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Abstract

Objective—The development of acute kidney injury in patients with sepsis is associated with 

worse outcomes. Identifying those at risk for septic acute kidney injury could help to inform 

clinical decision making. We derived and tested a multibiomarker-based model to estimate the risk 

of septic acute kidney injury in children with septic shock.

Design—Candidate serum protein septic acute kidney injury biomarkers were identified from 

previous transcriptomic studies. Model derivation involved measuring these biomarkers in serum 

samples from 241 subjects with septic shock obtained during the first 24 hours of admission and 

then using a Classification and Regression Tree approach to estimate the probability of septic 

acute kidney injury 3 days after the onset of septic shock, defined as at least two-fold increase 

from baseline serum creatinine. The model was then tested in a separate cohort of 200 subjects.

Setting—Multiple PICUs in the United States.

Interventions—None other than standard care.

Measurements and Main Results—The decision tree included a first-level decision node 

based on day 1 septic acute kidney injury status and five subsequent biomarker-based decision 

nodes. The area under the curve for the tree was 0.95 (CI95, 0.91–0.99), with a sensitivity of 93% 

and a specificity of 88%. The tree was superior to day 1 septic acute kidney injury status alone for 

estimating day 3 septic acute kidney injury risk. In the test cohort, the tree had an area under the 

curve of 0.83 (0.72–0.95), with a sensitivity of 85% and a specificity of 77% and was also superior 

to day 1 septic acute kidney injury status alone for estimating day 3 septic acute kidney injury risk.

Conclusions—We have derived and tested a model to estimate the risk of septic acute kidney 

injury on day 3 of septic shock using a novel panel of biomarkers. The model had very good 

performance in a test cohort and has test characteristics supporting clinical utility and further 

prospective evaluation.
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Acute kidney injury (AKI) is a common complication of sepsis, and the development of AKI 

increases sepsis-related mortality (1–3). Identifying patients at risk of developing septic AKI 

(SAKI) would identify patients in need of intervention or preventive measures, such as 

earlier initiation of renal replacement therapy, restrictive fluid management, and avoidance 

of nephrotoxic medications when clinically feasible. Biomarkers have the potential to 

identify such patients (3–8).

The pathogenesis of SAKI is complex and incompletely understood. Ischemia is a well-

accepted mechanism for AKI, but it is not the unifying mechanism for sepsis since SAKI 
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can occur in the absence of global kidney ischemia (9, 10). It has been proposed that SAKI 

results from a complex interplay between inflammation, oxidant stress, apoptosis, and 

microvascular alterations (3, 11). Consequently, biomarkers that reflect just one mechanistic 

pathway, such as primarily ischemic kidney insults, may be insufficient for predicting SAKI 

in all those at risk.

We have developed a multi-institutional clinical and biological repository of pediatric septic 

shock and have conducted extensive genome-wide expression studies (12). These 

transcriptomic data have been leveraged for the discovery of novel therapeutic targets (13–

15), gene expression–based subclasses of pediatric septic shock (16), and sepsis-related 

biomarkers (17–19). The latter effort included the identification of a 21-gene expression 

signature (messenger RNA) having predictive capacity for SAKI (20). With the goal of 

developing a clinical tool that can meet the time-sensitive diagnostic demands of critically ill 

patients, we determined if the protein products of five of these 21 class predictor genes have 

utility as biomarkers for SAKI.

METHODS

Study Subjects and Data Collection

The study protocol was approved by the institutional review boards of each participating 

institution. Children 10 years old or younger admitted to the PICU and meeting pediatric-

specific consensus criteria for septic shock were eligible for enrollment (15). After informed 

consent from parents or legal guardians, serum samples were obtained within 24 hours of 

initial presentation to the PICU with septic shock. Clinical and laboratory data were 

collected daily while in the PICU. Mortality was tracked for 28 days after enrollment. Illness 

severity was measured using Pediatric Risk of Mortality (PRISM) scores (21), and septic 

shock-related mortality probability at study entry was estimated using the updated Pediatric 

Sepsis Biomarker Risk Model (PERSEVERE) (18).

