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Recessive Mutations in RTN4IP1
Cause Isolated and Syndromic Optic Neuropathies
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Markus Preising,7 Birgit Lorenz,7 Valerio Carelli,8,9 Patrick F. Chinnery,4 Patrick Yu-Wai-Man,4,10

Josseline Kaplan,3 Agathe Roubertie,1,5 Abdelhamid Barakat,11 Dominique Bonneau,2 Pascal Reynier,2

Jean-Michel Rozet,3 Pascale Bomont,1 Christian P. Hamel,1,5 and Guy Lenaers1,2,*

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration,

for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identi-

fied mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as

NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a

RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased

susceptibility to UV light. Silencing of RTN4IP1 altered the number andmorphogenesis ofmouse RGC dendrites in vitro and the eye size,

neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mecha-

nism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology,

response to UV light, and dendrite growth during eye maturation.
Inherited optic neuropathies (IONs) are neurodegenerative

diseases affecting the visual pathway and are frequently

associated with extra-ocular symptoms.1,2 Dominant

IONs (dominant optic atrophy [DOA] [MIM: 165500]) are

mostly caused by mutations in OPA13,4 (MIM: 605290)

and rarely by mutations in OPA35 (MIM: 606580); both

genes encode inner mitochondrial proteins. Non- or

pauci-syndromic recessive IONs occur less frequently,

and several families affected by these recessive forms

have recently been linked to TMEM126A (MIM: 612988)

and ACO26,7 (MIM: 100850) mutations.

Informed consent was obtained from all patients for

clinical examination and genetic analysis, according to

approved protocols of the Montpellier University Hospi-

tals and in agreement with the Declaration of Helsinki.

The Ministry of Public Health approved the biomedical

research under the authorization number 11018S. In a

consanguineous Moroccan family affected by an auto-

somal-recessive ION, we performed SNP genotyping (Gen-

eChip Human Mapping 250K SNP Array, Affymetrix) in

the proband (I-3, Figure 1A) and identified four homozy-

gous regions on chromosomes 1, 6, 18, and 22 of 12.2,
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19, 22.6, and 23.4 megabases, respectively. After exome

sequencing (SureSelectXT Human All Exon V5 [Agilent]

followed by Illumina HiSeq2000) and filtering for rare

(<1/300) homozygous variants present in genes that are

included in these regions and that encode for mitochon-

drial proteins, we identified a c.308G>A (p.Arg103His)

substitution in RTN4IP1 (MIM: 610502) (GenBank:

NM_032730.4), encoding the RTN4-interacting protein

1,8 in the 19 Mb homozygous region of chromosome 6

(Figure 1B). This change was referenced in the NCBI data-

base (rs372054380 [GenBank: NP_116119.2]) and had a

heterozygous frequency of 2/13,004 in the NHLBI Exome

Sequencing Project Exome Variant Server and 1/121,304

in the ExAC Browser databases. It modifies an amino acid

evolutionarily conserved among vertebrates (Figure 1C)

and is predicted to be functionally damaging (scores of

0.01 and 1 via SIFT and PolyPhen-2, respectively). Both

affected individuals from this family were homozygous

for the missense mutation, whereas their parents and three

unaffected relatives, II-1, II-2, and II-6, were heterozygous.

Affected siblings II-3 and II-4 had presented with low

vision since early childhood and did not complain of any
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Figure 1. Identification of RTN4IP1 Mutations in Four Families
(A) Family pedigrees showing the affected members in black and the segregation of the c.308G>A and c.601A>T mutations. N.D., no
genetic diagnosis.
(B) Electrophoregram presenting the RTN4IP1 c.308G>A (left) and c.601A>T (right) mutations.
(C) RTN4IP1 ortholog protein sequence alignment showing the evolutionarily conserved positions around arginine 103, which is
squared in red. Informed consent was obtained from all individuals to perform genetic and biochemical analysis. H.s., Homo sapiens;
M.m., Mus musculus; D.r., Danio rerio; X.l., Xenopus laevis; D.m., Drosophila melanogaster; N.c., Neurospora crassa.
other symptoms (Table S1). Fundus examination revealed

moderate bilateral optic-disk pallor (Figure 2A), and optical

coherence tomography disclosed a marked decrease in the

thickness of the retinal nerve fiber layer in the temporal

side (Figure 2B), a characteristic feature of mitochondrial

forms of hereditary optic atrophy.

