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Special Section

Physical activity has significant effects on blood glucose 
(BG) concentration in persons with type 1 diabetes (T1D).1 
Regular physical activity has several positive contributions 
on management of diabetes such as improving insulin sensi-
tivity, controlling body mass, and lipid profiles, and boosting 
self-esteem.2 Most artificial pancreas (AP) control systems 
regulate BG concentrations in persons with T1D by using 
information from a continuous glucose monitor with little or 
no regard to physical activity levels.3-12 Physical activity 
challenges the AP system as a disturbance that can lead to 
unsafe conditions such as hypoglycemia or hyperglyce-
mia.13,14 There have been limited studies where additional 
physiological signals are used in an AP system for the pre-
vention of exercise-induced hypoglycemia.10-12,15 In all of 
these studies, the classification of exercise type (ie, aerobic, 
anaerobic, mixed) was not considered.

Compared to resting conditions, aerobic exercise increases 
glucose uptake anywhere from 1.5 to 10-fold, depending on the 
intensity of the activity. The dramatic increase in glucose needs 
of the working skeletal muscle is normally matched precisely 
by increased hepatic glucose production in individuals without 
T1D by a complex orchestration of feedforward and feedback 

mechanisms.16 In contrast, during intense aerobic exercise17 
and during anaerobic work,18 hepatic glucose production can 
exceed muscle glucose utilization and glucose levels can rise 
dramatically. Thus, one of the key determinates of the glycemic 
response to exercise is the general classification of the exercise 
type and intensity (ie, continuous vs circuit, aerobic vs anaero-
bic). The somewhat unpredictable effects on the BG concentra-
tions due to physical exercise cause fear in persons in T1D and 
this fear may be a barrier to exercise.19

Exercise modalities and intensities that are dominantly by 
aerobic metabolism increase insulin sensitivity, which subse-
quently increases glucose uptake from the blood stream to 
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Abstract
Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, 
aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes 
the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its 
classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by 
using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We 
developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic 
metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in 
a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity 
of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier 
will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and 
anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise.
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tissue cells. This type of exercise is often of longer duration 
and with lower rates of muscular contractions compared to 
anaerobic exercise (see Figure 1 for examples). When the aer-
obic exercise is prolonged or its intensity is increased, BG 
concentrations can drop significantly, causing serious conse-
quences in performance20 and eventually lack of coordination, 
dizziness, loss of consciousness, and seizures if left untreated.21

On the other hand, exercise modalities and intensities that 
become more reliant on anaerobic metabolism may increase 
BG concentration that could lead to hyperglycemia (Figure 1), 
the release of catecholamines that increase glucose production 
and limit glucose uptake into muscle.17 Typically, anaerobic 
exercise is commonly characterized by high rates of muscular 
contractions for short durations and subsequent relatively long 
periods of recovery, which may contribute to the significant 
increases in BG concentrations.2

In this study, a discrimination method is proposed for 
exercise type and intensity identification, and classification 
of the reliance of the exercise on aerobic or anaerobic metab-
olism in real time as new information to be used in the inte-
grated multivariable adaptive AP (IMA-AP) system.12 The 
identification method is developed based on k-nearest neigh-
bors (KNN) classification algorithm. The KNN algorithm 
belongs to the family of unsupervised instance-based, com-
petitive learning and lazy learning algorithms. Lazy learning 
refers to the fact that the algorithm does not build a model 
until the time that a prediction is required. The model for 
KNN is the entire training dataset. When a prediction is 
required for a new data instance, the KNN algorithm will 
search through the k clusters to determine the most similar 
cluster to the new data. The prediction attribute of the most 
similar instances is summarized and returned as the predic-
tion for the new instance. The identified exercise type and 
intensity information can be exported to an AP, which enables 
the system to assess the potential impact of the exercise, 
forecast potential hypo- or hyperglycemia, and provide pre-
ventive action to keep BG levels in target range.

