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Special Section

In an effort to improve the management and treatment of dia-
betes, implantable sensors that continuously monitor glucose 
levels have become popular alternatives to patient-adminis-
tered finger prick measurements of blood glucose. However, 
following implantation, the performance of these implants 
suffers from inaccurate and erratic readings that compromise 
their useful lives. As a result, implantable glucose sensors 
remain limited as a platform for the reliable management of 
diabetes. While the interaction between the sensor and its 
surrounding tissue has been posited as a culprit for erroneous 
in vivo sensor performance, there remains little evidence to 
support that theory.

Computational modeling, though ubiquitous in other 
fields of biomedical research, remains a largely untapped 
resource for understanding glucose sensor biocompatibility. 
Indeed, even within the field of glucose physiology and glu-
cose sensor design, computational modeling has served as an 
important research technique. Within glucose physiology, 
computational modeling has helped explain the mechanisms 
of cellular glucose uptake and metabolism as well as glucose 
transport through the interstitium.1-3 Computational methods 
have also been essential in the design of more effective sen-
sors and closed loop insulin delivery systems. Computational 
models from the laboratory of David Gough have sought to 
describe new, more promising analytical chemistry tech-
niques for glucose detection.4-7 Beyond glucose detection, 
control theory has been used to create predictive models for 
restoring normoglycemia in diabetics with a closed loop 
insulin delivery system.8-10

This review describes the effects that implant-associated 
tissue reactions have on implantable sensor function and 
how they can be examined using computational modeling 
techniques. While the biological factors affecting sensor 
behavior are numerous and well-documented, the issue of in 
vivo sensor performance is at its core one of analyte trans-
port. An ideal sensor would be one that could sample the 
interstitial milieu inertly without any sort of impedance from 
outside agents. In reality though, no sensor will ever behave 
inertly in the body as the resultant effects of implantation vis-
à-vis the formation of a foreign body capsule create barriers 
that hinder the transport of glucose to the sensor surface. As 
the cascade of events in foreign body capsule formation is 
well understood, it can be incorporated into computational 
models to examine its role in limiting analyte transport to a 
sensor surface. Indeed, recent in vivo studies from both 
Klueh et al as well as Gough et al have demonstrated that 
decreased mass transfer due to the presence of encapsulated 
tissue around the sensor limited functionality of the indwell-
ing sensor.11-14 The recasting of this biocompatibility prob-
lem as an engineering problem of diffusion and convection 
presents a novel perspective on the issue and will allow 
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Abstract
For implantable sensors to become a more viable option for continuous glucose monitoring strategies, they must be able 
to persist in vivo for periods longer than the 3- to 7-day window that is the current industry standard. Recent studies have 
attributed such limited performance to tissue reactions resulting from implantation. While in vivo biocompatibility studies 
have provided much in the way of understanding histology surrounding an implanted sensor, little is known about how each 
constituent of the foreign body response affects sensor function. Due to the ordered composition and geometry of implant-
associated tissue reactions, their effects on sensor function may be computationally modeled and analyzed in a way that 
would be prohibitive using in vivo studies. This review both explains how physiologically accurate computational models of 
implant-associated tissue reaction can be designed and shows how they have been utilized thus far. Going forward, these 
in silico models of implanted sensor behavior may soon complement in vivo studies to provide valuable information for 
improved sensor designs.
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researchers the ability to mechanistically understand how 
each aspect of the foreign body response contributes to 
decreased sensor response while creating predictive models 
of in vivo performance. With improved iterations, these 
models can become an essential part of the design process, 
both informing new sensor designs as well as supplementing 
experimental studies to allow for more focused understand-
ing of glucose sensor performance.

Foreign Body Capsule Formation

To accurately model tissue response to sensor implantation, 
the chain of events following the implantation should be well 
understood and characterized. Since tissue response to an 
implant changes over time, the overall effect of these tissue 
reactions is broken into two temporal phases: (1) the phase of 
days to weeks immediately following sensor implantation 
when a provisional matrix of proteins and inflammatory cells 
envelops the sensor and (2) the phase of weeks to months 
following implantation when a mature foreign body capsule 
is present around the sensor.