The derivation cohort subjects included 175 subjects previously reported (20), plus an 

additional 66 subjects prospectively enrolled since our previous report and randomly 

selected from our database. The test cohort consisted of 200 different prospectively enrolled 

subjects and randomly selected from our database. None of the study subjects had known 

preexisting renal disease.

SAKI Definition

SAKI was defined based on a modification of the Kidney Disease Improving Global 

Outcomes (KDIGO) stage 2 AKI classification, which is at least two-fold increase from 

baseline serum creatinine (22). We focused on KDIGO stage 2 AKI because this was the 

definition used in our original study that identified the candidate SAKI biomarkers (20), and 

we made an a priori plan to use the same definition in the current study. Because we did not 

have baseline serum creatinine data for the study subjects, our modification was to use age-

based normal values as surrogates, as previously reported (20, 23).
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Biomarker Selection and Measurement

We previously reported a messenger RNA expression signature of 21 genes with predictive 

capacity for SAKI (20). In the feasibility stage of the current study, we were only able to 

identify suitable immunoassay reagents to measure the protein products of five of the 

previously identified genes in serum samples. The resulting five candidate serum protein 

biomarkers were elastase 2 (ELA2), fibroblast growth factor 13 (FGF13), matrix 

metalloproteinase 8 (MMP8), olfactomedin 4 (OLFM4), and proteinase 3 (PRTN3). The 

serum concentrations of the candidate biomarkers were measured using a multiplex 

magnetic bead platform (MILLIPLEX MAP) designed for this project by the EMD 

Millipore (Billerica, MA). Biomarker concentrations were measured in a Luminex 100/200 

System (Luminex, Austin, TX), according the manufacturers’ specifications. The median 

biomarker concentrations with interquartile ranges are provided in a Supplemental Table 1 
(Supplemental Digital Content 1, http://links.lww.com/CCM/B324).

Statistical Analysis and Modeling Procedures

Initially, data are described using medians, interquartile ranges, frequencies, and 

percentages. Comparisons between groups used the Wilcoxon rank-sum test for age and 

PRISM score, the unpaired t test for PERSEVERE Mortality Probability, and the chi-square 

test, or Fisher exact test if needed, for gender and 28-day mortality. Descriptive statistics and 

comparisons used SigmaStat Software (Systat Software, San Jose, CA).

The primary outcome variable for the modeling was the presence of SAKI on day 3 after 

presentation with septic shock. Classification and Regression Tree (CART) analysis was 

used to estimate the probability of day 3 SAKI (Salford Predictive Modeler v7.0; Salford 

Systems, San Diego, CA) (24). The predictor variables included the five candidate 

biomarkers, the presence of SAKI on day 1 of septic shock, age, and gender. Weighting of 

cases and the addition of cost for misclassification were not used in the modeling 

procedures. The code used to generate the model is available from the authors. Performance 

of the derived model is reported using diagnostic test statistics with 95% CIs computed 

using the score method as implemented by the VassarStats Website for Statistical 

Computation (25).

Areas under the receiver operating characteristic curves were compared using the method of 

Hanley and McNeil (26) for nonindependent samples. The net reclassification improvement 

(NRI) was used to estimate the incremental predictive ability of the biomarker-based model 

compared to day 1 SAKI status alone (27). The NRI was computed using the R-package 

Hmisc (28).

RESULTS

Model Derivation

Table 1 shows the demographics and clinical characteristics of the derivation cohort (n = 

241). Twenty-eight subjects (12%) had SAKI on day 3 of septic shock. Compared with the 

subjects without SAKI, the subjects with SAKI had a higher mortality rate, a higher median 
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PRISM score, and a higher PERSEVERE-based mortality probability, and a greater 

proportion were male. No other differences were noted.

