0.34 AE 0.66 (0.63,0.68) – – 0.17 (0.05,0.29) 0.09 (0.00,0.27) 26% –

AE-Average 0.66 – – – 0.21 – 0.05 – 31% –

ImmunoglobulinA 0.43 0.28 ACE 0.40 (0.29,0.51) 0.07f (0.00,0.15) 0.24 (0.12,0.36) 0.00 (0.00,0.18) 60% –

Height 0.87 0.48 ACE 0.77 (0.71,0.83) 0.09f (0.04,0.15) 0.62 (0.50,0.74) 0.00 (0.00,0.18) 81% –

ACE-Average – – – 0.59 – 0.08f – 0.43 – 0.00 – – –

Abbreviations are as follows: TC, total cholesterol; WC, waist circumference; LDL and HDL, low- and high-density lipoproteins; HbA1c, glycosylated hemoglobin
A1c; eGFR, estimated glomerular filtration rate (machine-based calculation from cystatin C); rMZ and rDZ, coefficients of intra-pair correlations within monozygotic
and dizygotic twin pairs; Best M, the best-fitting model for each trait according to Akaike information criterion; h2twin and d2twin, additive and dominant genetic
variance estimated from twin model; 95% CI, 95% confidence interval; h2SNP and d2SNP, additive and dominant genetic variation estimated from SNP model.
aEstimates from classical twin-based structural equation model (SEM) including 3,870 twin pairs.
bEstimates from directly genotyped SNPs of 5,779 unrelated individuals in genomic-relatedness-matrix restricted maximum likelihood [GREML(d)] method.
cH2 indicates broad-sense heritability including both additive (h2) and dominant (d2) genetic variance.
dValue in parentheses equals the average of the two significant estimates.
eNon-significant.
fShared environmental components estimated in ACE model.
(Table 2). Similar results were obtained when using age

at separation as the indicator of degree of shared envi-

ronment, with significant correlations observed with

absolutewithinMZ-pair difference in high-density lipopro-

teins, body mass index, and weight. These evaluations

are restricted to MZ twins since the aim is to test the rela-

tion between degree of shared environment and intra-pair

trait similarity un-confounded by genetic influences. In DZ

pairs the genetic sharing will differ between pairs, which

means that the correlations are not straightforward to

interpret.

Discussion

Our results from both the classic twin-based and the com-

mon SNP-based models lend support to a more prominent
The American
role of dominant genetic variation than previous studies

generally have reported for similar traits. The large size

of the study and advanced age of participants might be

contributing factors of importance for this finding. The

results also highlight the potential risk of systematic igno-

rance of deviances from pure additivity in smaller twin

studies.

Since heritability by definition is population specific,

comparisons of estimates obtained from twin-based and

genome-wide common SNP-based models can be achieved

reliably only when both types of analyses are performed

within the same study base. With the large number of gen-

otyped twin pairs available in TwinGene, it is well suited

for such comparisons. We attribute the unusual detection

of significant d2twin for a majority of traits in our sample

to the increased power to discriminate A from D that
Journal of Human Genetics 97, 708–714, November 5, 2015 711



Table 2. Correlations between Absolute Intra-pair Difference of
Trait Values and Co-twin Contact Frequency and Age at Separation
from Co-twin in Monozygotic Twins

