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Abstract

The patches in primary visual cortex constitute hot spots of metabolic activity, manifested by 

enhanced levels of cytochrome oxidase (CO) activity. They are also labeled preferentially by 

immunostaining for glutamic acid decarboxylase (GAD), γ-aminobutyric acid (GABA), and 

parvalbumin. However, calbindin shows stronger immunoreactivity outside patches. In light of 

this discrepancy, the distribution of the vesicular GABA transporter (VGAT) was examined in 

striate cortex of two normal macaques. VGAT immunoreactivity was strongest in layers 4B, 4Cα, 

and 5. In tangential sections, the distribution of CO, GAD, and VGAT was compared in layer 2/3. 

There was a close match between all three labels. This finding indicates that GABA synthesis is 

enriched in patches, and that inhibitory synapses are more active in patches than interpatches.
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Introduction

Tissue histochemistry for the mitochondrial enzyme, cytochrome oxidase (CO), reveals a 

curious array of vertical columns in the primary visual cortex (striate cortex, V1). These 

zones of enhanced metabolic activity, known as “patches” or “blobs”, are most striking in 

layers 2/3 (Hendrickson et al., 1981; Horton & Hubel, 1981). Their function remains 

unclear. In human and macaque, they are arranged in rows that are aligned with ocular 

dominance columns in layer 4 (Horton, 1984). However, in squirrel monkey, bushbaby, and 

owl monkey, the ocular dominance columns bear no relationship to CO patches (Xu et al., 

2005; Adams & Horton, 2006; Kaskan et al., 2007). In the upper layers, CO patches receive 

a direct projection from koniocellular neurons in the lateral geniculate nucleus (Livingstone 

& Hubel, 1982; Fitzpatrick et al., 1983; Horton, 1984; Hendry & Yoshioka, 1994; Ding & 

Casagrande, 1997). This input may account for why patches stain more darkly for CO. The 
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layers of the cortex that receive a direct geniculate projection—2/3, 4C, 4A, and 6—exhibit 

the highest levels of CO activity in striate cortex.

Soon after the CO patches were discovered, they were shown in layer 2/3 to coincide with 

the pattern seen by immunocytochemical staining for glutamic acid decarboxylase (GAD) 

(Hendrickson et al., 1981). This enzyme is concentrated in the somata of inhibitory neurons, 

where γ-aminobutyric acid (GABA) is synthetized. After synthesis, GABA is packaged into 

synaptic vesicles by a vesicular GABA transporter (VGAT) (McIntire et al., 1997). VGAT 

is localized preferentially to nerve terminals, and its staining pattern is thought to correspond 

most closely to the actual distribution of inhibitory synapses in brain tissue (Conti et al., 

2004). It is conceivable that GABAergic neurons are located preferentially in CO patches, 

but the bulk of their axonal projections terminates outside patches. In that case, one might 

expect to find a discrepancy between the patterns of GAD and VGAT labeling. To 

investigate this possibility, we compared the density of GAD and VGAT labeling with the 

layout of CO patches in layer 2/3 of macaque striate cortex.

Materials and methods

Experiments were conducted in two Rhesus monkeys obtained from the California National 

Primate Research Center, Davis, CA. The animals were mature females being used by other 

laboratories for experiments unrelated to neuroscience. The brains were donated for our 

research. Procedures were approved by the Institutional Animal Care and Use Committee at 

the University of California, Davis.

Each animal was killed with an intravenous injection of pentobarbital (150 mg/kg). No 

perfusion was performed. The brain was removed and placed into 2% paraformaldehyde in 

0.1 M phosphate buffer solution (PBS), pH 7.4, at 4°C. The next day each occipital 

operculum was removed and immersed in 2% paraformaldehyde in 0.1 M PBS with 30% 

sucrose for 2 days at room temperature. A glass slide was placed against the pial surface 

with a 50 g weight on top to flatten the block. Tangential sections were cut at 30 μm on a 

freezing microtome. Every third section was mounted on a slide and dried. It was 

subsequently reacted for CO activity (Wong-Riley, 1979). The other two sections were 

collected in 10 mM phosphate buffered saline and processed free-floating for either GAD or 

VGAT immunocytochemistry.

