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Abstract
Understanding the relationship between protein sequence and molecular recognition selec-

tivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM

affinity a decapeptide (sequence 6TAMFQDPQER15) derived from the N-terminal end of

human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previ-

ously shown that only the wild type amino-acid or conservative replacements were allowed

at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Neverthe-

less phenylalanine (F) was equally well tolerated as the wild type glutamine (Q) at position

13, while all other amino acids led to weaker scFv binding. The interfaces of complexes

involving either Q or F are expected to diverge, due to the different physico-chemistry of

these residues. This would imply that high-affinity binding can be achieved through distinct

interfacial geometries. In order to investigate this point, we disrupted the scFv–peptide inter-

face by modifying one or several peptide positions. We then analyzed the effect on binding

of amino acid changes at the remaining positions, an altered susceptibility being indicative

of an altered role in complex formation. The 23 starting variants analyzed contained

replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permuta-

tion analysis (effect of replacing each peptide position by all other amino acids except cyste-

ine) was carried out on the 23 variants using the PEPperCHIP1 Platform technology. A

comparison of their permutation patterns with that of the wild type peptide indicated that

starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes

at the other two positions. The interdependence between the three positions was confirmed

by SPR (Biacore1 technology). Our data demonstrate that binding selectivity does not pre-

clude the existence of alternative high-affinity recognition modes.
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Introduction
The determinants of binding selectivity in protein-protein interactions remain largely unex-
plored even though their knowledge is crucial for understanding binding events that underlie
biological phenomena or for developing new drugs. Selectivity is the ability of a molecule to
discriminate between interaction partners. A selective binder shows little cross-reactivity: it
recognizes a given partner with much higher affinity than other partners. A non-selective
binder is highly cross-reactive: it recognizes a range of molecules with similar affinities. The
description of selectivity is necessarily operational since it depends on the number and nature
of molecules analyzed. Ideally it should be based on the quantitative characterization of a very
large number of interactions, but this task is seldom expanded beyond a few dozen, typically
alanine variants of interfacial residues.

Alanine scanning mutagenesis (Ala-scan) experiments have shown that a small proportion
of all residues that compose protein interfaces play a major role in binding [1–2]. They were
called hot spots and defined as residues whose Ala replacement decreases the binding free
energy (ΔΔG) by more than 2 kcal/mol. Hot spots are generally clustered at the center of the
binding site and are surrounded by energetically less important residues, initially proposed to
shield hot spots from the solvent (O-ring hypothesis [2]). Hot spots are enriched in Trp, Tyr
and Arg, which was attributed to the capacity of these amino-acids for multiple interaction
types (aromatic-π, h-bond, hydrophobic) [2–3]. Amino-acid preferences at binding sites were
also investigated using structural data for protein complexes. The conclusions differ somewhat
depending on the data set and definition of interface residues, but a preferential contribution
to binding sites of hydrophobic, aromatic and Arg residues was observed [4–7]. These amino-
acids were proposed to be well suited for making contacts because of stickiness, flexibility and
mixed physico-chemical properties, allowing them to interact with different residues via differ-
ent contact types. It was suggested that hydrophobic residues (generally identified as hot spots
and located at the center of the binding site) mainly provide affinity, while surrounding polar
residues contribute to specificity [6, 8–9].

Beyond the identification of general rules, the compilation of Ala-scan experiments and the
analysis of binding site architectures stress the complex relationship between sequence/struc-
ture and binding [10–12]. Furthermore the hypothesis that hot spot residues present some rec-
ognition adaptability raises the question of the basis of selectivity. Statistical studies must
therefore be complemented with in-depth studies of the relation between structure and binding
in individual interactions. Because experimental mutational studies are laborious and time-
consuming, much effort was invested in the computational prediction of residue contributions
to binding energy from the 3D structure of complexes [13–16]. While reasonable success was
achieved in the identification of hot spots, precise prediction of the variation in binding energy
from in silico Ala-scan remains problematic. Predicting the effect on binding energy of replace-
ments other than Ala or of multiple replacements, which is crucial for a description of selectiv-
ity, is even more elusive. One of the reasons for the moderate success of quantitative
predictions is that protein plasticity and dynamics play a significant role in binding [17–20].
Differences between free and bound molecules include structural re-organizations, changes in
internal dynamics, ordering of mobile regions and desolvation effects, with complex conse-
quences on enthalpy and entropy variations. The description of these phenomena, of their
influence on binding energy, and of the way they change upon interface modifications, is out of
reach with current knowledge and methods used for computational approaches.

