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Abstract

Statistical methods for assessing the joint action of compounds administered in combination have 

been established for many years. However, there is little literature available on assessing the joint 

action of fixed-dose drug combinations in tumor xenograft experiments. Here an interaction index 

for fixed-dose two-drug combinations is proposed. Furthermore, a regression analysis is also 

discussed. Actual tumor xenograft data were analyzed to illustrate the proposed methods.
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1. INTRODUCTION

The study of joint actions of drugs administered in combination is an important topic in 

cancer treatment development. The joint action of drug combinations is usually divided into 

three types: additive, synergistic, or antagonistic. Statistical methods to assess the joint 

action of drug combinations have been established for many years. For studies using 

multiple doses of a two-drug combination, a dose-response surface model is often used to 

assess the interaction by applying Loewe’s simple similar joint action principle (Loewe and 

Muischnek, 1926). Such methods have been extensively studied by Hewlett (1969), Finney 

(1971), Chou and Talalay (1984), Giltinan et al. (1988), Machado and Robinson (1994), 

Greco et al. (1995), Plummer (1998), and more recently by Tan et al. (2003), Straetemans et 

al. (2005), Kong and Lee (2006, 2008), and others. However, a response-surface model is 

not applicable for a fixed-dose drug combination study. Therefore, testing the superiority of 

the combination over its components is conducted for a fixed-dose combination study with a 

normally distributed response. Examples include Snapinn (1987), Laska and Meisner 

(1989), Hung (1993, 1996), Hung et al. (1993), and others. In cancer treatment development, 

drug combinations are first tested in preclinical animal models to determine whether the 

combination therapy should be further investigated in a clinical trial. Drug combinations are 

often tested in tumor xenograft studies with fixed doses to minimize the number of animals 

required per drug combination. There is little literature available on assessing the joint 
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action of drug combinations in such experiments. Here we define an interaction index that 

quantifies the interaction of fixed-dose two-drug combinations in tumor xenograft 

experiments. Confidence intervals for the interaction index are derived. The joint action can 

be assessed based on confidence limits of the interaction index. Furthermore, a regression 

analysis is discussed. Tumor xenograft data from an actual two-drug combination study are 

analyzed to illustrate the proposed method.

2. INTERACTION INDEX

In a fixed-dose two-drug combination tumor xenograft experiment, human cancer cells are 

engrafted into mice to produce a xenograft model. Tumor-bearing mice are randomized into 

a common control group represented by C, two single-drug groups represented by A and B, 

and the two-drug combination group represented by AB. Tumor volumes are observed for 

each mouse at the initiation and end of study. The goal of the study is to assess the joint 

action of drug combination. Let μg be the mean response of group g = A, B, AB, and C. The 

response variable could be the tumor volume or the relative tumor volume (tumor volume 

divided by its initial volume) at the end of the study. The relative effect of treatment group g 

to control C is measured by the ratio of means θg = μg/μC, g = A, B, AB. The joint action is 

additive only if the relative effect of the drug combination equals the multiplicative of the 

relative effects of the two single drugs, that is, θAB = θA × θB. Otherwise, the interaction is 

either supra-additive or sub-additive, summarized as follows:

Supra-additive:

Additive:

Sub-additive:

This is called a relative-effect multiplicative model or Bliss independent model (Bliss, 

1939). Based on this multiplicative model, an interaction index can be defined on the 

logarithm scale as

Therefore, γ < 0, γ = 0, or γ > 0 indicates a supra-additive, additive, or sub-additive joint 

action of the two-drug combination, respectively. Because the joint action for fixed-dose 

drug combinations is only defined locally, the terms supra-additive and sub-additive are 

used rather than synergistic and antagonistic, respectively, to distinguish the global joint 

action definition.
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Now let Xig be the observed tumor volume or relative tumor volume of the ith mouse in 

group g at the end of the study, i = 1,…, ng, and let , and 

 be the estimate of θA, θB, and θAB, respectively, where  is 

the sample mean of group g. Then an estimate of the interaction index γ is given by:

(1)

The standard error estimate of  can be obtained by the delta method as

(2)

where  is the sample variance of the group g. A 100(1 − α)

% delta method interval of γ is given by

where z1−α/2 is the 100(1 − α/2)th percentile of the standard normal distribution.

