
On Bayesian estimation of marginal structural models

James M. Robins1, Miguel A. Hernán1, and Larry Wasserman2

1Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA 
02115, USA

2Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Saarela et al. are concerned with integrating propensity scores into a Bayesian framework. 

Some of us have previously written (Robins and Ritov, 1997; Robins and Wasserman, 2000; 

http://normaldeviate.wordpress.com/2012/08/28/robins-and-wasserman-respond-to-a-nobel-

prize-winner/; posted 28 Aug 2012, accessed 1 Oct 2014) about this topic, every time 

making much the same argument. Here we present a simplified version that captures the 

main points.

A simple setting

Though our argument applies to the complex observational data considered by Saarela et al, 

it is easier to understand it in the simpler setting of a double-blind, placebo-controlled 

randomized clinical trial of a non-time-varying treatment and under complete compliance. In 

the spirit of the authors, we assume the trial subjects are representative of a much larger 

population and the trial results will guide treatment decisions in the population.

Let V = {Zi,Xi;Yi;i = 1, …, n} denote the data on the n trial subjects, where Zi is the binary 

treatment arm indicator, Yi is the binary outcome, and Xi is a high-dimensional vector of 

baseline covariates. The randomization probabilities pr [Z = 1|X] are chosen by a 

randomizer. By de Finetti’s theorem (e.g., Bernardo and Smith, 1994), a Bayesian can write 

the marginal density p (V) of V

where L1 (ϕ) = f (Y|Z, X; ϕ1) f (X; ϕ2)and L2 (γ) = f (Z|X, γ). We have already integrated out 

the authors’ unmeasured frailty U.

The propensity score e (X; γ†) = pr [Z = 1|X; γ†] is known to the randomizer by design, but 

let us provisionally assume that our Bayesian does not know it so he treats γ as random. [We 

assume there exist true values (ϕ†, γ†) of (ϕ, γ) but, even if not, our argument, slightly 

modified, is still valid.]
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Like the authors, we take our goal to be the estimation of the counterfactual probabilities 

, where , and Yz is a subject’s counterfactual response under 

treatment level z. Randomization implies that  is identified and equals

Why Bayesian inference must ignore the propensity score

Bayesian logic is rigidly defined: given a likelihood and a prior, one turns the Bayesian 

crank to obtain a posterior. There is no wiggle room. A fact concisely summarized in the 

slogan "There is no Bayes but Bayes." Because the parameter θ of interest is a functional of 

the parameters ϕ, the posterior for θ is completely determined by the posterior of ϕ. If ϕ and 

γ are a priori independent, the posterior of ϕ is obtained from the ℒ1 (ϕ) factor of the 

observed likelihood and the prior p (ϕ) for ϕ.

Therefore, Bayesian inference concerning θ cannot be a function of the propensity score e 

(X; γ†) because the Bayesian’s posterior for ϕ–and thus for ϕ–does not depend on γ. Saarela 

et al. assume ϕ and γ are a priori independent and yet argue that inverse probability 

weighting by a function of the propensity score e (X; γ†) can be given a Bayesian 

interpretation. In light of the above, their arguments cannot be valid.

Why propensity scores should not be ignored

Why do the authors, as Bayesians, work so hard to include propensity scores in their 

inference when, according to Bayes, they are irrelevant? Our guess is that the authors 

recognize that an analysis–Bayesian or otherwise–that ignores a known propensity score can 

go seriously wrong because one’s prior knowledge of pr [Y = 1|Z = z, X] is meager when X 

is high-dimensional.

Specifically, consider any estimator θ̂ of θ† that does not depend on the known propensity 

score. Robins and Ritov (1997) prove that θ̂ cannot be uniformly consistent for θ† over the 

large infinite dimensional model ℳ that includes any laws bz (X) = pr [Y = 1|Z = z, X], any 

density f (x) for X, and any propensity function e (X) = pr [Z = 1|X] bounded away from 0 

and 1. The practical implication of this theorem is that, whenever e (X; γ†) is a complex 

function of our high dimensional X and the (infinite-dimensional) parameters γ and ϕ are a 

priori independent, the posterior for θ will fail to concentrate around the true value of θ† as n 

goes to infinity because any model we specify for f (Y|Z, X; ϕ1) is almost certainly incorrect 

(imposing smoothness will not really help). This practical implication is obvious; the Robins 

and Ritov theorem serves as a mathematical formalization.

In contrast, estimators that use the known randomization probabilities, like the Horvitz-

Thompson (1952) estimator of , can be uniformly n1/2-consistent over ℳ. The 

deficiencies of the Horvitz-Thompson estimator–it may exceed 1, it ignores data on X except 

for the one-dimensional summary e (X; γ†), and it can be very inefficient–can be remedied 

by using an improved version: the so-called locally semiparametric efficient regression 
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estimator (Scharfstein et al., 1999). In observational studies, this estimator is doubly robust 

when the unknown e (X; γ†) is replaced by an estimate. More efficient doubly robust 

estimators are reviewed by Rotnitzky et al (2012).

When the priors are dependent

Our argument relies on the authors’ assumption that ϕ and γ are a priori independent. This 

assumption is often reasonable, as shown in the Appendix. However, when ϕ and γ are a 

priori dependent–which implies that the posterior for θ will depend on the propensity score e 

(X; γ)–two new issues arise.

First, in observational studies with γ† unknown, the posterior for γ will depend on the data 

through the ϕ part of the likelihood. The authors find this troubling since this procedure fails 

to "retain the balancing property of propensity scores." But again true Bayesians cannot have 

it both ways. The parameters ϕ and γ are either a priori independent or they are not. If one 

wants to use dependent priors to make the posterior for θ to depend on the propensity score, 

then one must accept that the posterior for the propensity score will depend on the ϕ part of 

the likelihood.