Comprehensive mutational studies, including not only single variants other than Ala, but
also multiple variants, are inescapable to unravel the relationship between structure and affinity
[21]. Such studies are scarce [22–23]. They cannot be exhaustive due to the extremely large size
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of the mutational landscape. Furthermore an increase in library size is generally achieved at the
expense of detailed activity quantifications. Illustrations of large-scale studies are provided by
the combinatorial mutagenesis of the interface between the human growth hormone and its
receptor [24], the mutational analysis of a PDZ domain in the cellular context [25] and the
high resolution mapping of the interaction between the WW domain and a peptide using pro-
tein display combined with high-throughput sequencing [26]. While double mutant behavior
could generally be predicted from that of single mutants in the latter study, the two former
studies stress the context-dependent effect of some interface mutations.

Residue interdependences (defined here as those cases when a mutation at position A modi-
fies the impact on binding affinity of a mutation at position B) surmise a modified role of the
wild-type (WT) and replacing residues in the binding mechanism, such as the existence of dif-
ferent contact types or geometries. Here we search for residue interdependences within the
peptidic epitope recognized by the single chain antibody fragment (scFv) 1F4 [27], previously
proposed to be capable of different recognition modes [28]. ScFv1F4 binds with high affinity to
peptides corresponding to the N-terminus of Human Papilloma Virus 16 oncoprotein E6
(HPV16-E6) [29]. In a previous work, a full permutation analysis of the WT decapeptide
6TAMFQDPQER15 allowed us to identify a well-defined epitope composed of positions 8 to
15, among which six showed a restricted tolerance to amino-acid changes and were considered
as essential epitope residues [28]. Only the WT amino-acid or conservative changes were
allowed at five of these essential positions (9–12 and 15). In contrast Phe and Gln, two amino-
acids that differ in physicochemical properties, were allowed at position 13 while conservative
replacements led to weaker binding signals. The observation that position 13 is essential for
binding but can accommodate residues with a different bonding potential led us to propose
that scFv1F4 uses alternative peptide binding mechanisms. If several residues are implicated in
the alternative mechanisms, residue interdependences should be observed: the susceptibility of
the binding affinity to amino-acid replacements at a given position should depend on the
nature of the amino-acid present at another position. Such occurrences are readily identified
from comparing the permutation patterns (effect on binding of replacing each position by all
amino-acids) of variant peptides with that of the WT peptide. Here we present the permutation
analysis of the WT peptide and of 23 starting variants performed using the PEPperPRINT
GmbH facility (PEPperCHIP1 Platform technology, Heidelberg, Germany). A subset of the
peptide–scFv interactions was characterized by SPR (Biacore1, GE Healthcare Biacore, Upp-
sala, Sweden). Our data indicate that replacements at peptide positions 11, 12 or 13 modify the
impact on the binding affinity of amino-acid changes at the other two positions, demonstrating
a dependence between the three residues for scFv1F4 binding, and supporting the existence of
alternative binding modes. Furthermore the alternative modes entailed high-affinity peptide
recognition.

Materials and Methods
Materials and methods were described in detail previously [28] and will be briefly summarized
here.

Soluble peptides and recombinant antibody fragments
ScFv1F4 [27] and scFv1F4-QL34S (scFv1F4 with a Q34S replacement in the light chain [30])
were expressed and purified as described previously [28]. Soluble peptides derived from resi-
dues 6–15 (6TAMFQDPQER15) of oncoprotein E6 of human papilloma virus 16
(HPV16-E6) were purchased from ProteoGenix (Oberhausbergen, France). The variants will
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be denoted either by their sequence, with the modified position in bold, or by the replace-
ment (for example 6TAMFQDPFER15 or Q13F).