Screening of RTN4IP1 by Sanger sequencing in a cohort

of 240 European ION-affected probands without genetic

diagnosis identified four additional affected subjects. Two

of them were simplex-case subjects of Roma origin (fam-

ilies II and III, Figure 1A) who were also homozygous for

the c.308G>A (p.Arg103His) substitution on the same

haplotype, suggesting a founder effect (Figure S1). The
The American
affected individuals had mild to moderate optic atrophy

similar to the individuals of family I and showed no addi-

tional symptoms (Table S1). The two other additional sub-

jects (IV-2 and IV-3, Figure 1A) were sisters from a multi-

plex family carrying compound heterozygous mutations,

including the c.308G>A variant found in families I, II,

and III but on a different haplotype (Figure S1) and a

nonsense c.601A>T (p.Lys201*) variant (Figure 1B) leading

to the truncation of the last 196 amino acids of the protein.

This latter mutation was not referenced in databases. The

parents were heterozygous for one of each mutated allele,

and the unaffected brother carried no mutation. The two

sisters presented similarly in early life, with a severe
Figure 2. Ophthalmological Exploration
of Individuals Affected by RTN4IP1 Muta-
tions
(A) Fundus examinations (RE, right eye; LE,
left eye) of the individuals I-3 from family I
(top) and IV-2 (middle) and IV-3 (bottom)
from family IV revealed temporal pallor of
the optic discs and a peripheral de-pig-
mentedretina for the twosistersof family IV.
(B) Optical coherence tomography scan-
ning andmeasurement of the retinal nerve
fiber layer of the optic disks showed a
drastic reduction in thickness (black line)
in the temporal quadrants of individual
I.3 from family I (top) and in all the quad-
rants of the two sisters in family IV (middle
and bottom). The green area corresponds
to the 5th to 95th percentile, the yellow
area corresponds to the 1st to 5th percentile,
and the red area corresponds to below the
1st percentile. RE, right eye; LE, left eye.
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Figure 3. Molecular and Cellular Characterization of RTN4IP1
Mutated Fibroblasts
(A) Western blot against RTN4IP1 (top; Abcam antibodies 1/1,000)
and SDHA (bottom; Abcam antibodies 1/1,000) on purified mito-
chondrial extracts from three control fibroblast strains and from
the fibroblasts from the index case subject (I-3) in family I and
from the two sisters (IV-2 and IV-3) in family IV shows the drastic
reduction of RTN4IP1 abundance in mutated cells.
(B) Assessment of the mean oxygen consumption from the three
control and the three RTN4IP1 mutated fibroblast strains related
to complexes I (EIIIMP), I þ II (EIIIMPS), II (EIIISR), and IV
(COX), measured with a high-resolution Oxygraph respirometer
and Oroboros protocols, did not reveal a significant difference be-
tween control and mutated fibroblasts.
(C) Mean enzymatic activities of the respiratory complexes (CI to
CV) from the three control and the three RTN4IP1 mutated fibro-
blast strains related to the citrate synthase (CS) enzymatic activity
were assayed by standard procedures23–25 and revealed a signifi-
cant reduction of complex I and complex IV activities in mutated
fibroblasts.
(D) The structure of the mitochondrial network is not affected in
RTN4IP1 mutated fibroblasts as compared to that in wild-type fi-
broblasts, as assessed by ATP synthase immunofluorescence. Scale
bar represents 10 mm.
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bilateral optic neuropathy, associated with nystagmus, a

mild stato-kinetic cerebellar syndrome, and learning dis-

abilities. The older sister was more severely affected with

mild mental retardation and exhibited generalized seizures

from the age of 3 years (Table S1). Fundus examinations of

both sisters disclosed abnormal optic disks, which ap-

peared small with a horizontal orientation and were pale

on their entire surface (Figure 2A), possibly reflecting a sub-

tle hypoplasia. The thickness of the retinal nerve fiber layer

was dramatically reduced in all quadrants (Figure 2B).

There was no detectable visual evoked potential, and the

optic tracts were thin in brain MRI, indicative of the severe

alteration of the optic path. The brain was otherwise

normal, as were the cerebral spectroscopic MRI, ENT, car-

diologic, and neuro-muscular examinations (Table S1).