Figure 1 shows the derived decision tree. The top node of the decision tree, the root node, 

provides the total number of subjects and the number and proportion of subjects with and 

without SAKI on day 3 of septic shock. Subjects in the root node are subsequently allocated 

to daughter nodes based on the results of binary recursive partitioning, as determined by the 

CART methodology. Each daughter node provides the criterion for deciding subsequent 

partitions, along with the number and proportion of subjects with and without SAKI on day 

3 of septic shock. Terminal nodes reflect the final assignment of risk to an individual case 

and are annotated with bold numbers above each terminal node in the tree.

The first-level decision node was based on day 1 SAKI status. Further accuracy for 

estimating the risk of day 3 SAKI was achieved with three of the five candidate biomarkers 

(ELA2, MMP8, and PRTN3). FGF13, OLFM4, age, and gender did not improve predictive 

accuracy. There were three low probability terminal nodes (0.0–2.9% probability; terminal 

nodes 3, 5, and 7), three intermediate probability terminal nodes (20.0–52.4% probability; 

terminal nodes 1, 4, and 6), and one high probability terminal node (90.0% probability; 

terminal node 2) for SAKI on day 3 of septic shock. Among the 190 subjects classified as 

low probability, two subjects (1%) had SAKI on day 3 of septic shock. Among the 51 

subjects classified as intermediate to high probability, 26 (51%) had SAKI on day 3 of septic 

shock.

For calculating the diagnostic test characteristics using a two-by-two contingency table, all 

subjects in the low probability terminal nodes are predicted to not have SAKI, whereas all 

subjects in the intermediate and high probability terminal nodes are predicted to have SAKI 

on day 3 of septic shock. Table 2 shows the diagnostic test characteristics of the derived 

decision tree.

Since 20 of 28 subjects with SAKI (71%) on day 3 of septic shock also had SAKI on day 1 

of septic shock, and 20 of 31 subjects with SAKI (65%) on day 1 of septic shock still had 

SAKI on day 3 of septic shock, we compared the predictive capacity of the decision tree to 

that of SAKI status on day 1 of septic shock alone. SAKI status on day 1 of septic shock by 

itself had an area under the receiver operating curve of 0.83 (CI95, 0.73–0.93), which was 

significantly less than that of the decision tree (0.95 [0.91–0.99]; p = 0.001). When adding 

the information from the decision tree to the information provided by SAKI status on day 1 

of septic shock alone, the NRI was 0.93 (CI95, 0.56–1.31; p < 0.001).

Testing the Model

The test cohort consisted of 200 subjects, of whom 20 (10%) had SAKI on day 3 of septic 

shock. Table 3 provides the clinical and demographic data for the test cohort. Compared 

with the derivation cohort, the test cohort had a lower proportion of males. No other 

differences were noted. Within the test cohort, the subjects with SAKI had a higher 

mortality rate, a higher median PRISM score, and a higher PERSEVERE-based mortality 

probability, compared with the subjects without SAKI. No other differences were noted.
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The test cohort subjects were classified according to the derived model without any 

modifications (Supplemental Fig. 1, Supplemental Digital Content 2, http://

links.lww.com/CCM/B325). Among the 142 subjects classified as low probability, three 

subjects (2%) had SAKI on day 3 of septic shock. Among the 58 subjects classified as 

intermediate to high probability, 17 (29%) had SAKI on day 3 of septic shock. Table 2 

shows the diagnostic test characteristics of the decision tree in the test cohort.

We next compared the predictive capacity of the decision tree to that of SAKI status on day 

1 of septic shock alone in the test cohort. SAKI status on day 1 of septic shock by itself had 

an area under the receiver operating curve of 0.73 (CI95, 0.59–0.87) in the test cohort, which 

was significantly less than that of the decision tree (0.82 [0.72–0.95]; p = 0.044). When 

adding the information from the decision tree to the information provided by SAKI status on 

day 1 of septic shock alone in the test cohort, the NRI was 0.69 (CI95, 0.24–1.14; p = 0.003).