Peptide array synthesis and analysis
ScFv1F4-QL34S labeling with DyLight680, peptide array synthesis and binding detection were
performed by PEPperPRINT GmbH (PEPperCHIP1 Platform Technology, Heidelberg, Ger-
many). The permutation scans were carried out on the WT decapeptide 6TAMFQDPQER15

and on its variants. In a permutation scan, the effect on binding of replacing each of the ten
peptide positions by all amino-acids except cysteine is analyzed, which requires the synthesis of
190 spot peptides per starting peptide (19 amino-acids at 10 positions). Two arrays were pre-
pared, each containing the permutation analysis of the WT peptide and of 19 variants. All pep-
tides were synthesized in duplicate (7,600 peptide spots per array). The peptide arrays were
stained with the DyLight680-labeled scFv1F4-QL34S. The staining pattern of array B is shown
in Fig 1. The permutation scans of the WT peptide and of variant 6TAMFQDPFER15 are
highlighted by white frames. The staining pattern of array A (S1 Fig) was published previously
[28].

SPR experiments
SPR kinetic experiments were carried out using a Biacore T200 instrument (GE-Healthcare
Biacore, Uppsala, Sweden) as described previously [28]. Soluble peptides containing a C-termi-
nal cysteine were covalently coupled to the sensor surfaces using the thiol coupling chemistry.
The running buffers for kinetic measurements were HBS (HEPES buffered saline: 10 mM
HEPES, 150 mMNaCl, 3.4 mM EDTA, pH 7.4) or HBS-200 (10 mMHEPES, 200 mMNaCl,
pH 7.4), both supplemented with 0.005% (v/v) surfactant P20. Three-fold dilutions of a 45 or
30 nM scFv1F4 sample were injected over the surfaces in multiple cycle kinetic experiments.
Injection and post-injection times were 180 s and 600 s, respectively. The flow rate was 40 μL/
min. The double-referenced binding curves were fit to the one:one Langmuir binding model,
using the Biacore T200 evaluation software (GE Healthcare Biacore).

Circular dichroism experiments
Circular dichroism (CD) experiments were recorded on a Jasco J-815 spectropolarimeter (Eas-
ton, MD) equipped with an automatic 6- position Peltier thermostated cell holder. Samples
(65 μL) at 400 μMwere prepared in HBS buffer. Far-UV CD data were collected in the 190–
270 nm range using a 0.1 mm pathlength cell (Quartz-Suprasil, Hellma UK Ltd) at
25.0°C ± 0.1°C. Spectra were acquired using a continuous scan rate of 100 nm/min and aver-
aged over 10 successive scans. The response time and the bandwidth were 1.0 s and 1 nm,
respectively. The solvent spectrum was subtracted from spectra obtained under identical condi-
tions. Far UV data are deconvoluted with the CDPro package [31] using the CONTINLL algo-
rithm with the SDP48 protein database, and means and standard deviations calculated over the
results obtained for the validated structures.

NMR spectroscopy
Samples for NMR spectroscopy were prepared in HBS buffer supplemented with 7% D2O.
Spectra were acquired at 25°C on a Avance III 700 MHz spectrometer (Bruker) equipped with
a Z-gradient triple resonance cryoprobe. Spectra were processed with NMRnotebook
(NMRTEC, Illkirch, France).
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Results

Peptide array design
The objective was to investigate whether a starting amino-acid replacement modifies the effect
on binding of amino-acid changes at neighboring positions. For example the effect of a delete-
rious starting change could be compensated by a replacement elsewhere. Residue interdepen-
dences may also be found in the case of non-deleterious starting replacements. They can be
identified by comparing the permutation patterns of the WT and variant peptides. Arrays A
[28] (S1 Fig) and B (Fig 1) each contained the permutation scans of the WT decapeptide
6TAMFQDPQER15 and of nineteen variants. Data recorded for the WT and 14 variant pep-
tides of array A were described previously [28]. The data presented here include all permuta-
tion scans in array B (WT and 19 variants), together with those of 5 variants in array A. One of
these was performed twice in array A (peptide 6TRMFQDVQER15). Therefore the data include
the permutations scans of the WT and of 23 variant decapeptides (Table 1), each of them being
recorded at least in duplicate.

A search for interdependences between all possible residue pairs is unfeasible. We there-
fore focused on the consequences on the permutation patterns of replacing essential resi-
dues. Thirteen variants presented a single change at one of the six essential positions (9 to
13 and 15), nine presented multiple changes including at least one at an essential position,
and one was replaced at non-essential positions (A7G-M8S). The effect on binding of the
replacements ranged from minor to drastic, as emphasized when the averaged fluorescence
signals are expressed as percentage of that recorded with the WT decapeptide (column 6 in
Table 1).