The above is not only a philosophical issue concerning schools of inference. It implies that 

true Bayesian inference based on finite-dimensional working models will generally fail to be 

doubly robust since misspecification of either the outcome or propensity model will bleed 

into the estimation of the parameters of the other correct model. As the authors discuss in 

their supplemental material, this lack of double robustness confronted both McCandless et al 

(2010) and Zigler et al (2013) who proposed approaches to prevent the bleeding. But, as 

useful as the approaches may be, they cannot be truly Bayesian.

Second, even in a randomized trial with known propensity score, simply making ϕ and γ 

dependent a priori does not imply that the posterior for θ will concentrate around the truth. 

The dependent prior still has to be carefully engineered for that to happen. As an example 

we can construct a locally semiparametric efficient Bayes estimator θ̂Bayes as follows. We 

assume that, conditional on the known γ† and k given functions wm,z(x), pr(Y = 1|Z = z, X = 

x;ϕ1,z) is a finite-dimensional parametric function expit  with wk,z(x) 

= 1/pr(Z = z|X = x; γ†). Then, if we put smooth or non-informative priors over the 

parameters ϕ1z = (η1,z, …, ηk,z), the Bayes estimator θ̂Bayes will be asymptotically equivalent 

to the frequentist locally semiparametric efficient estimator cited earlier and thus be n1/2-

consistent. Thus, by using carefully tuned dependent priors, we have obtained a Bayes 

estimator that has good frequentist behavior by mimicking a locally semiparametric efficient 

frequentist estimator.

But this is a Pyrrhic victory. If we need to engineer the dependent prior just to mimic a 

frequentist answer, is it really Bayesian inference? We call Bayesian inference which is 

carefully manipulated to force an answer with good frequentist behavior, frequentist pursuit. 

There is nothing wrong with it. But if you want to be Bayesian, then accept that, in this 

example, your posterior will fail to concentrate around the true value.
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Conclusion

Our arguments above may have left readers thinking "why bother? If you want good 

frequentist properties, just use a frequentist estimator rather than embarking on a frequentist 

pursuit." Indeed, it might appear that we are arguing that the Bayesian machinery should be 

reserved for implementing subjective Bayes inference that maps prior beliefs to posterior 

beliefs via the likelihood function, without regard for the frequentist properties of the 

resulting estimators. While we do believe that investigation of this mapping through 

Bayesian sensitivity analysis and/or robust Bayes is important and extremely useful, we also 

believe that the Bayesian approach can play other important roles, even when one is 

interested in good frequentist properties. We consider three cases.

First, Bayesian logic and machinery may sometimes lead to procedures with provably better 

frequentist operating characteristics than their current competitors, even asymptotically. An 

example is the conditional predictive and partial posterior predictive p-values of Bayarri and 

Berger (2000).

Second, when modelling complex phenomena (particularly in small and moderate samples), 

there may be Bayesian approaches that are rather straightforward to motivate and implement 

even when there is no good frequentist alternative, so the Bayes estimator is the best, or 

perhaps the only, frequentist game in town.

Third, to improve decision making under uncertainty, one can adopt a Bayes-frequentist 

compromise (Robins 2004, Sec 5.2) that combines honest subjective Bayesian inference 

with good frequentist behavior even when, as above, the model is so large and the likelihood 

function so complex that standard (uncompromised) Bayes procedures have poor frequentist 

performance. It follows immediately from our earlier arguments that such a compromise 

requires that our subjective Bayesian decision maker is only allowed to observe a specified 

vector function of X (depending on e (X; γ†)) but not X itself. In this way one can circumvent 

the problem referred to by Robert (http://xianblog.wordpress.com/2013/01/17/robbins-and-

wasserman; posted 17 Jan 2013, accessed 01 Oct 2014) as the curse of marginalization: "the 

classical Bayesian approach is an holistic system that cannot remove information to process 

a subset of the original problem."
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Appendix: Example of a priori independence of the propensity score

Suppose a health insurance company needs to estimate the fraction θ of its patient 

population that will have a myocardial infarction (MI, Y = 1) in the next year, so as to 

determine the need for cardiac unit beds. They have 300 potential risk factors X = (X1, …, 

X300) measured on each member. A general epidemiologist had earlier studied risk factors 

for MI by following 5000 patients for a year. Because MI was a rare event, he oversampled 

subjects whose X, in his opinion, indicated a higher conditional probability b (x) = E[Y|X = 
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x] of Y = 1. Hence, with Z the inclusion indicator, the sampling fraction e (x) = pr (Z = 1|X = 

x) was a known but complex function.

The world’s leading heart expert, our Bayesian, was hired to estimate θ = ∫b (x) p (x) dx, 

where p (x) is the marginal density of x, based on the study data (X,Z,ZY). As world’s 

expert, his beliefs about the risk function b (·) would not change upon learning the 

propensity score function e (·), as e (·) only reflected a nonexpert’s beliefs. Hence the 

functions b (·) and e (·) are a priori independent. [Nonetheless, he would believe with high 

probability that the random variables b (X) and e (X) were positively correlated, knowing 

that the epidemiologist had read the expert literature on risk factors for MI.]

Robins and Ritov (1997) showed that once any Bayesian, cardiac expert or not, thoroughly 

queries the epidemiologist who selected e (·) about his reasoned opinions concerning b(·) 

(but not about e(·)), the Bayesian will then have independent priors. The idea is that once 

you are satisfied that you have learned from the epidemiologist all he knows about b(·) that 

you did not, you will have an updated prior for b (·). Your updated prior for b (·) cannot then 

change if you subsequently are told e (·). Hence, we could take as many Bayesians as you 

please and arrange it so all had b (·) and e (·) a priori independent. This last argument is 

quite general and applies to many settings.
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