To gain insight into the pathophysiological mecha-

nisms, we studied skin-derived fibroblasts from the pro-

band of family I and from the two affected sisters of family

IV. Assessment of RTN4IP1 expression revealed that the

mRNA abundance remained unaffected (data not shown),

whereas that of the altered protein was drastically reduced

(>95%, Figure 3A) and that of the truncated protein was

undetectable. Because RTN4IP1 encodes a mitochondrial

protein,8 we monitored respiratory parameters. Oxygen

consumptions driven by complex CI, CI þ CII, CII, and

CIV were normal in mutated fibroblasts (Figure 3B),

whereas enzymatic activities of CI and CIV were signifi-

cantly reduced in RTN4IP1 fibroblasts (Figure 3C). We

further analyzed the structure of the mitochondrial

network and did not find evidence of significant fusion

or fission defect (Figure 3D), nor did we find a difference

in mtDNA copy number (data not shown) between wild-

type and RTN4IP1 mutated fibroblasts. Because the Caeno-

rhabditis elegans ortholog of RTN4IP1 is Rad8, a gene

involved in UV light sensitivity,9,10 we monitored the sus-

ceptibility to UV light of fibroblasts. Exposure of RTN4IP1

mutated fibroblasts to UV light induced a straight cell

morphological change, with altered fibroblasts adopting

a round shape in less than 30min (Figure S3A) and tending

to detach from the support. After overnight incubation, we

found a 2-fold increase in apoptosis in mutated cells

compared to that in control cells (Figure S3B), a finding

consistent with RTN4IP1’s involvement in the response

to UV light exposure.11

We then assessed whether RTN4IP1 subcellular localiza-

tion is consistent with its predicted N-terminal 41-amino-

acid-long mitochondrial targeting peptide8 and its known

interaction with RTN4 (also known as NOGO) (MIM:

604475) at the ER.12 The RTN4IP1-EYFP fusion protein

colocalized with the mitochondrial ATPase protein

(Figure S2A) and partially colocalized with the GRP78

protein from the ER at spots corresponding to contact
Results in (B) and (C) are given as mean 5 SEM of values from
three independent experiments performed on the control and
RTN4IP1 mutated fibroblasts. Stars indicate significant Mann-
Whitney tests: *p < 0.05, **p < 0.01.
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Figure 4. Altered Dendritogenesis in Retinal Ganglion Cells
Depleted for Rtn4ip1
RGCs were obtained from the retinas of 3-day-old mouse pups
with the CELLection Pan Mouse IgG Kit (Invitrogen) and the
Anti-CD90 antibody (AbD Serotec). GIPZ LentiviralMouse Rtn4ip1
shRNA and GIPZ Lentiviral Mouse Non-Silencing shRNA (control)
were obtained from Thermoscientific. For RGC transduction, cells
were seeded at 5 3 104 cells in 96-well plates with poly-D-lysine-
and laminin-coated glass coverslips and infected at anmultiplicity
of infection of five. 4 days later, cells were processed for immuno-
fluorescence analyses. Efficiency of shRNA silencing was assessed
on NIH 3T3 cells and showed a 60% reduction of Rtn4ip1 mRNA
abundance.
(A) Expression of the control (top) and the Rtn4ip1mouse-specific
(bottom) shRNA in RGCs processed for immunofluorescence with
Map2 (Abcam, 1/5,000 antibodies). Fluorescent pictures show the
nuclear GFP labeling (left) and the Map2 labeling (middle) and
their superposition (MERGE; right), revealing the dendritic arbor-
ization of the infected GFP-positive neurons.
(B) Quantification of dendritic arborization reveals significant in-
creases in the number of branches (top) and the total dendritic
area (polygon obtained by joining the distal extremities of each
dendrite; bottom) in cells transfected with the lentivirus express-
ing the Rtn4ip1 versus the control shRNA. Data are representative
of three independent experiments. 120 cells were analyzed for
each condition. Results are given as mean 5 SEM. Stars indicate
significant Mann-Whitney tests: *p < 0.05; **p < 0.01. Scale bar
represents 10 mm.
sites with mitochondria (Figure S2B). Mitochondrial