Array data analysis
The repeatability of fluorescence measurements can be assessed because: i/ all peptides were
synthesized in duplicate (Fig 1), ii/ the duplicated scan of peptide 6TRMFQDVQER15 was
repeated in array A and iii/ several peptides occur repeatedly within a same or in different fam-
ilies. Array B contained 3,222 different peptides, with 105 peptides repeated between 6 and 46
times. The standard deviation on the mean intensity calculated for these repetitions
was< 2,100 (Table 1), which is 12% of the WT intensity reading (18,100), demonstrating an
excellent signal repeatability, as was also observed for array A [28].

The comparison of the WT permutation scans, performed in both arrays A and B, further
demonstrated data quality. The signal intensity ranges differed in the two arrays: 6,800 and
18,100 for the scFv—WT decapeptide interaction in arrays A and B, respectively (Table 1).
However normalization of the intensity values with respect to the mean value of the
scFv1F4-WT peptide intensity in each panel, produced well-superimposed patterns (Fig 2).
The data confirm the conclusions that positions 9 to 13 and 15 show a restricted tolerance to
amino-acid changes (F9, Y9—Q10—D11, N11—P12—Q13, F13 and H15, K15, R15) and represent
essential epitope positions [28]. In addition, assuming that T6 is not part of the epitope, the
variability observed for this position (standard deviation = 0.12) provides insight into the
statistical significance of the normalized intensities.

Fig 1. Stained PEPperCHIP1 array B. The permutation scans of the WT peptide (upper left) and of variant
6TAMFQDPFER15 are highlighted by white frames. Replaced positions together with the WT amino-acid are
indicated on the left of the upper left frame. Amino-acids introduced at each position are indicated on top of
the frame. Duplicated spots are easily identified.

doi:10.1371/journal.pone.0143374.g001
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Comparison of WT and variant permutation patterns
The averaged fluorescence signals recorded for fourteen starting peptides were below 10% of
that recorded with the WT peptide (Table 1). These peptides carried one or several replace-
ments at essential positions 9, 10, 11, 12 and 15. In contrast, four single replacements (P12V,
Q13Y, Q13F and R15Q) had a milder effect with signals at 16, 37, 68 and 24% of the WT signal,
respectively. Furthermore five double variants showed signals that exceeded 10% of the WT
signal. Four of these included the Q13F or Q13Y change (P12V-Q13Y, P12V-Q13F, D11S-Q13Y,
A8Q-Q13Y) and one was modified at non-essential positions 7 and 8 (A7G-M8S).

In order to compare the permutation patterns of the variants with that of the WT, the mean
fluorescence signals were normalized as % of the signal recorded with each starting peptide.
Figs 3, 4 and S2 Fig show the superimpositions of the normalized WT (blue) and variant (red
line) patterns. Positions 6 and 7 are not represented because they were tolerant to all replace-
ments in all peptides analyzed. The replacement patterns at positions modified in the starting

Table 1. Spot fluorescence data for the starting peptides.

Array Sequencea Nb spots Mean Int.b Standard deviation (at 1 σ) c % of WT signal

A TAMFQDPQER d 32 6800 1300 100

A TRMFQDVQER 42 340 120 5

A TAMFQDVFER 20 940 190 14

A TAMFQSPYER 20 1410 430 21

A TQMFQDPYER 22 1580 370 23

B TAMFQDPQER 46 18100 2100 100

B TAMDQDPQER 24 500 530 3

B TAMLQDPQER 26 480 270 3

B TAMFADPQER 26 430 200 2

B TAMFKDPQER 24 390 200 2

B TAMFQTPQER 22 580 400 3

B TAMFQDQQER 28 800 1100 5

B TAMFQDHQER 28 720 450 4

B TAMFQDYQER 28 1280 750 7

B TAMFQDVQER 30 2900 1000 16

B TAMFQDPYER 26 6800 1300 37

B TAMFQDPFER 24 12300 1300 68

B TAMFQDPQEA 24 1060 210 6

B TAMFQDPQEQ 24 4330 390 24

B TAMLADPQER 24 510 340 3

B TAMFQRAQER 20 470 360 3

B TAMFQDVYER 24 2940 670 16

B TGSFQDPQER 20 11900 1500 66

B TAMFQDPSFM 20 420 370 2

B TGSFQRASFM 20 430 140 2

a Sequence replacements relative to WT are in red.
b Mean intensities > 10% that of the WT peptide are in bold.