When a foreign body is implanted, there will be injury to 
vascularized tissue. With this injury comes the exudation of 
blood borne proteins, fluid and cells to the site of implanta-
tion. The convection of blood borne proteins induces an ini-
tial coagulation cascade where fibrin is formed from the 
cleavage of fibrinogen by thrombin. This fibrin network will 
then coalesce around the implant to form a provisional matrix 
or biofouling layer. In addition to the fibrin skeleton, the pro-
visional matrix contains a number of different factors that 
contribute to the formation of an inflammatory response. 
First, it contains adhesive molecules such as fibronectin and 
thrombospondin that will allow for inflammatory cell attach-
ment and migration. Second, the provisional matrix contains 
a number of cytokines and growth factors that will coordi-
nate the extent and pace of immune reaction. These glyco-
proteins establish chemotactic gradients within the matrix 
that attract inflammatory cells to the site of injury.15

Once the biofouling layer has been established, inflam-
matory cells, guided by chemotactic gradients, changes in 
vascular flow, and the presence of adhesion molecules, will 
begin to infiltrate the site of inflammation. Neutrophils will 
initially interrogate the injured tissue and attempt to phago-
cytose the implanted sensor. However, given the size of 
implants relative to cells, neutrophils will recruit macro-
phages to the site of injury to attempt phagocytosis. In addi-
tion, macrophages will release cytokines, chemokines and 
growth promoting factors to encourage the recruitment of 
even more cell types. If neutrophils and macrophages cannot 
dispose of the foreign body, fibroblasts will migrate to the 
injury via the release of cytokines by macrophages.15 
Fibroblasts generate collagen and proteoglycans to deposit 
around the site of injury. These cell types exhibit proinflam-
matory phenotypes and as such, they have an increased 
capacity for glucose consumption, which can be modeled as 

a sink in a computational algorithm. The extracellular matrix 
constituents produced by these cells forms the basis for the 
foreign body capsule. For a more complete description of 
these immune processes, Anderson provides an excellent 
review.15 This capsule will grow in both size and density as 
the chronic inflammatory process persists, creating an avas-
cular diffusive barrier to glucose transport to the sensor sur-
face.16-18 This foreign body capsule has been shown in 
various in vivo models to negatively impact sensor function, 
as seen through both a loss of sensitivity as well as an 
increased time lag between blood glucose and sensor glucose 
readings.11,18-20 As this causal link between capsule forma-
tion and sensor response continues to be defined, it is becom-
ing more apparent that implant-associated changes in the 
tissue surrounding sensors are limiting their in vivo utility.

Modeling the Effects of a Fully Formed 
Capsule

As implanted sensors sample interstitial glucose, sensor 
readings inherently lag behind blood glucose readings in 
terms of both time and concentration. However, once a cap-
sule has fully formed around a sensor, these instances of time 
lag and signal attenuation become exacerbated to the point 
where the sensor loses clinical utility. Though no two encap-
sulation tissues exhibit the exact same histology, three hall-
marks of fully formed capsular tissue exist: (1) a dense 
porous network dominated by the extracellular matrix net-
work, (2) little to no blood vessels, and (3) the presence of 
metabolically active cells.17,18 Each of these characteristics 
has been posited to negatively impact sensor function, 
through either limited diffusion of analyte (extracellular 
matrix presence), limited source of analyte (avascular tis-
sue), or the consumption of analyte by inflammatory cells. 
As the long-term tissue effects to sensor implantation have a 
stable number of components and geometry, they can be 
numerically modeled.

Sharkawy et al were among the first to model the trans-
port of glucose through fully formed encapsulation tissue.21 
In their initial study, Fick’s second law of diffusion was used 
to examine how the presence of a foreign body capsule 
would affect the concentration of glucose at the sensor sur-
face following a step increase in plasma glucose levels. Both 
the foreign body capsule and the subcutaneous tissue were 
modeled as homogenous, passive compartments through 
which glucose would diffuse before reaching a sensor. 
Differences between the subcutaneous space and the capsule 
were defined by different compartmental diffusion coeffi-
cients and thicknesses. Using this model, the authors were 
able to predict how the presence of avascular capsular tissue 
around a sensor would promote a lag between blood glucose 
values and sensor glucose values.

While the findings of Sharkawy et al represented a sig-
nificant advancement by accurately describing in vivo sensor 
behavior with a model-based approach, the model was 
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limited in its description of fully formed capsular tissue, 
describing only 1 of the 3 hallmark traits of capsular tissue. 
Though described as passive diffusive barriers, in reality the 
foreign body capsule and surrounding subcutis are perfused 
materials comprised of complex, heterogeneous porous net-
works that are both diffusive barriers and bioactive consum-
ers of glucose. A recent study by the authors of this review 
sought to more completely model fully formed capsular tis-
sue in such a way as to account for the three hallmarks listed 
above.22 Figure 1 shows a two-compartment model that more 
completely describes glucose transport through a mature for-
eign body capsule (adapted from Novak et al).22 Similar to 
Sharkawy et al, the model was treated as a compartmental 
system, but the makeups of the constituent compartments 
were more physiologically relevant than in previous studies. 
The foreign body capsule compartment was treated as a 
porous diffusive barrier to account for the presence of a dense 
collagen matrix. No intrinsic source of glucose from vessels 
was incorporated into this compartment, thus making it avas-
cular. In addition, the compartment incorporated a consump-
tive term (Q