sublocalization study, using increasing concentrations of

digitonin and proteinase K digestion, suggested that,

together with BCL2, RTN4IP1 is associated with the

outer membrane (Figure S3C), thus supporting the possi-

bility of cross-talk between RTN4IP1 at the surface of mito-

chondria and RTN4 from the ER. Because RTN4 regulates

dendrite branching and extension during development

of the CNS,13–15 we assessed the effects of Rtn4ip1 silencing
The American
on RGC arborization. Depletion of Rtn4ip1 in RGCs

from mouse pups, via lentivirus-targeted shRNA,

revealed a significant increase in dendrite numbers

(þ19%, 5 4.55%) and in total surface area of dendritic

arborization (þ20%, 5 17.5%) (Figures 4A and 4B), sug-

gesting that Rtn4ip1 acts as a regulator of Rtn4 function

and controls RGC neurite outgrowth. Finally, we addressed

whether RTN4IP1 invalidation could reproduce in vivo the

clinical phenotype seen in affected individuals. For this

purpose, we silenced the expression of its zebrafish ortho-

log, which has 67% identity with and 91% similarity to its

human counterpart, by using antisense morpholino oligo-

nucleotides. Injection in fertilized eggs of a morpholino

targeting exon 2 splicing (MO) and of a control mismatch

morpholino (MI) did not affect the overall development at

24 hr post fertilization (hpf). However, in MO-injected an-

imals, a detectable alteration in the morphology of the

eyes was noticeable from 48 hpf onward, becoming

severely abnormal at 72 hpf; MO morphants caused a sig-

nificant reduction in ocular size (Figure 5A). This correlated

with a drastic absence of RGC and plexiform layers in

retinal histological slices from rtn4ip1-silenced fish

(Figure 5B), which exhibited a looping swimming behavior

typical of visually impaired fish (Figure 5C and Movies S1,

S2, and S3).Together, both the deep structural alterations

of the retina with early RGC degeneration and the func-

tional visual impairment16,17 evidenced in rtn4ip1-silenced

zebrafish parallel the ophthalmological observations in in-

dividuals with RTN4IP1 mutations.

In conclusion, we identified mutations in RTN4IP1 that,

like mutations in TMEM126A and ACO2, induce an early-

onset optic neuropathy that might be followed by the

development of additional neurological symptoms. These

three genes encode mitochondrial proteins with divergent

functions in mitochondria,6,7 but none of them is in-

volved in mitochondrial dynamics, in contrast to the

proteins encoded by genes mutated in dominant optic

neuropathies, namely OPA1 and OPA3. Nevertheless, the

decrease in CI and CIV enzymatic activities in individuals

with RTN4IP1 mutations recapitulates the mitochondrial

respiratory chain dysfunctions observed both in DOA

and Leber hereditary optic neuropathy. However, in

contrast to these diseases, the very early onset of visual

dysfunction in persons harboring RTN4IP1mutations sug-

gests an impairment of RGCmaturation or even a develop-

mental alteration of the inner retina and optic nerve.

Indeed, in the individuals who harbor the presumably

most severe alteration (p.Lys201*), we found that the optic

discs were of smaller size and had a horizontal tilt, suggest-

ing that the content in fibers was already decreased when

the optic nerves were formed at a prenatal stage. The obser-

vation of small eyes totally lacking retinal ganglion cells

and inner retinal layers in rtn4ip1-silenced zebrafish larvae

is in line with the human findings and with an abnormal

development of the retinal ganglion cells. This could plau-

sibly be related to the lack of interaction between RTN4IP1

and the RTN4 pathway,12,18 which would have a negative
Journal of Human Genetics 97, 754–760, November 5, 2015 757



Figure 5. Phenotype Associated with
the Silencing of the RTN4IP1 Ortholog in
Zebrafish
Zebrafish (Danio rerio) of the AB genetic
background were maintained at 28�C on
a 14-hr-light and 10-hr-dark cycle. Eggs
were injected with antisense rtn4ip1 mor-
pholino nucleotides (MO) and mismatch
nucleotides (MI) at a concentration of 0.3
pM and monitored up to 72 hpf. They
produced reproducible phenotypes. The
rtn4ip1 MO morpholino (Gene Tools) was
designed against the splice junction be-
tween intron 1 and exon 2. Sequences are
rtn4ip1 MO: 50-ATAGCCACCTACAAGAG
CGAAAATA-30 and control MI: 50-ATACC
GACCTAGAAGACCCAAAATA-30.
(A) To observe global larvae morphology,
we imaged whole-mount animals with a
Zeiss SteREO Discovery V20 microscope
and their heads with by a Zeiss AxioIma-
ger.D2 microscope. Representative pheno-
types of 72-hr-old control larvae (Ctrl;
top) and larvae derived from fertilized
eggs injected with amismatch (MI; middle)
or rtn4ip1-specific (MO; bottom) morpho-
lino. Depletion of rtn4ip1 does not show
developmental modification (left; scale
bar represents 500 mm), except for the size
of the eye (right; scale bar represents