c Standard deviation calculated as s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN

i ¼ 1

ðxi � �xÞ2
vuut

d The permutation of the WT decapeptide in array A was described in Vernet et al., 2015 [28].

doi:10.1371/journal.pone.0143374.t001
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Fig 2. Comparison of the twoWT permutation patterns. Intensities were normalized with respect to the mean intensity recorded for the scFv1F4—WT
peptide interaction. Black and grey bars correspond to the normalized intensities in arrays A and B, respectively. White bars represent the WT sequence
(normalized value = 1). Stars indicate single replacements in starting variants (see Table 1).

doi:10.1371/journal.pone.0143374.g002

Alternative High-Affinity Antigen-Antibody Recognition Modes

PLOS ONE | DOI:10.1371/journal.pone.0143374 December 2, 2015 8 / 20



sequence are not relevant to the modified sequence context. Therefore they are not represented
in single variants, and represented in green in multiple variants. For the cluster of the fourteen
peptides displaying strongest effect upon mutation (averaged fluorescence signals below 10%
of the WT signal), scFv1F4 binding could not be restored by non-WT replacements, as illus-
trated by the permutation patterns of four of the fourteen peptides (S2 Fig). Among the nine
variant binders displaying milder effect, two (A7G-M8S, R15Q) showed WT-like patterns (Fig
3). In contrast the permutation patterns of positions 11 and 12 were modified in variants pre-
senting the Q13Y or Q13F replacements. Indeed, in the context of these starting peptides, S at
position 11 was consistently compatible with binding in addition to D11 and N11 (Fig 4A–4F),
while I, L and V were allowed at position 12 in addition to the WT residue P12 (Fig 4A–4D).
Concomitantly, F13 was preferred over the WT residue Q13 in the context of starting peptides
containing the P12V mutation (Fig 4G) or the D11S mutation (green traces in Fig 4D). Data
from seven distinct permutation scans in two different arrays were thus fully consistent. They
indicate interdependence between positions 11, 12 and 13.

SPR validation
Eight peptides were synthesized for SPR characterization of their interaction with scFv1F4
(Table 2). The variant P12Y was used as a control of weak binding, its fluorescence signal
being< 10% that of the WT (Fig 2). The seven other peptides were designed to investigate the
interdependence between positions 11, 12 and 13 by comparing the effect on binding of a given
replacement in various sequence contexts. Fig 5 shows the normalized kinetic curves (signal
expressed as % of the maximal binding capacity of the surface) recorded when injecting a 10
nM purified scFv1F4 sample in HBS over surfaces carrying these seven peptides. The kinetic
and affinity constants are listed in Table 2, together with ΔG (cal / mol) calculated as RT x log
KD. Association rates were similar for all complexes (ka in the range 1 to 5 x 106 M-1 s-1), but

Fig 3. WT-like permutation patterns (positions 8–15). The patterns of variants R15Q (A) and A7G-M8S (B) are represented as red lines and superimposed
with theWT pattern (blue). Fluorescence signals were normalized with respect to that recorded with each starting peptide. Patterns at replaced positions are
not shown because they are not relevant to the modified sequence context.

doi:10.1371/journal.pone.0143374.g003
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dissociation rate constants differed significantly. The kd values measured in HBS and HBS-200
(HBS containing 200 instead of 150 mMNaCl) were similar (S1 Table) and correlated well
with the fluorescence signals measured in the spot approach (Fig 6A and 6B). The outlier is the
WT peptide. The correlation between binding free energies (in HBS) and fluorescence signals
is shown in Fig 6C and 6D.

Structural characterization of the peptides
To investigate if differences in dissociation rate constants are related to structural changes in
the free peptide, far-UV circular dichroism (CD) spectra were recorded for a subset of peptides
(Fig 7A). The CD spectra present profiles that are typical of disordered structures. This obser-
vation is confirmed by deconvolution of the CD spectra indicating a very low prevalence of
alpha and beta secondary structure content (always below 25%) (Fig 7B and S2 Table). These
results imply that the mutations, even involving the proline residue at position 12, did not
induce drastic changes in the peptide conformation as the proportion of secondary structure
elements stayed rather constant. To better characterize the conformation of the free WT pep-
tide in solution, NMR experiments were also conducted (Fig 7C). Both 1H-NMR TOCSY and
NOESY spectra exhibit a rather narrow amide proton chemical shift dispersion limited to
0.7 ppm. Such a range is characteristic of a lack of structural organization of the peptide back-
bone as well. Note that region 8 to 15 in the NMR structure of the free N-terminal domain of
E6 is highly flexible (PDB ID 2LJX [32]).