Participants and Methods

Study Participants

The experimental protocol conformed to the standards set by 
the Declaration of Helsinki and approved by York University’s 

Research Ethics Board. Five participants with T1D were 
recruited from the greater Toronto area (2 males, 3 females). 
Three participants without T1D were recruited from student 
volunteers at Illinois Institute of Technology. The inclusion 
criteria indicated that participants must be over the age of 16 
and have been living with T1D > 1 year. All participants with 
T1D were using insulin pump therapy and were classified as 
having a moderate to high physical activity level based on a 
self-reported questionnaire. Participants were all in good to 
fair glycemic control (last HbA

1c
 ≤ 8.0%). Participants were 

all provided with an informed consent and the 2015 Physical 
Activity Readiness Questionnaire (2015 PAR-Q+ www.epar-
med.com) to determine eligibility and risk stratify the study 
participants which would participate in a range of physical 
activity intensities from light to maximum, safely.22 Pre-
exercise heart rate (HR) and blood pressure (BP) were mea-
sured using the BpTRU (Surgo Surgical Supplies, Toronto, 
Ontario) automated BP device to ensure participants were 
within an acceptable range prior to the initiation of the exer-
cise protocols; BP < 160/90 mmHg.23 The participants had 
their BP and HR measured on the right and left arm while 
seated in a relaxed position, feet flat on the ground and legs 
uncrossed. Six measurements were taken consecutively with 
a 1-minute rest interval in between, and averaged. The aver-
age values were obtained and used in the analysis.

Experimental Protocol

Participants reported to the York University Human Performance 
Laboratory on 4 separate occasions. The first visit consisted of a 
graded (progressive) treadmill test of maximal aerobic power 
(VO

2
max), lasting from 10-12 minutes, while the next 3 visits 

involved 40-minute exercise sessions: 2 vigorous to maximum 
intensity circuit based protocols and 1 continuous, light to mod-
erate intensity steady state aerobic protocol. A further description 
of the visits and the types of exercise performed are found below. 
All 4 visits were conducted at the same time within each subject 
(either 11:00 am or 4:00 pm). Participants were asked to take their 
usual bolus of insulin with breakfast (7:00 am) or lunch (12:00 
pm) to begin the exercise protocol with minimal active or “on-
board” bolus insulin. Exercise was immediately terminated if 
BG levels were < 3.5 mmol•L-1 at any point during exercise. If 
necessary, participants were provided with a respective dose of 
dextrose to treat hypoglycemia (Dex4©, AMG Medical Inc).

Figure 1.  The effects of different types of exercise.

www.eparmed.com
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Visit 1

Anthropometric measurements were conducted on all par-
ticipants during visit 1 including height (cm), body mass 
(kg), body fat percentage, sum of 5 skin folds, and waist cir-
cumference (WC) (cm). Standardized protocols were used to 
measure height, weight and WC. Height was measured with-
out shoes using a stadiometer (Fitness Precision, Toronto 
Ontario). Body mass was measured using a digital scale 
(Seca Alpha, Germany) with no shoes and light clothing. WC 
was measured using the National Institutes of Health (NIH) 
protocol; the measuring tape was placed on the skin at the 
level of the iliac crest. Body fat percentage was determined 
through bioelectrical impedance analysis instrument (Tanita 
Scale, model TBF-612, Arlington Heights, IL).

Participants wore a physiological monitoring module 
(Bioharness-3, Zephyr Technology, Annapolis MD) to moni-
tor various physiological variables including HR, breathing 
rate (BR), posture, activity level, peak acceleration (PA), 
speed, and distance moved (see Figure 2). Participants were 
fitted with a Fitmate Pro Metabolic Unit (COSMED, Italy, 
Image Monitoring Mississauga, Ontario) for the determination 
of VO

2
 during the continuous light to moderate intensity 

(L-MI) plus vigorous to maximum intensity (V-MI) circuit 
exercise sessions and during the determination of VO

2
. An 

incremental to maximum effort treadmill protocol was used to 
determine VO

2
max and peak or maximum exercise HR. 