Comparison to Mortality Prediction Models

Since AKI is associated with increased mortality in patients with sepsis, it is possible that 

the candidate SAKI biomarkers are generic biomarkers of illness severity, rather than being 

biomarkers of SAKI risk per se. To test this possibility, we compared the performance of the 

SAKI risk model in the combined derivation and test cohorts to that of two mortality risk 

models, PRISM (21) and PERSEVERE (18), for estimating the risk of SAKI on day 3 of 

septic shock. As shown in Figure 2, the area under the receiver operating curve for the 

SAKI model was superior to that of PRISM and PERSEVERE.

DISCUSSION

We have derived and tested a multibiomarker-based model to estimate the probability of 

SAKI 3 days after the onset of septic shock. In the derivation cohort, the model had 

excellent performance with an area under the curve (AUC) of 0.95 and a sensitivity of 93%. 

We found the model was additive to the information provided by day 1 SAKI status alone. 

The model had very good performance in the test cohort, with an AUC of 0.83 and a 

sensitivity of 85%. Similar to the derivation cohort, the model added to the information 

provided by day 1 SAKI status alone in the test cohort. A recently reported study of cell-

cycle arrest biomarkers for AKI in critically ill adults included a sample among which 24% 

had sepsis as a primary diagnosis (8). The current model demonstrated higher specificity 

while retaining similar sensitivity and positive predictive values.

We have previously used a CART approach to develop multibiomarker risk models related 

to sepsis (17, 18). We favor this approach because it has the potential to reveal interactions 

between predictor variables that may not be evident using other modeling approaches (24). 

In the test cohort, the intermediate- and high-risk terminal nodes identified a cohort of 

patients with a rate of SAKI of 29%, whereas the low-risk terminal nodes identified a cohort 

with a rate of SAKI of 2%. This dichotomous interpretation demonstrates that the model can 

partition a heterogeneous cohort of patients into two broad groups having an approximately 

15-fold difference in SAKI risk. A more comprehensive interpretation allows for assigning 

risk based on the respective terminal nodes, and this partitions patients across a clinically 

relevant range of SAKI probabilities.
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The candidate biomarkers that went into the model were selected objectively based on 

extensive transcriptomic studies focused on discovery of SAKI biomarkers (20). This is an 

important strength of our study. We noted that the model performed significantly better than 

a physiology-based mortality risk scoring system (PRISM) and a multibiomarker-based 

mortality risk model for sepsis (PERSEVERE) for estimating the risk of SAKI 3 days after 

the onset of septic shock. This indirectly suggests that the candidate SAKI biomarkers are 

intrinsically associated with AKI risk in patients with septic shock, rather than being generic 

biomarkers of illness severity.

The three biomarkers in the model are proteases, primarily derived from neutrophils. These 

general characteristics are consistent with the concept that inflammatory mechanisms play 

an important role in the development of SAKI. MMP8 was previously reported as a 

candidate biomarker for detecting renal allograft rejection (29). Genetic ablation or 

pharmacologic inhibition of MMP8 delays renal recovery in mice subjected to renal 

ischemia (30), which is consistent with the MMP8-based decision node in the model. 

PRTN3 serves as the autoantigen for Wegener's granulomatosis, an autoimmune systemic 

vasculitide that commonly leads to kidney injury (31), and this is also consistent with the 

two PRTN3-based decision nodes in the model. Neutrophil extracellular traps containing 

PRTN3 and ELA2 are detectable in kidney biopsies from patients with autoimmune 

glomerulonephritis (32). Incorporation of MMP8 and ELA2 with clinical data used to 

calculate a “renal angina index” has been shown to predict AKI in critically ill children (33). 