Discussion
The analysis of peptide–protein interactions is of general relevance as a number of interac-
tions that mediate key cellular processes involve peptides or short segments present in disor-
dered protein regions or in protein loops [33]. Furthermore bioactive peptides, or peptides
able to interfere with protein-protein interactions, are actively developed for biomedical
applications [34,35]. In particular peptides are developed as vaccines [36] and their antibody
binding modes have been investigated in structural or functional studies [37]. Multiple bind-
ing modes attributed to peptide or paratope plasticity have been observed in the case of
weak-affinity complexes formed by peptides with anti-protein antibodies or primary

Fig 4. Permutation patterns for variants modified at positions 11, 12 and 13. Variant patterns are represented as red lines and superimposed with the
WT pattern (blue). Fluorescence signals were normalized with respect to that recorded with each starting peptide. Patterns at the replaced positions are in
green for double variants and not shown for single variants.

doi:10.1371/journal.pone.0143374.g004

Table 2. Binding parameters deduced from SPRmeasurements in HBS.

Peptide a ka (10
6 M-1 s-1) kd (10−3 s-1) KD (10−9 M) ΔG (kcal/mol) Number of experiments

TAMFQDPQERC 3.05 ± 0.9 1.43 ± 0.05 0.47 ± 0.15 -12.7 ± 0.2 6

TAMFQDPFERC 3.75 ± 1.15 1.10 ± 0.01 0.29 ± 0.09 -13.0 ± 0.2 2

TAMFQSPQERC 4.70 15.00 3.20 -11.6 1

TAMFQDYQERC 1.63 ± 0.78 133 ± 47 82 ± 68 -9.2 ± 0.5 3

TAMFQDVQERC 4.20 31.00 7.40 -11.1 1

TAMFQDVFERC 3.36 ± 1.08 3.10 ± 0.71 0.92 ± 0.51 -12.3 ± 0.3 7

TAMFQSVFERC 4.26 ± 1.35 1.46 ± 0.05 0.34 ± 0.12 -12.9 ± 0.2 5

TAMFQSPFERC 4.85 ± 2.35 1.55 ± 0.05 0.32 ± 0.17 -13.0 ± 0.3 2

a Sequence replacements relative to WT are in bold and underlined.

doi:10.1371/journal.pone.0143374.t002
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repertoire antibodies [38–41]. Affinity and selectivity have been improved by constraining
the peptides [42–45]. In contrast, we describe here short linear peptides, likely to be largely
unstructured in solution according to CD and NMR experiments (Fig 7), that display < nM
antibody binding affinity.

We demonstrate that scFv1F4 recognizes with strong affinity peptides that possess alter-
native three-residue motifs at essential positions 11 to 13 (WT motif 11DPQ13, variant
motifs 11SVF13 and 11SPF13), within a common motif (F9—Q10 and R15). Moreover the
large-scale mutational study also provided information on non-binders, demonstrating that
the antibody fragment is selective. Information on non-binders is generally scarce due to
the technical challenges of producing large numbers or variants and of quantifying their
binding properties. Nevertheless it is essential as the ability of a protein to bind its partner
(s) is as important as its inability to interact with non-wanted homologues to ensure correct
biological function.