During the incremental to maximal test, the protocol consisted 
of 2-minute work stages that increased in intensity (treadmill 
speed and/or elevation) at every stage. The participants were 
instructed to remain on the treadmill until they reached voli-
tional fatigue at which point they received a 2-minute low-
intensity active recovery. Following the recovery period, the 
participants continued the test for another stage, and then were 
given another 2-minute recovery after completing the work-
load. This discontinuous portion of the graded exercise test 
was used to ensure the attainment of VO

2
max. The attainment 

of VO
2
max was determined by applying the following criteria; 

a plateau in VO
2
 with increasing workloads where VO

2
 does 

not increase more than 1.5 mL of O
2
∙kg-1∙min-1 or 150 mL∙min-1, 

a respiratory exchange ratio (RER) value greater than 1.15, 
and no increase in HR with an increase in workload.24

Visits 2-4: Circuit/Intermittent Vigorous to 
Maximum Intensity (V-MI) Exercise Protocol

Basal rate reductions were customized per subject for the 
V-MI exercise sessions. Participants began by walking on a 
treadmill at 3.5 MPH and 2% incline for 4 minutes followed 
by the circuit. The circuit began with 45 seconds of marching 
on the spot with high knees and swinging the arms with 5-8 
lb dumbbells in each hand (5 lb for females, 8 lb for males). 
Next, participants were asked to complete a squat with a 
front sweep and 4 kg medicine ball swinging between the 
legs and over the head for 60 seconds. Four jumping jacks 
followed by a quadruped motion (palms flat on the floor, 

extending 1 arm and opposite leg simultaneously) for 30 sec-
onds and then 2 jumping jacks, 4 push-ups, and a 20-second 
forearm plank. The next exercise was marching on the spot 
with high knees for 30 seconds, followed by squats with an 8 
kg medicine ball placed on a high shelf each time for 60 sec-
onds. The circuit finished with 4 push-ups and a 20-second 
forearm plank. Participants were then asked to cycle on a 
cycle ergometer (Monark 874 E, Sweden) for 4 minutes at 60 
RPM with 2.5 kg of resistance and then completed the circuit 
2 more times. In between the second and last circuit, partici-
pants walked on the treadmill again for 4 minutes at 3.5 
MPH and 2% incline. Participants completed the intermittent 
high-intensity exercise (IHE) protocol by cycling at 60-70 
RPM for ~ 10 minutes until 40 minutes of exercise was 
reached. During 1 of the 2 circuit exercise sessions, basal 
rate adjustments were made every 10 minutes for all partici-
pants with T1D. The basal adjustment patterns varied 
between some participants; however, the total percentage 
reduction was always the same during the 40-minute exer-
cise session (Table 1). Basal rates were at 100% for all par-
ticipants 10 minutes prior to exercise until the onset of 
exercise. Once the circuit exercise began, basal rates were 
adjusted in a random pattern.

Continuous Light to Moderate Intensity (L-MI) 
Exercise Protocol

One visit involved continuous, steady state L-MI aerobic exer-
cise where basal insulin was set to zero for the entire exercise 
protocol and resumed to 100% immediately following the ces-
sation of exercise. During the treadmill protocol, participants 
were fitted with the same measurement equipment as the V-MI 
protocol. Participants exercised at 3.5 MPH and 2% incline for 
40 minutes.

Real-Time Classification of Exercise 
Based on Reliance on Aerobic or 
Anaerobic Metabolism

The identification of the type and intensity of exercise and its 
reliance on aerobic or anaerobic metabolism is made by 
KNN classification algorithm. KNN classification is one of 

Figure 2.  Bioharness-3 (Zephyr Technology, Annapolis MD).
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the most popular classification methods used when there is 
little or no prior knowledge about the distribution of the 
data.25 In contrast to most concept learning systems, KNN 
classification does not formulate a generalized conceptual 
model from the training instances at the training stage. 
Rather, a simple and intuitive rule is used to make decisions 
at the classification stage: instances close in the input space 
are likely to belong to the same class. An object is classified 
by a majority vote of its neighbors, with the object being 
assigned to the class most common among its KNN.