We note that an ELA2-based decision node in the model may allow for distinguishing 

subjects who initially present with SAKI, but are more or less likely to have improved 

kidney function by day 3 of septic shock. Collectively, these data support mechanistic links 

between the candidate biomarkers and the pathophysiology of SAKI, which warrant further 

exploration.

We note the limitations of our study. We could not directly determine baseline creatinine 

values for the study subjects and consequently used median, age-dependent normal values as 

a surrogate. We also did not have the option of estimating baseline creatinine using a body 

surface area-based formula because we did not have height data for the subjects. This could 

have led to misclassified patients with or without AKI because some proportion may have 

had a preexisting kidney injury, as suggested by the presence of a comorbid condition in 

about one third of the study subjects and a relatively low prevalence of SAKI. An extensive 

adjudication process for determining AKI status in critically ill patients, as recently used (8, 

34), may be superior as a criterion standard, but we contend that our definition is pragmatic 

in that it is reflective of patients admitted to an ICU with septic shock. We made an a priori 

decision to focus on day 3 of septic shock and KDIGO AKI stage 2 as the primary outcome 

variable. It might be argued that different time points and outcome definitions have differing 

clinical relevance, and it is possible that the results of our modeling would change if we had 

focused on a different time point or a different stage of AKI. Differences in model structure 

would be informative in understanding the mechanism of injury, but a single model with a 

different time point or endpoint would be no less limited in clinical applicability. It is 

reasonable to conclude that there is clinical significance in a patient with sepsis who has a 

doubling of their baseline creatinine 3 days after initial presentation.
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Clinical care was not standardized in this observational study. Therefore, it is possible that 

the development of SAKI was confounded by variability of clinical processes, independent 

of biomarker data. The five SAKI biomarkers were selected from 21 candidate genes, based 

on the availability of suitable immune-assay reagents to measure their protein products in 

the serum compartment. These technical limitations eliminated other previously reported 

candidate genes, which could possibly have better predictive performance (20). Finally, our 

a priori analysis plan was confined to testing the validity of a multibiomarker panel in 

predicting day 3 SAKI. Whether adding other potential biomarkers or clinical information 

improve this model requires further investigation.

In summary, we have derived and tested a model to estimate the risk of SAKI on day 3 of 

septic shock using a novel panel of biomarkers. The model had very good performance in a 

test cohort and has test characteristics supporting clinical utility. Prospective evaluation of 

the updated model is warranted to further assess clinical utility, and the model may provide 

insight into the pathobiology of SAKI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Classification tree from the derivation cohort (n = 241). The classification tree consists of 

six decision points and 12 daughter nodes. The classification tree includes three of the five 

candidate septic acute kidney injury (AKI) biomarkers: elastase 2 (ELA2), matrix 

metallopeptidase 8 (MMP8), and proteinase 3 (PRTN3). The serum concentrations of all 

candidate SAKI biomarkers are provided in ng/mL. The classification tree also includes the 

presence/absence of day 1 SAKI as defined in the Methods section. The root node provides 

the total number of patients in the derivation cohort and the number of subjects with and 

without SAKI on day 3 of septic shock, with the respective rates. Each daughter node 

provides the respective decision rule criterion and the number of subjects with and without 

SAKI on day 3 of septic shock. The numbers above daughter nodes designate terminal nodes 

(TN). TN3, TN5, and TN7 are considered low-risk terminal nodes; TN1, TN4, and TN6 are 

considered intermediate-risk nodes; and TN2 is considered a high-risk terminal node.
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Figure 2. 
Comparison of the receiver operating characteristic (ROC) curves for the septic acute kidney 

injury (SAKI) risk model, Pediatric Risk of Mortality (PRISM), and Pediatric Sepsis 

Biomarker Risk Model (PERSEVERE), for estimating the risk of SAKI on day 3 of septic 

shock (combined derivation and test cohorts, n = 441). The ROC curve for the SAKI risk 

model (solid black line) yielded an area under the curve of 0.90 (CI95, 0.85–0.96), which 

was superior to that of PRISM (solid gray line; 0.73; CI95, 0.66–0.82; p < 0.001) and 