Trait

Contact Frequency Separation Age

r npair p r npair p

Total cholesterol 0.004 1,066 0.90 0.014 1,027 0.66

High-density lipoprotein �0.081 1,066 0.01 �0.064 1,027 0.04

Low-density lipoprotein 0.017 1,044 0.59 �0.010 1,007 0.74

Apolipoprotein A1 �0.060 1,065 0.05 �0.052 1,026 0.09

Apolipoprotein B �0.010 1,065 0.75 0.031 1,026 0.32

Triglyceride �0.047 1,066 0.13 �0.026 1,027 0.40

C-reactive protein �0.028 1,065 0.35 0.016 1,026 0.62

Glucose �0.032 1,066 0.29 �0.008 1,027 0.79

Glycosylated
hemoglobin A1c

�0.052 1,065 0.09 �0.036 1,026 0.25

Hemoglobin 0.005 1,063 0.87 �0.026 1,024 0.40

Cystatin C �0.044 1,029 0.16 0.029 993 0.37

Creatinine �0.035 1,029 0.26 0.019 993 0.55

Glomerular filtration
rate

�0.031 1,029 0.32 0.009 993 0.79

Immunoglobulin A 0.008 1,058 0.79 0.002 1,020 0.95

Body mass index �0.071 1,061 0.02 �0.089 1,022 <0.01

Weight �0.085 1,064 0.01 �0.063 1,025 0.04

Waist circumference �0.083 1,063 0.01 �0.048 1,024 0.12

Height �0.020 1,063 0.52 �0.033 1,024 0.30

Abbreviations are as follows: r, spearman correlation coefficient for the correla-
tion between absolute intra-pair difference and contact frequency/separation
age for each trait; p, p values. Significant estimates are in italics.
comes with the large sample of twins of older age. This

view is supported by findings from other unusually large

population-based studies, such as a recent Dutch twin-

family study on blood biomarker levels and metabolic syn-

drome traits, which detected significant D effects that

increased with age.13

Because twins represent only a small fraction of the pop-

ulation, the sample size in twin studies is usually limited

and most previous studies have included fewer than 1,000

twin pairs, which might provide inadequate power to

significantly declare contributions from variance compo-

nents indicating deviance from additivity (i.e., C and D).

Instead, in smaller studies the dominant genetic effects or

shared environmental effects are typically attributed to ad-

ditive genetics inmore parsimonious AEmodels. In a recent

very large meta-analysis of estimates from twin studies,14

the vast majority of investigated traits were reported to be

consistentwith a simpleAEmodel inwhich all twin similar-

ity was attributed to A, with the remaining variance ex-

plained by non-shared environmental factors. However,

close to 50%of all reported joint rMZ and rDZ estimates actu-

ally showedapatternof deviance supportingD (rMZ>2rDZ).

Still, D was handled as a part of A (A ¼ D þ A) in all such
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traits. This is similar to what we would observe if we would

split the large TwinGene material into several smaller sam-

ples; we would then be unable to declare D significant (due

to lack of power) and instead report AE as the best-fitting

model, and consequently attribute D to the A component.

Twin studies represent the classic design to disentangle

the genetic and environmental contributions to familial

aggregation/correlation. The relative importance of ge-

netic and environmental effects is estimated by decompos-

ing the total variance into different components (A, C or D,

and E). The decomposition relies on important assump-

tions: MZ share 100% while DZ share on average 50% of

their inherited genome, twins within MZ and DZ pairs

share the raising environment to the same extent (equal

environment assumption), and there is no correlation or

interaction between genes and environment.2 For traits

in which the familial aggregation is solely due to additive

genetic effects, the MZ correlation is expected to be exactly

twice the DZ correlation (rMZ ¼ 2rDZ). If there are addi-

tional influences from shared environmental effects (C),

the additive pattern becomes distorted by making DZ

more similar to MZ twins (i.e., rMZ < 2rDZ). When the devi-

ance goes in the other direction (rMZ > 2rDZ), dominant ge-

netic effects (D) are usually assumed to cause the distortion

from pure additivity.

The inability to estimate C and D simultaneously

inherent in the classic twin model means that whenever

there is a deviance from a pure additive genetic model,

the model will provide support to the existence of either

shared environment or dominance deviance; however, sig-

nificant contribution of one says nothing about absence or

presence of the other. This means that contributions from

both components might coexist but ‘‘mask’’ each other, so

that the net effect appears as contribution from neither.

Thus, when C exists simultaneously with D, it will tend

to counterbalance and even outweigh deviance contribu-

tion from D. However, since the twins in our sample

were relatively old (mean age was 65 years), contributions

from shared environmental factors might have been atten-

uated, leaving D more prone to be observed.