The sample size used in tumor xenograft studies is often small, typically 10 mice per group. 

Therefore, a small sample confidence interval of γ is preferred. A nonparametric bootstrap t-

interval (Efron and Tibshirani, 1993) for small sample inference is described as follows:

1. Generate S independent bootstrap samples 

from tumor volume samples  of group g, where g = A, B, AB, and C.

2. Compute the bootstrap replication , where 

, and  for b = 1,…, S.

3. A 100(1 − α)% bootstrap t-interval can be obtained directly from the bootstrap 

sample

where  is calculated using (2) for the bootstrap sample . Let 

the αth percentile of  be estimated by the value of  such that 

. Then the bootstrap t-interval is given by
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To assess the joint action using a confidence interval approach, if the interval of γ contains 

zero, then the drug combination is additive; if the upper limit of the confidence interval is 

less than zero, then the drug combination is supra-additive; otherwise, the drug combination 

is sub-additive.

3. SIMULATION STUDY

It is important to know whether the proposed intervals for the interaction index γ are 

appropriate for practical use for small-sample tumor xenograft studies. In this section, we 

conducted simulation studies to investigate the coverage probability of proposed intervals. 

The coverage probability is the probability that a confidence interval captures the true 

parameter, and it is estimated here as the proportion of cases in a simulation in which the 

calculated interval includes the true value.

The parameter configurations were chosen to represent various degrees of the interaction. 

The sample size considered in the simulation was n = 10 for each group, which is a typical 

sample size for tumor xenograft studies. The mean parameters for the simulation studies are 

given in Table 1. The standard deviations (σC, σA, σB, σAB) used were (0.1, 0.1, 0.1, 0.1), 

(0.4, 0.4, 0.4, 0.4), (0.1, 0.1, 0.2, 0.2), and (0.1, 0.2, 0.3, 0.4). For each parameter 

configuration, we generated 5,000 random samples from a normal distribution  or 

a log-normal distribution , where g = C, A, B, and AB, and used 2,000 bootstrap 

samples.

The simulated 95% coverage probabilities of interval γ are presented in Table 2. The results 

showed that both intervals were slightly liberal. However, the coverage probability of the 

bootstrap t-interval was better than that of the delta-method interval and was closer to the 

nominal level of 0.95.

4. REGRESSION ANALYSIS

The joint action of drug combinations can also be assessed using a regression model if the 

response variable follows a certain distribution. Let yi = log(Xi) be a log-transformed 

response variable of the ith subject, i = 1,…, n, where Xi is the tumor volume or the relative 

tumor volume of the ith subject at the end of the study. The interaction of the two-drug 

combination can be assessed by following the regression model

(3)

where {εi, i = 1,…, n} are independent and follow normal distribution N(0, σ2) and zAi, zBi, 

and zABi are defined as zAi = 1 if the ith subject belongs to group A or AB and zAi = 0 

otherwise, zBi = 1 if the ith subject belongs to group B or AB and zBi = 0 otherwise, and zABi 

= zAi × zBi.

The parameter γ in the model describes the interaction of the drug combination, with γ < 0, γ 

= 0, and γ > 0 indicating a supra-additive, additive, and sub-additive interaction, 

respectively. An advantage of using a regression-model approach is that the interaction of 

the drug combination can be simply assessed by testing the hypothesis
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Applying the linear regression model theorem (Searle, 1971), the maximum likelihood 

estimate of β = (α0, α1, α2, γ)′ is given by , where X = (1, zA, zB, zAB) is an 

n × 4 design matrix and y = (y1,…, yn)′ is a n × 1 response vector. The variance-covariance 

matrix estimate of  is  with , where {ei, i = 1,

…,n} is the residuals obtained by fitting model (3). Then the interaction parameter γ can be 

tested by the t-statistic . A 100(1 − α)% confidence interval of γ is 

given by

where t1−α/2;n−4 is the 100(1 − α/2)th percentile of the t-distribution with a degree of 

freedom of n − 4. Another advantage of using a regression-model approach is that it 

simultaneously gives the estimates of two single-drug effects α1 and α2, which allows 

normalization of the interaction term by the ratio of interaction term γ to the expected 

additive effect for the combination; that is,

This normalized interaction term can be conceptualized as the percentage gain or loss of the 

expected treatment effect observed for the combination under additivity.