GAD immunocytochemistry was performed using standard methods (Hendrickson et al., 

1981; Hendry, 1991; Weltzien et al., 2014). In brief, sections were preincubated in 10 mM 

phosphate buffered saline containing 0.3% Triton-X and 10% normal horse serum for 4 h. 

Next, they were incubated in 10 mM phosphate buffered saline with 1% normal horse serum 

containing a mouse monoclonal antibody specific for primate GAD 65/67 (San Cruz 

Biotechnology sc-365180) at a dilution of 1:500 for 2 days. After exposure to a secondary 

antibody for 4 h, the sections were processed using the avidin-biotin-peroxidase technique 

(Elite ABC kit, Vector Laboratories). Peroxidase activity was revealed by reacting the 

sections in 3,3′-diaminobenzidine with 0.1% H2O2. Sections were mounted onto glass 

slides, air dried, and coverslipped with Permount.
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VGAT immunocytochemistry was carried out in similar fashion (Chaudhry et al., 1998). A 

mouse monoclonal antibody to VGAT (Synaptic Systems, 031011) was used at a dilution of 

1:1000.

Results

The densest CO activity was present in layers 4A and 4C, followed by layers 2/3 and 6 (Fig. 

1). VGAT immunostaining was richest in the upper portion of layer 4 and layer 5, with an 

intermediate level in layer 2/3. Interestingly, VGAT immunostaining at the base of layer 4C 

was relatively weak, where CO activity was maximal.

A tangential section through layer 2/3 showed a typical array of CO patches (Fig. 2). 

Although the ocular dominance columns were not labeled, it was obvious that the patches 

were organized into parallel rows, which approached the V1/V2 border at right angles. An 

adjacent section processed for GAD showed a similar array of patches, as expected 

(Hendrickson et al., 1981). There was some blotchy unevenness to the overall intensity of 

labeling, which often occurs when performing immunocytochemistry in large free-floating 

tissue sections. The reason is unclear. The next section, processed for VGAT, also showed 

an array of patches throughout layer 2/3. The labeling was also uneven, but nevertheless, in 

some regions a pattern of patches was quite clear.

At higher magnification, comparison of the CO patches with the pattern of GAD 

immunolabeling showed a match (Fig. 3). There was also a close correspondence between 

the pattern formed by the CO patches and patches of dark VGAT immunolabeling.

The distribution of CO, GAD, and VGAT was examined in a second monkey. This animal 

also showed patches of GAD and VGAT immunolabeling, which coincided with the 

location of CO patches in the upper layers.

Discussion

Compared to interpatches, the patches in striate cortex are enriched not only in CO activity 

but also in lactate dehydrogenase, succinate dehydrogenase, β-nicotinamide adenine 

dinucleotide, acetyl-cholinesterase, myelin, nitric oxide synthase, tachykinin, NMDA 

receptors, AMPA receptors, Na–K ATPase, glutamate, CAT-301, and microtubule-

associated protein (for review, see Horton & Adams, 2005). It might have seemed a 

foregone conclusion that the patches would also show strong immunoreactivity for VGAT, 

given that they have increased levels of so many other different enzymes, neurotransmitters, 

receptors, and structural proteins. Inexplicably, however, CO patches contain less zinc, 

calcineurin, and neurofilament protein than interpatches (Goto & Singer, 1994; Duffy & 

Livingstone, 2003; Dyck et al., 2003). Therefore, not every substance exhibits a greater 

content within CO patches.

Our results confirmed that CO patches have increased GAD levels (Hendrickson et al., 

1981; Fitzpatrick et al., 1987). We used an antibody that binds to both GAD65 and GAD67. 

Most neurons contain both isoforms, with the latter being predominant in striate cortex 

(Hendrickson et al., 1994). The richer GAD labeling in patches probably reflects a higher 
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content of the synthetic enzyme in both cell bodies and nerve terminals. Fitzpatrick et al. 