Ala-replacements of the WT peptide identify six hot-warm spots
We define hot-warm spots as residues whose Ala replacement results in an increase in binding
free energy> 1.5 kcal/mol. The ΔG of the WT peptide–scFv1F4 interaction, as deduced from

Fig 5. Normalized SPR kinetic curves. The purified scFv1F4 (10 nM in HBS) was injected over peptide surfaces. TheWT curve is shown in red, single
variants in light grey, double variants in dark grey and the triple variant in black. The curves were superimposed using the software TraceDrawer (Ridgeview
Instruments AB, Uppsala, Sweden).

doi:10.1371/journal.pone.0143374.g005
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SPR kinetic constants, was -12.7 kcal/mol (KD = 0.5 nM, Table 2). Interactions with ΔG>

-11.2 kcal/mol (KD> 6 nM) thus display an increase in binding free energy> 1.5 kcal/mol.
From the relation between fluorescence intensities and ΔG in HBS (Fig 6C and 6D), we can
roughly approximate intensities< 250 in array A or< 3000 in array B with ΔG> -11.2 kcal/
mol. Four Ala variants showed fluorescence readings below these limits: F9A, Q10A, P12A and
R15A (signals of 100, 54, 84 and 86, respectively, in array A, and of 633, 425, 1644 and 1057,
respectively, in array B). These observations are consistent with the ΔΔG> 2 kcal/mol previ-
ously measured by SPR for the P12A (2.7 kcal/mol) and Q13A (2.4 kcal/mol) replacements [29].
Variants Q13A and D11A showed intensities slightly above these limits (intensities of 252 and
305, respectively, in array A, and of 2524 and 4298, respectively, in array B). In conclusion the
Ala replacement data, together with the restricted tolerance to amino-acid changes at six posi-
tions (Fig 2), point to the strong peptide recognition selectivity of scFv1F4.

Fig 6. Correlation between SPR constants and fluorescence signals. The kd (A, B) and ΔG (C, D) values are plotted against fluorescence signals from
arrays A (A,C) and B (B,D). The kd as measured in HBS (grey markers) and HBS-200 (white markers) is shown in log scale. Peptide names are indicated in A
and B.

doi:10.1371/journal.pone.0143374.g006
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Substitutional analysis of variants identifies both independent and
interdependent effects of replacements
Residue interdependences were detected within the set of positions 11–13, but not elsewhere.
For example the replacement R15Q decreased fluorescence intensity (24% of the WT intensity,
Table 1) but the permutation pattern of positions 6 to 14 was nearly unaffected (Fig 3B). The
conserved tolerance to amino-acid changes in variant R15Q, despite a decreased fluorescence
signal compared to the WT (Table 1), indicates independent mutational effects: the starting
change does not influence the effect of replacements at other peptide positions. The R15Q
replacement is likely to modify the scFv-peptide interface only locally. In contrast a replace-
ment at one of the hot-warm spots 11–13 affected the tolerance to changes at the two other
positions (Fig 4), as also confirmed by SPR (Figs 5 and 6). This finding supports the hypothesis
that scFv1F4 is capable of distinct peptide binding modes, initially proposed on the basis that
Q and F, two amino-acids with different physico-chemical properties, are equally well tolerated
at position 13 [28]. Fig 8 compares the effect on kd of a given replacement in peptides with dif-
ferent sequences. The D11S replacement (top vertical arrows) increased kd 11-fold in the WT
context, but had only a marginal effect in 6TAMFQDPFER15 and 6TAMFQDVFER15. Similarly
the P12V replacement (right-hand horizontal arrows) increased kd 22 to 23-fold in the WT
peptide, but had a weak or no effect in 6TAMFQDPFER15 and 6TAMFQSPFER15. These effects
can also be visualized in Fig 5 by comparing the dissociation profiles obtained for each peptide.

A mutational study of the interaction between TEM1-lactamase and lactamase inhibitor
protein (BLIP) suggested a modular architecture of protein–protein binding sites, with muta-
tions showing cooperativity within modules and additivity across modules [12]. The existence
of other interdependences within the peptide recognized by scFv1F4, involving replacements
that were not investigated, or interactions with stability below the detection limit of the spot
experiments, cannot be excluded. Nevertheless the data recorded so far suggest that they are
restricted to three of the six essential epitope positions.