It is easy to show that the coefficient estimate  from the regression model (3) is given by

(4)

where  is a geometric mean of group g = A, B, AB, C. The 

arithmetic means in expression (1) were replaced by geometric means in expression (4). 

Therefore, the two approaches are not identical but similar. However, the regression 

approach has the advantage that it gives an exact statistical inference for the interaction 

parameter γ.

5. ACTUAL TUMOR XENOGRAFT DATA ANALYSIS

Data from a two-drug combination study generated in the Xenograft Core Facility of St. 

Jude Children’s Research Hospital were used. In this study, the human neuroblastoma cell 

line SKNAS was used to study the joint action between the proteasome inhibitor bortezomib 

(0.5mg/kg, 3 times per week) and the macrolide rapamycin (5mg/kg, 3 times per week). 

Both of these agents have documented anticancer activity and are currently being used in 

clinical trials. SKNAS tumor cells were implanted into male SCID mice in the 

retroperitoneum, an orthotopic location for neuroblastoma. After 2 weeks, tumor-bearing 
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mice were size-matched into a control group, two single-agent treatment groups, and a two-

drug combination group, with 9–10 mice per group. The bortezomib single-agent treatment 

group contained only 9 mice. Two mice in the combination group and one mouse in the 

bortezomib single-agent treatment group died during the course of the experiment. Mice 

were euthanized after 2 weeks of treatment, and tumors were measured. The volume was 

calculated by the formula (length × width2)/2, and tumor volumes were recorded in both 

Table 3 and Fig. 1.

An estimate of the interaction index (standard error) from expression (1) is 

. The 95% confidence intervals of γ were (−1.091, −0.109) and (−1.099, 

−0.065) for the delta method and bootstrap t-interval, respectively. Both intervals indicate a 

supra-additive combination. The delta-method interval was narrower than the bootstrap t-

interval. To study the true coverage probabilities of both intervals at a 95% confidence level, 

we conducted another simulation study. In this simulation, 5,000 random samples were 

generated from a log-normal distribution with its mean and standard deviation parameters 

and sample sizes equal to the actual data recorded in Table 3, and 2,000 bootstrap samples 

were used for the bootstrap t-interval. The simulated empirical coverage probabilities were 

0.931 and 0.942 for the delta method interval and bootstrap t-interval, respectively. The 

results are consistent with section 3. The lower coverage probability of the delta method 

interval explains its narrow interval compared with the bootstrap t-interval.

From regression analysis discussed in section 4, the fitted model was

(5)

with model R2 = 0.73. A Q-Q plot of residuals showed an approximately normal distribution 

(Fig. 2). The estimated coefficient of interaction (standard error) of γ was γ = −0.58 (0.29). 

A p-value of 0.0488 from the t-test indicated a supra-additive combination. The 95% 

confidence interval of the coefficient of interaction was (−1.166, −0.003), which also 

indicated a supra-additive combination. The normalized coefficient of interaction was 48%, 

which indicated a 48% gain over the expected treatment effect for the combination under 

additivity.

6. CONCLUSION

Here, a nonparametric bootstrap t-interval is proposed for assessing the interaction of a 

fixed-dose two-drug combination. Furthermore, a regression analysis is also discussed. The 

regression approach has the advantage that it gives a rigorous statistical inference for the 

interaction parameter.
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Figure 1. 
Scatter plot of tumor volume data for an SKNAS tumor xenograft model; —indicates the 

mean of the corresponding group.
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Figure 2. 
Quantile plot of residuals from fitted regression model (5).
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