(1987) have shown that the concentration of GAD-positive neurons is no higher in patches 

than in interpatches. It is possible, however, that cell bodies situated in patches contain 

higher levels of GAD than those in interpatches. Inhibitory nerve terminals in patches may 

also be larger, more plentiful, or contain more GAD than those in interpatches.

Immunostaining for GABA and for GABAA receptors shows a pattern of labeling that 

matches the CO patches (Hendry & Carder, 1992; Hendry et al., 1994). The same is true for 

parvalbumin, a calcium-binding protein associated with GABAergic interneurons. However, 

calbindin, another calcium-binding protein associated with GABAergic interneurons, is 

exceptional. It shows reduced immunoreactivity in layer 2/3 in zones that correspond to CO 

patches (Celio et al., 1986). Compared with parvalbumin, calbindin is relatively less 

abundant in layers that receive a direct projection from the lateral geniculate nucleus. The 

fact that patches receive a direct geniculate input may explain why their calbindin content is 

lower.

Cortical layers that receive direct input from the lateral geniculate nucleus exhibit increased 

CO activity (Horton, 1984). This increased CO content is correlated with a higher neuronal 

firing rate (DeYoe et al., 1995). This relationship also holds true in the vertical domain: cells 

in CO patches have a greater overall firing rate than cells in interpatches (Economides et al., 

2011). To explain this finding, one might propose the following idea. Inhibitory neurons 

located in patches are more active than those in interpatches, as reflected by their higher 

levels of GAD and GABA. Suppose also that the inhibitory neurons in patches make axonal 

projections predominately outside patches. This would cause enhanced suppression of cells 

in interpatches, accounting for their lower firing rate. This hypothesis is ruled out by our 

finding that VGAT immunoreactivity is stronger in CO patches than interpatches. In fact, 

both excitatory synapses and inhibitory synapses are more active in patches compared to 

interpatches (Wong-Riley, 1994; Nie & Wong-Riley, 1996).

Recently, progress has been made in classifying the diverse populations of GABAergic 

interneurons in the cortex (DeFelipe et al., 2013). Unfortunately, we could not distinguish 

reliably the morphology of different GABAergic interneurons in tissue sections processed 

for GAD immunocytochemistry. In any case, so far, no class of morphologically distinct 

cortical neurons has been found to be located preferentially within CO patches in layer 2/3 

(Hübener & Bolz, 1992). It is surprising that patches have unique inputs and outputs but no 

predilection for a particular cortical cell type.

In striate cortex, the laminar distribution of CO, GAD, GABA, and the subunits of the 

GABAA receptor are similar (Fitzpatrick et al., 1987; Hendry & Carder, 1992; Hendry et al., 

1994). Their activity is most robust in the layers (2/3, 4A, 4C, 6) that receive direct input 

from the lateral geniculate nucleus. Surprisingly, the laminar distribution of VGAT was 

quite different (Fig. 1). This finding was not expected and remains to be correlated with the 

organization of the interlaminar projections of inhibitory cells in striate cortex.
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Fig. 1. 
Laminar distribution of CO and VGAT in macaque striate cortex. CO is darkest in layers 4C 

and 4A. VGAT immunostaining is strongest in upper layer 4 and layer 5. The sharpest 

transition is at the layer 4C/5 border, where the labels are opposite in distribution.
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Fig. 2. 
Comparison of CO, GAD, and VGAT in macaque striate cortex. The far left section shows 

the array of CO patches in layer 3. An adjacent section, pictured in the middle, shows a 

similar appearance of GAD patches. The next section, at the right, shows patches of VGAT. 

Regions enclosed by the white rectangles are shown in Fig. 3.
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Fig. 3. 
GAD and VGAT are localized preferentially in CO patches. (a) CO patches, with 4 

examples highlighted by arrows. The arrowheads mark prominent blood vessels, which 

allow precise alignment of adjacent sections. (b) GAD patches, which match the CO patches 

(arrows). (c) VGAT patches, which match the CO and GAD patches (arrows). (d) Control 

section omitting the primary antibody shows only light background labeling from 

endogenous peroxidase activity in red blood cells.
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