Our data provide independent evidence for simultaneous

contribution of C for some traits in which the SEM declare

ADE to be the best-fitting model. We conclude this from

the fact that there were significant negative correlation be-

tween self-reported contact frequency inMZpairs andabso-

lutewithin-pair trait difference forhigh-density lipoprotein

and three weight-related traits (Table 2). Further, the

observed relation was negative for 14 out of 18 traits, indi-

cating that a general trend might be present also for other

traits. Number of years spent together before separation

showed similar relations to absolute within-pair trait differ-

ence in MZ twins. Twins staying together longer tend to

display more similar trait values. The group-mean differ-

ences between MZ and DZ twins in degree of shared envi-

ronment were 0.58 and 0.39 SD for contact frequency and

age at separation, respectively. Thus, the core twin model

assumption of equal shared environment between MZ
er 5, 2015



and DZ appears to be violated. One potential consequence

of such a violation is that the D component might become

inflated in the twinmodel, while GREML(d) would stay un-

affected. This difference could be argued one reason for the

markedly larger D component as estimated in the twin-

based SEM compared to the GREML(d). However, the rela-

tion between degree of shared environment and within-

pair trait difference was weak: the strongest correlation

found for contact frequency was for weight (�0.085), and

for separation age it was BMI (�0.089) (Table 2). The weak

relation was apparent also from comparisons of trait corre-

lations in strata of theMZ twins sharingmost and least envi-

ronment (Table S10). The mean difference in level of

sharing between the two groups is at least three times larger

than the difference observed between MZ and DZ twins.

Still, the correlations in trait levels were only verymodestly

different between the high and low group. Thus, we

consider the bias potentially introduced by the violation

of the equal environment assumption to be small, and

thus not a prominent reason for the discrepancy between

twin-based versus GREMLd-based estimation of D.

Another way to obtain independent evidence for contri-

butions of C is to study non-biological relations such as

adoptive or step relations. In a previous investigation on

military conscription data of BMI at age of 18, significant

correlations were observed also among non-biological

(step- and adoptive) relatives.15 This indication of C was

supported by significantly stronger correlation in maternal

compared topaternal half-brothers, arguably reflecting that

children most often follow mothers upon divorce in the

studied population, or that mothers have a generally stron-

ger impact on the relevant family environment (eating

habits, food choices, etc.) as compared to fathers.16

It is clear that the MZ correlation coefficient provides per

se an unbiased upper bound of the proportion of variance

that genetics (both additive and non-additive) ultimately

could explain, but in the contemporary literature there

exist different opinions about what should be considered

the relevant denominator in the concept of ‘‘missing heri-

tability.’’ If it is the broad-sense heritability, an additive

modeling of genotypes should not be expected to explain

anything but the additive fraction (i.e., we would have to

accept that a portion will remain inaccessible). On the

other hand, we and others consider the relevant denomi-

nator to be the narrow-sense heritability, and the missing

heritability to be the proportion of h2 that remains unex-

plained by SNPs, equal to 1 � (h2
SNP/h

2
twin).

During the past decade, many explanations of the

missing heritability phenomenon have been suggested.

Some have focused on using larger numbers of common

or rare variants to capture more of the functional genetic

variance;17,18 others have suggested that missing heritabil-

ity is due to an overestimation of the additive genetic ef-

fects because cryptic contribution of epistatic interactions

between loci (often termed ‘‘I’’), creating something de-

noted ‘‘phantom heritability.’’19,20 Our results suggest a

similar concept, the possibility that h2 tends to be overes-
The American
timated if there is inadequate power to discriminate A and

D components in the twin model. Letting the A compo-

nent from a more parsimonious AE model represent the

h2 will provide a value that will be closer to the broad-sense

heritability (variation due to A plus variation due to D).

There is also a possibility that epistatic interactions are

captured differentially by the classic twin-based and the

SNP-based GREML(d) heritability estimation and thereby

might be responsible for some of the differences between

the two models. However, a recent paper suggested that

epistatic effects will contribute little to genetic variance

in outbred populations.21

Even though additive geneticsmost probably constitutes

thebulk of genetic influences tomost complex traits, our re-

sults fromboth twin-based and SNP-basedmodels lend sup-

port to a more prominent role of dominant genetic varia-

tion than what most earlier studies have indicated. We

believe simultaneous contributions from both C and D

might be a common situation for many traits. Extended

twin-family study designs including more family members

(e.g., parents, offspring, and non-twin siblings) might offer

improved possibilities to verify the existence of D ef-

fects,22,23 but such materials of adequate size are unfortu-

nately exceptionally rare. Previous elegant simulation

studies performed in extended twin-family structures24

lend support for the viewweherepresent that simultaneous

presence of C and D might be a common phenomenon

despite the fact that classic twin studies rarely find evidence

for either. We foresee a future development where integra-

tion of twin, family, and molecular-based methods allow

more accurate quantification of additive and non-additive

proportions of genetic influences, which in turn might

help us to reclaim the remains of the missing heritability.
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