FBC
) to represent the presence of metabolically 

active inflammatory macrophages and neutrophils around the 
sensor. Glucose transport in the native tissue surrounding the 
capsule was represented as diffusion through a porous space 
embedded with native adipocytes and blood vessels. Similar 
to macrophages in the capsular tissue, adipocytes in the 

native tissue are seen as consumptive barriers to glucose 
transport (Q

tis
), meaning that they are capable of removing 

glucose from the system. The presence of blood vessels may 
be seen as the source of glucose for this system (Φ

b
) as the 

analyte enters the system by traversing across the vessel 
wall. In both compartments, the concentration of glucose 
was assumed to only spatially vary in the radial direction. As 
histology suggests that the components of capsular tissue are 
consistent along the length of the sensor as well as in the 
azimuthal angular direction of the cylindrical sensor, this 
assumption appears valid in described glucose transport to 
the sensor surface. Furthermore, the relevant changes in tis-
sue composition due to implantation (biofouling, cell adhe-
sion, extracellular matrix deposition) most apparently vary 
radially relative to the sensor surface.

Using this more physiologically accurate model, the 
authors were able to both recreate experimentally observed 
instances of sensor signal attenuation and lag as well as 
establish what aspects of a fully formed capsule contribute 
most to these effects. The thickness of the capsule was the 
greatest determinant of sensor signal lag whereas the vascu-
larity of the subcutaneous space surrounding the capsule had 
the largest effect on sensor signal attenuation. In addition, a 
high subcutaneous vessel density was found to best promote 
the ideal scenario of low signal attenuation and lag times. 
Taken together, these modeling iterations have been able to 

Figure 1.  Computational description of glucose transport through a fully formed foreign body capsule.
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provide a mechanistic description of how different constitu-
ents of a fully formed capsule contribute to limited sensor 
functionality.

Modeling Early Stage Sensor Response

As all commercially available glucose sensors are approved 
by the FDA for no more than 7 days in vivo, a small but 
growing body of literature is focusing on how tissue reac-
tions in that time window occurring just days after implanta-
tion affect sensor function.23,24 Functionally speaking, sensor 
behavior during this period would best be considered as 
anomalous and erratic, further limiting sensor efficacy even 
during the FDA-approved time window.

Though tissue reaction to sensor implantation during this 
phase is highly dynamic, it is dominated by two processes: (1) 
the adsorption of a biofouling layer on the sensor surface and 
(2) the migration of inflammatory cells to the site of injury. 
Computationally speaking, the biofouling layer represents a 
porous diffusive barrier to glucose transport while the presence 
of inflammatory cells, such as macrophages, is modeled as 
both a diffusive and consumptive term. This consumptive term 
is analogous to a sink that removes glucose from the system. 
The consumption of glucose by inflammatory macrophages is 
mediated by glucose surface receptors and has been well char-
acterized in numerous studies.25,26 Those studies have shown 
that cellular glucose uptake agrees well with the Michaelis-
Menten formalism for enzymatic activity. As a result, con-
sumption can be modeled using Michaelis-Menten kinetics 
with values specific to glucose uptake by macrophages.

The authors have modeled this early stage case of glucose 
transport through a porous biofouling layer embedded with 
inflammatory macrophages.23 Similar to the fully formed 
capsule case, it was represented as a two-compartment model. 

However, the presence of dense extracellular matrix in the 
foreign body tissue was not included, as this time stage 
focused on times before that particular reaction. Model 
results were able to recreate early stage in vivo declines in 
sensor signal. Moreover, signal declines were shown to be a 
result of glucose consumption by macrophages adhered on 
the sensor surface and not the diffusion barrier posed by the 
biofouling layer. The presence of these consumptive macro-
phages were also shown to create a “depletion zone” of glu-
cose with respect to distance from the sensor, further 
contributing to the position that instead of sensors “failing” 
in vivo, that tissue reaction to the sensor creates an environ-
ment that is not conducive for sensing. These findings have 
been supported by the work of Klueh et al who have shown 
through multiple in vivo studies that the consumptive capac-
ity of activated macrophages proximal to the sensor surface 
can induce a pronounced decline in sensor signal.12,14

Future Considerations for Improved 
Modeling

Figure 2 represents our current findings using computational 
modeling to study glucose sensor biocompatibility. While 
the current models of early and late stage tissue reaction to 
sensor implantation represent a novel approach to addressing 
the problem of biocompatibility, they are by no means com-
plete in their descriptions of the surrounding milieu. Indeed, 
a full understanding of their predictive power involves a full 
understanding of their caveats. In fact, these techniques 
should be viewed as a springboard for more comprehensive 
in silico models for implant/tissue interaction. By incorporat-
ing the following considerations, model-based techniques 
will become more physiologically relevant and, hopefully, 
more representative of in vivo tissue reactions.