Defining x  and y  as the matrix of input features and 
vector of output labels of a training dataset, the standardized 
Euclidean distance vector, Dx xnew,  between a new observa-
tion vector xnew  and training data matrix x  is defined as:

D t
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x x
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j
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where t N= …1, ,  and N  is the number of training data. Wj  
is the standard deviation of jth  column of x  matrix for N  
observations. The KNN algorithm is:

1.	 Compute the distance D tx xnew, ( )  for every training 
data t N= …1, , .

2.	 Select k lowest distance and corresponding y t( ) .
3.	 Select ynew  as the most frequent class from the pre-

vious step.

If there are outliers in training data, the KNN algorithm may 
have some wrong classification just like all other data-based 
classification algorithms. Condensed nearest neighbors 
(CNN) rule26 was proposed to decrease the size of training 
data to a minimum such that the reduced size data is still able 
to describe all training data. The CNN algorithm is:

1.	 The first sample x( )1  and y 1( )  is placed in xstore  
and ystore , respectively.

2.	 The second sample x( )2  is classified by the KNN 
algorithm using xstore  and ystore

a.	 If x( )2  is classified correctly, x( )2  and y 2( )  
are placed in xdiscard  and ydiscard , respectively.

Table 1.  Percentage of Basal Rate Adjustment for Each Participant (1-5) With T1D From 10 Minutes Prior to Exercise to 40 Minutes 
through the Circuit Exercise Session.

Time of exercise Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

–10 (pre) 100 100 100 100 100
0 30 40 50 30 40
10 50 20 30 50 20
20 20 50 40 20 50
30 40 30 20 40 30
40 100 100 100 100 100

Basal rates were adjusted every 10 minutes in different patterns for all participants. The total combined percentage reduction was the same between participants.

b.	 If x( )2  is not classified correctly, x( )2  and 
y 2( )  are placed in xstore  and ystore , respec-

tively.

3.	 Repeat step-2 for all N t N( , , )= …1  observation in 
training data.

4.	 Use xdiscard  and ydiscard  and repeat step 2 and step 3 
until:

a.	 All elements of xdiscard  and ydiscard  are trans-
ferred to xstore  and ystore , or

b.	 No elements of xdiscard  and ydiscard  are trans-
ferred to xstore  and ystore  during a complete 
loop (step-2 and step-3).

5.	 The final contents of the xstore  and ystore  are used as 
optimized training data for the KNN to be used in 
real-time classification.

Results

Data from 8 subjects are tested (5 with T1D, 3 without 
T1D). Demographic information of subjects is listed in 
Table 2. Three volunteers without T1D wore the 
Bioharness-3 chest band while they were performing the 
same exercise protocol (Section 2) at Illinois Institute of 
Technology. The HR, BR, and PA signals from the 
Bioharness-3 chest band are defined to be features of the x  
matrix (statistical information is shown in Table 3). The y  
vector is defined to have binary values such that 0 and 1 are 
used for aerobic and anaerobic exercise, respectively. One-
second sampling time is used.

For each subject, 75% of data are randomly selected to be 
training data, and the rest of data are used as testing data. The 
CNN algorithm is performed for each training data to remove 
outliers and reduce the size of the training data. The k is 
selected to 1 in the KNN algorithm for real-time exercise 
identification.

Figure 3 shows the real-time exercise identification results 
for all 8 subjects. The algorithm is able to identify each exer-
cise session correctly except some switching points between 
the 2 sessions (aerobic vs anaerobic). The results for subject 
1 are zoomed in Figure 4.
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Table 4 shows the performance analysis of the pro-
posed algorithm. Overall 28 324 seconds (aerobic: 14 982, 
anaerobic: 13 342) of exercise session are performed. The 
overall training data size is decreased from 17 943 sec-
onds to 1278 seconds after performing the CNN algo-
rithm. This speeds up the KNN algorithm by almost 14 
fold. Out of 7081 testing samples, 6997 seconds are clas-
sified correctly (%98.8) with the KNN algorithm when the 
reduced size training data are used. The algorithm was not 
able to classify %1.2 of the testing data due to complexity 
in data at the time switching between aerobic and anaero-
bic activity.