250 mm); the ocular diameter is clearly reduced in larvae treated with the rtn4ip1 morphant.
(B) Histological analysis of the eye was done on larvae fixed in 2.5% glutaraldehyde and 4% paraformaldehyde overnight and post-fixed
in 1% osmotic acid þ 0.8 potassium ferrocianide for 2 hr in the dark and at room temperature. After two washes in Sorensen’s buffer,
tissues were dehydrated in a graded series of ethanol solutions (30%–100%) and then embedded in EmBed 812 with a Leica EM
AMWAutomated Microwave Tissue Processor for Electronic Microscopy.26 Semi-thin sections of retina (1 mm) were collected, stained
with toluidine bleu, and imaged by a Zeiss AxioImager D2 microscope. Normal retinal structure in larvae derived from eggs injected
with themismatchmorpholino (MI; top) showed the retinal pigmentary epithelium (RPE), the outer nuclear layer (ONL), the outer plex-
iform layer (OPL), the inner nuclear layer (INL), the inner plexiform layer (IPL), and the retinal ganglion cell layer (RGCL). In contrast, in
larvae derived from eggs injected with the rtn4ip1morpholino (MO; bottom), the structure of the retina is deeply disorganized, showing
a total absence of the layers from the retinal ganglion cell layer to the outer plexiform layer. Scale bar represents 100 mm.
(C) The motility of zebrafish larvae was assessed with the touch response test at 72 hpf. The motion of individual larvae was monitored
by a video camera after mechanical stimulation at the tail and was analyzed by the ImageJ software. Representative traces were obtained
from themovies and the proportions of the different behaviors inferred from n¼ 9 for controls (Ctrl), n¼ 10 for MI morphant (MI), and
n ¼ 18 for the rtn4ip1 morphant (MO).
Swimming behavior (left) showed normal longitudinal traces for the control larvae (Ctrl; top) (Movie S1) and the larvae issued from eggs
injected with the mismatch morpholino (MI; middle) (Movie S2), whereas the majority of traces recorded for larvae derived from eggs
injectedwith the rtn4ip1morpholino (MO; bottom) (Movie S3) were loopings. Quantification of the swimming behavior (right) from the
three larvae types showed a normal mobility for the control and MI larvae, whereas rtn4ip1-silenced larvae showed motionless (25%) or
looping (55%) behaviors, indicating possible paralysis and visual impairment, respectively.
impact on RGC dendritic growth and synaptogenesis and

deleterious consequences on RGC survival, as reported in

neurons and agingmice depleted for OPA1.19,20 Our results

also implicate RTN4IP1 in the response to UV light as-

saults,21 a concept that is relevant to the neuroanatomical

and physiological specificities of RGCs and that has been

postulated to contribute to the selective vulnerability of

these neurons in mitochondrial optic neuropathies.11

Indeed, RGC soma are continuously exposed to exogenous

short-wavelength light, which is known to modify mito-

chondrial function22 and could therefore potentiate the

deleterious effects of RTN4IP1 mutations and further

inhibit mitochondrial function sufficiently to compromise

RGC survival. The identification of mutations in RTN4IP1

in individuals with recessive optic neuropathy points to-

ward a pathophysiological triad linking mitochondrial
758 The American Journal of Human Genetics 97, 754–760, Novemb
dysfunction, UV light susceptibility, and altered neuronal

plasticity. Future work will in turn demonstrate whether

these pathological interactions could be relevant to other

optic neuropathies, including glaucoma.
Supplemental Data

Supplemental Data include three figures, one table, and three

movies and can be found with this article online at http://dx.

doi.org/10.1016/j.ajhg.2015.09.012.
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