PERSEVERE (dashed black line; 0.66; CI95, 0.55–0.76; p < 0.0001) for estimating the risk 

of SAKI on day 3 of septic shock.
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Table 1

Clinical and Demographic Data for the Derivation Cohort

Variable All No AKI AKI

n 241 213 28

Median age, yr (IQR) 2.5 (0.8–5.9) 2.5 (0.8–5.9) 2.8 (1.2–7.0)

Males, n (%) 150 (62) 127 (60)
23 (82)

a

28-d mortality, n (%) 17 (9) 8 (4)
11 (39)

a

Median Pediatric Risk of Mortality score (IQR) 12 (7–21) 12 (6–18)
24 (19–30)

b

Pediatric Sepsis Biomarker Risk Model mortality probability (95% CI) 11.0 (8.9–13.3) 8.8 (6.7–10.9)
27.3 (18.5–36.1)

c

Gram-negative bacteria, n (%) 51 (21) 43 (20) 8 (29)

Gram-positive bacteria, n (%) 57 (24) 51 (24) 6 (21)

Other pathogen isolated, n (%) 21 (9) 18 (8) 3 (11)

No pathogen identified, n (%) 112 (46) 101 (47) 11 (39)

Comorbidity, n (%) 82 (34) 71 (33) 11 (39)

AKI = acute kidney injury, IQR = interquartile range.

a
p < 0.05 vs no AKI cohort, chi-square test.

b
p < 0.05 vs no AKI, rank-sum test.

c
p < 0.05 vs no AKI, t test.
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Table 2

Test Characteristics of the Decision Tree With 95% CIs

Variable Derivation Cohort Test Cohort

No. of subjects 241 200

No. of true positives 26 17

No. of true negatives 188 139

No. of false positives 25 41

No. of false negatives 2 3

Sensitivity 93 (75–99) 85 (61–96)

Specificity 88 (83–92) 77 (70–83)

Positive predictive value 51 (37–65) 29 (18–43)

Negative predictive value 99 (96–100) 98 (93–99)

Positive likelihood ratio 7.9 (5.4–11.6) 3.7 (2.7–5.2)

Negative likelihood ratio 0.08 (0.02–0.3) 0.2 (0.07–0.6)

Area under the curve 0.95 (0.91–0.99) 0.83 (0.72–0.95)
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Table 3

Clinical and Demographic Data for the Test Cohort

Variable All No AKI AKI

n 200 180 20

Median age, yr (IQR) 2.6 (0.8–5.7) 2.7 (0.8–5.7) 2.2 (1.2–4.8)

Males, n (%)
105 (53)

a 96 (53) 9 (45)

28-d mortality, n (%) 28 (14) 19 (11)
9 (45)

b

Median Pediatric Risk of Mortality score (IQR) 13 (9–19) 12 (9–18)
19 (11–34)

c

Pediatric Sepsis Biomarker Risk Model mortality probability (95% CI) 11.6 (9.5–13.7) 10.8 (8.7–12.9)
18.7 (10.6–26.8)

d

Gram-negative bacteria, n (%) 45 (23) 40 (22) 5 (25)

Gram-positive bacteria, n (%) 44 (22) 38 (21) 6 (30)

Other pathogen isolated, n (%) 17 (9) 16 (9) 1 (5)

No pathogen identified, n (%) 94 (47) 86 (48) 8 (40)

Comorbidity, n (%) 73 (37) 68 (38) 5 (25)

AKI = acute kidney injury, IQR = interquartile range.

a
p < 0.05 vs derivation cohort.

b
p < 0.05 vs no AKI cohort, chi-square test.

c
p < 0.05 vs no AKI, rank-sum test.

d
p < 0.05 vs no AKI, t test.
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