Figure 2.  Time course of tissue effects on implanted glucose sensor function.
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Incorporating Oxygen Transport

A large class of commercially available glucose sensors 
relies on the enzymatic activity of glucose oxidase for the 
detection of glucose. As oxygen is a necessary input for glu-
cose oxidase to produce a signal, a thorough examination of 
a depleted sensing environment should also include the inter-
action between tissue and oxygen proximal to the sensor. 
Inflammatory cells have elevated affinity for oxygen to facil-
itate antimicrobial defense mechanisms like respiratory 
burst. To further complicate matters, the tissue wounded 
from implantation is shown to have decreased oxygen ten-
sion relative to untreated tissue.27-30 Such an increased affin-
ity for oxygen is exacerbated by the decreased amount of 
oxygen present in wounded tissue. Gough et al have demon-
strated that oxygen permeability within tissue surrounding 
an implant decreases over time, with the steepest drop com-
ing in the first week.11,31 In addition, the concentration of 
unbound oxygen in tissue is much lower than that of glucose, 
meaning that oxygen limits the glucose oxidase reaction in 
the body.4,5 This situation of both increased demand and lim-
ited supply of oxygen could negatively impact sensor func-
tion where the sensor cannot produce hydrogen peroxide 
despite the presence of glucose. In effect, the sensor would 
become more sensitive to oxygen than glucose.

Oxygen consumption by inflammatory cells has been 
well-documented in previous studies and can provide the 
basis for a model-based description of the problem.29,32 With 
this knowledge, a more complete model of tissue reaction to 
sensor implantation could encompass the modes by which 
these numerous processes affect oxygen transport as well as 
glucose transport.

Incorporating Dynamic Changes in Tissue 
Properties

A major limitation of the most current models is that they 
present discrete snapshots of tissue morphology and makeup 
at generalized time points (early and late stage tissue reac-
tion). In reality though, the process of tissue reaction is 
dynamic, not static. Most of the constituent aspects of the 
foreign body response, from cell type and concentration to 
capsule porosity and thickness, are changing and evolving 
over time. A more complete model could incorporate the 
time-dependent nature of many of these processes to have a 
model that “builds” a foreign body capsule over the length of 
the simulation in much the same way that the capsule is built 
in vivo. In addition, previous models presumed that different 
transport variables existed independent of one another. 
However, a number of transport parameters, such as porosity 
and the diffusion coefficient are interrelated. Changes in 
microcirculation patterns in the surrounding tissue during 
inflammation and wound healing should also be incorpo-
rated. Besides the obvious changes in vessel density, there is 
also a decrease in the length and diameter of vasculature in 

wound healing tissue as well as a decrease in red blood cell 
velocity.33 These changes in vessel geometry, as well as ves-
sel density, will affect glucose delivery to the tissue and 
sensor.

Incorporating Sensor Material Properties

As sensor micromotion has been demonstrated to induce 
periods of aggravated inflammation in the surrounding tis-
sue, the stiffness of the implant itself can be of importance in 
shaping the extent of the immune response that occurs fol-
lowing implantation.34 Previous studies in the field of 
implantable microelectrodes have demonstrated that materi-
als with a pronounced mismatch in material properties from 
the native brain tissue caused increased trauma, which could 
lead to increased local inflammation.35 In addition, these 
properties can impact the degree of injury that stems from 
implantation, which could affect downstream reactions.36

Conclusions

For continuous glucose monitoring to become a more reli-
able standard of care in the management of diabetes, sensors 
must be able to reliably operate beyond the time scale of days 
to weeks that is the current state of the art. While past studies 
have attempted to describe and solve the problem of sensor 
biocompatibility, there is still a lack of mechanistic under-
standing for how sensors interact with their surrounding tis-
sue. We believe that in silico computational models of 
inflammation and wound healing around a sensor present an 
effective means for studying these phenomena. By analyzing 
the different aspects of the immune response, these models 
will help identify processes that both do and do not affect 
sensor behavior, thereby allowing for more rational designs 
of implantable sensors in the future.
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