ScFv1F4 recognizes alternative motifs with strong affinity
The multiple variants D11S-Q13F and D11S-P12V-Q13F displayed stronger scFv binding com-
pared to single variants (D11S or P12V) in SPR experiments, illustrating a compensating effect
of amino-acid changes and confirming the conclusions of spot experiments. The latter clearly
indicated a greater tolerance to S at position 11 and I, L or V at position 12 in variants contain-
ing F13 instead of the WT Q13 (Fig 4). The ability of the scFv to recognize with similar affinity
peptides that contain 11SVF13 and 11DPQ13 is corroborated with CD data showing almost no
difference in structural contents. Even if the conformational ensembles are similar, the binding
interfaces formed by the two bound peptides should differ due to the distinct nature of their
side chains. Differences can be accommodated for instance if these residues are partially acces-
sible to the solvent in the complex, or if the antibody binding site presents some plasticity [46–
48]. However the recognition of peptides by the scFv is not ‘fuzzy’, as previously suggested [29]
based on the observation that various sequences were compatible with binding activity in spot
and phage display experiments. In the present work we demonstrate that the sequence require-
ments for high-affinity binding are restricted to a limited set of alternative amino-acid

Fig 7. Structural characterization of a subset of peptides. A) CD spectra of 6 of the peptides listed in Table 2. The CD signal is expressed as mean
residue ellipticity. B) Representative analysis of far UV data deconvoluted with the CDPro package using the CONTINLL algorithm with the SDP48 protein
database (See S2 Table for details). The CD signal is expressed as mean residue CD extinction coefficient. C) Superimposition of NMR 1H-1H TOCSY
(green) and NOESY (red) spectra recorded at 700 MHz on a 1 mM sample of WT peptide. All spectra were measured at 25°C in HBS buffer. Sequential
assignment is reported here according to the peptide numbering. Note that P12 is missing due to the lack of NH in the proline residue.

doi:10.1371/journal.pone.0143374.g007
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combinations: the D11S and P12V replacements required the concomitant Q13F change for
optimal binding. ScFv1F4 is not a natural antibody, but a hybrid fragment formed from the
light and heavy chain variable regions of two different monoclonal antibodies. Nevertheless the
finding that alternative binding modes display sub-nanomolar affinity (Fig 5, Table 2) chal-
lenges the view that antibody selectivity is based on the existence of a unique optimal interface.

In a previous study we have shown that the “non-WT” binding motif was the only one
selected from a phage-displayed peptide library [29]. The consensus of 20 clones was S11-P12-
FY13. Seven clones contained ST-P-FY, 5 contained ST-VIL-FY and one D-P-F, in accordance
with the present finding that these motifs lead to strong scFv1F4 binding. None of the phage-
display sequences carried Q13. This selection bias cannot be explained by differences in binding
properties as measured by SPR. It could originate from a bias in library composition or from
differences in dynamics, which could influence preferential recognition in a competition
situation.

The alternative motifs illustrate a case of concerted replacements that ensure optimal activity.
Concerted (co-ordinated, co-evolving) amino-acid pairs, identified from sequence alignments of

Fig 8. Context dependence of the effect on kd of replacements. Positions 11, 12 and 13 in the peptide sequences are shown in red, blue and green,
respectively. The filling is white for theWT residue (D11, P12, Q13) and colored for the modified residue (S11, V12, F13). The ratio kd variant / kd WT, as
measured by SPR in HBS (black) or HBS200 (grey), is given next to each arrow, together with the nature of the replacement.

doi:10.1371/journal.pone.0143374.g008
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homologous proteins, were found to be closer together in space than random pairs [49,50]. Co-
evolving information was then exploited to predict amino-acid structural contacts within protein
cores, at protein interfaces and across interfaces [51–54]. The particular case described here,
although not dealing with protein evolution, illustrates how individual changes (D11S, P12V) can
be deleterious or not depending on a silent replacement (Q13F). Silent replacements would not
necessarily co-evolve with other positions of a cluster, which might explain inconsistencies in the
experimental validation of computational results [55].

Conclusion
The relationship between affinity and selectivity is a matter of debate [56], high affinity being
considered in some cases as a condition for specific binding and, in others, as favoring cross-
reactivity. Numerous protein binders, and in particular antibodies, have been shown to form
stable complexes with two or more ligands, but the assessment of selectivity requires the identi-
fication of a significant number of non-binders. Quantitative large-scale permutation studies
represent a powerful tool to decipher the subtleties of protein-protein interactions, which can-
not be inferred from mere Ala-scan experiments. Our results stress the importance and unpre-
dictable outcome of residue dependencies in binding. We describe a high-affinity binder that is
simultaneously selective (restricted tolerance to ligand changes) and permissive towards partic-
ular combinations of changes. It is not known if this dual behavior, identified for the interac-
tion between an antibody fragment and a peptide, is an exception or not because few
interaction systems have been studied at this level of quantitative detail.
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