Discussion of Results

The BG response to exercise in persons with T1D varies 
considerably both between and within individuals, likely 
depending on several factors including the type and 
intensity of exercise performed, the duration of the activ-
ity, and the level of circulating “on board” insulin during 
and after the exercise. Even if all of these variables are 
taken into consideration, the BG response differs mark-
edly between individuals but has some reproducibility 
within an individual.27 The body responds differently 
when it is undergoing varying exercise modalities and 
intensities, more specifically, the interplay between 

aerobic and anaerobic metabolism imposes unique meta-
bolic challenges.28

Exercise sessions are one of the most challenging periods 
for an AP system to regulate BG concentrations. People with 
T1D have adopted a range of precautions such as modifying 
their insulin intake or changing their food consumption 
before and during an exercise. For a fully automated AP sys-
tem, no information should be manually entered or manual 
interventions be made.10,12,29,30 The proposed algorithm is 
developed as a new module for the IMA-AP system to enable 
the IMA-AP system to distinguish between predominant 
aerobic and anaerobic exercise metabolism, since these 2 
distinct forms of exercise can have different effects on glu-
cose concentrations.

The results show that the proposed algorithm is able to 
distinguish aerobic and anaerobic exercise with a high 
level of accuracy. With only 159 (±91) seconds of a care-
fully selected training data, the KNN algorithm is able 
develop a classifier to identify aerobic and anaerobic exer-
cise, based on HR, BR, and PA information from the 
Bioharness-3 chest band. The classifier was able to track 
very accurately the switching between aerobic and aerobic 
exercise during an exercise session for both groups of 
study participants (individuals with and without T1D) as 
they alternate between sustained aerobic and circuit 
exercises.

Table 2.  Demographic Information of Study Participants.

Sex Age
Height 
(cm)

Body mass 
(kg)

Body fat 
(%)

VO
2
max 

(ml·kg·min-1)
HbA1c 

(%)
Average daily insulin 

per day (units)
Dominant 

hand
NIH waist 

circumference (cm)

M 34 174 80.5 22 49.9 7.9 43.7 Right 83
F 33 182 78 27.9 37.9 7.7 40.5 Right 86
F 26 167 66 28.4 51.7 6.8 31.0 Right 81
F 25 167 70 29.4 41.6 7.1 36.0 Left 82
M 47 184 75.1 16.6 47.7 7.4 27.5 Right 84
Fa 20 170 76 26.3 N/A N/A N/A Right 74
Fa 23 154 65.9 27.8 N/A N/A N/A Right 69
Fa 21 177.8 66.9 21.2 N/A N/A N/A Right 66

aParticipants without T1D.

Table 3.  Descriptive Statistics for Feature Variables in x  Matrix.

Minimum-maximum Mean (standard deviation)

HR BR PA HR BR PA
73-188 12-39 0.02-1.09 164 (24) 25 (6) 0.49 (0.20)
116-166 10-48 0.13-1.02 151 (13) 33 (7) 0.53 (0.23)
62-183 11-45 0.03-0.98 135 (32) 31 (8) 0.50 (0.21)
72-177 15-41 0.05-0.83 142 (23) 29 (6) 0.51 (0.16)
106-191 15-36 0.13-1.16 152 (18) 28 (5) 0.46 (0.21)
61-185 10-46 0.11-4.04 142 (30) 29 (8) 1.14 (0.84)
76-154 10-68 0.04-3.97 110 (19) 28 (11) 0.8 (0.74)
72-180 10-41 0.14-2.05 119 (24) 27 (6) 0.76 (0.40)
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We are currently conducting clinical experiments with the 
IMA-AP system where the proposed algorithm is used to 
provide real-time feedback information about the type of 
exercise without any manual announcements.

Conclusions

The proposed algorithm is able to differentiate and classify 
exercise modalities and the reliance of an exercise on aero-
bic or anaerobic metabolism with high accuracy. Use of bio-
metric information and classification of exercise intensity 
and type in real time can provide valuable information to an 
AP for prevention of exercise-induced hypoglycemia and 
hyperglycemia.

Figure 3.  Identification of exercise type in real time.

Figure 4.  Identification of exercise type in real time for subject 1.
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